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Conjugated polyaniline has shown anticorrosive, hydrophilic, antibacterial, pH-responsive, and
pseudocapacitive properties making it of interest in many fields. However, in situ grafting of polyaniline
without harsh chemical treatments is challenging. In this study, we report a simple, fast, and non-
destructive surface modification method for grafting tetraaniline (TANI), the smallest conjugated repeat
unit of polyaniline, onto several materials via perfluorophenylazide photochemistry. The new materials
are characterized by nuclear magnetic resonance (NMR) and electrospray ionization (ESI) mass
spectroscopy. TANI is shown to be covalently bonded to important carbon materials including graphite,
carbon nanotubes (CNTs), and reduced graphene oxide (rGO), as confirmed by transmission electron
microscopy (TEM). Furthermore, large area modifications on polyethylene terephthalate (PET) films
through dip-coating or spray-coating demonstrate the potential applicability in biomedical applications
where high transparency, patternability, and low bio-adhesion are needed. Another important application
is preventing biofouling in membranes for water purification. Here we report the first oligoaniline grafted
water filtration membranes by modifying commercially available polyethersulfone (PES) ultrafiltration (UF)
membranes. The modified membranes are hydrophilic as demonstrated by captive bubble experiments
and exhibit extraordinarily low bovine serum albumin (BSA) and Escherichia coli adhesions. Superior
membrane performance in terms of flux, BSA rejection and flux recovery after biofouling are
demonstrated using a cross-flow system and dead-end cells, showing excellent fouling resistance

produced by the in situ modification.
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actuators,”® non-volatile memory devices,” supercapacitors,*
water filtration membranes,"” anticorrosive coatings,'” tissue

Introduction

Polyaniline, a well-studied conjugated polymer known for its
simple acid/base doping/de-doping chemistry and facile
synthesis,' has been widely applied to chemical gas sensors for
ammonia detection,*® chemical and electrochemical

“Department of Chemistry and Biochemistry and California NanoSystems Institute,
University of California, Los Angeles, Los Angeles, California 90095, USA
*Hydrophilix, Inc., 12100 Wilshire Blvd, Suite 800, Los Angeles, CA 90025, USA
‘Green Technology Center, Jung-gu, Seoul, 04554, Republic of Korea

“Department of Civil and Environmental Engineering, University of California, Los
Angeles, Los Angeles, California 90095, USA

‘Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401,
Taiwan. E-mail: schuang@gms.ndhu.edu.tw

/Department of Materials Science and Engineering and California NanoSystems
Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.
E-mail: kaner@chem.ucla.edu

T Electronic  supplementary  information available. See DOIL
10.1039/c8sc04832k

i These two authors contribute equally to this work.

(EST)

This journal is © The Royal Society of Chemistry 2019

engineering,”® among other uses."*'® In the realm of coat-
ings,'*"” and membranes,"***' researchers often blend poly-
aniline with other matrix materials in order to obtain the
hydrophilic and antibacterial characteristics of polyaniline at
the surface.””® However, low solubility and gelation of poly-
aniline during processing, have hindered the development of
improved materials.”””® Therefore, grafting polyaniline onto
other materials is crucial in order to achieve more robust
coatings and functionalize surfaces for enhanced perfor-
mance.”*?*® Due to difficulties in processing polyaniline, chem-
ically grafting polyaniline is often performed by functionalizing
end groups with amines,*~** amidation reactions with carbox-
ylic groups,*®” diazotization reactions with diazonium
salts,***° and nitrogen doping** followed by oxidative polymer-
ization. However, such modification processes require chemi-
cally inert and mechanically strong materials in order to sustain
the harsh pretreatments. In addition, the abovementioned
methods are only suitable for materials within the micro- and
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nanoscale regime, which limit the feasibility of modifying large
surfaces with such hydrophilic, pH-responsive, and antibacte-
rial polyaniline.

Herein, we report a newly synthesized molecule, 4-azidote-
trafluorobenzoyl tetraaniline (ATFB-TANI), which can be used to
couple tetraaniline (TANI) to other materials. TANI, the smallest
representative repeat unit of polyaniline, is known to have
similar properties to polyaniline, but can be readily dissolved in
common organic solvents for facile processing.**** This
bridging group is based on the solid foundation of per-
fluorophenylazide photochemistry,* which can undergo addi-
tion and insertion reactions when exposed to UV light.***° Thus,
with the assistance of perfluorophenylazide, TANI can now be
covalently photografted onto carbon nanotubes (CNTs) and
reduced graphene oxide (rGO) without pretreatments. Further-
more, large area modifications through dip-coating and spray-
coating on polyethylene terephthalate (PET) films with high
transparencies and low bio-adhesions show great potential to
apply this material for biomedical uses.

Another application that could greatly benefit from a coating
that prevents bio-fouling is ultrafiltration (UF) membranes.
Typical commercial UF membranes are made of poly-
ethersulfone (PES), polyvinylidene fluoride (PVDF), polysulfone
(PSF), polypropylene (PP), or polyurethane (PU).**** The hydro-
phobic nature of these matrix polymers leads to protein
adherence to their surfaces and the proliferation of bacteria.”>*
Additionally, the accumulation of both organic and inorganic
foulants on membrane surfaces over time, ie. fouling, can
severely lower the permeation flux and the filtration efficiency,
often damaging the membranes.***® In order to surmount these
problems, scientists and engineers have already developed
a couple rule-of-thumbs for designing antifouling membranes.
First, hydrophilic membrane surfaces have been suggested as
a method to form a few-molecule-thick hydration nanolayer,
which may prevent foulant adhesions and cake formation.
Second, stimuli-responsive polymers grafted onto membrane
surfaces can undergo a coil-to-globule transition to “release”
the accumulated foulants when exposed to a stimulus during
washing cycles.?%>13%6°

To date, all the reported polyaniline-based filtration
membranes are formed by blending polyaniline with base
polymers. For instance, in 2008, Fan et al. reported a UF
membrane made by blending polyaniline with PSF, doubling
the pure water flux compared to a pristine PSF membrane and
lessening the flux decline.**® Since then, other researchers have
reported UF membranes composed of polyaniline blended with
base polymer, including PES, PSF, PVDF, etc.>"*'-* Blending-in
polyaniline enhances the membrane's hydrophilicity, thereby
decreasing the flux decline and improving the flux recovery.
Even more hydrophilic membranes were reported by further
mixing CNTs into polyaniline-blended UF membranes;
however, bovine serum albumin (BSA) rejection decreased due
to the formation of larger porosity in these membranes.**%*
McVerry et al. and Zhao et al incorporated self-doped
sulfonated polyaniline (SPANI) into PSF and PVDF UF
membranes, respectively, with superior hydrophilicity. The
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zwitterionic nature of SPANI resulted in a high flux recovery and
high BSA rejection rate.>>*

The blending strategy mentioned above is straightforward
but has several limitations: (1) the processability of polyaniline
during membrane casting needs to be improved as polyaniline
only appears dispersible in dimethyl sulfoxide (DMSO) and N-
methyl-2-pyrrolidone (NMP). (2) The crucial pore size of the
composite membranes that directly affects the water flux and
rejection rate has to be tuned experimentally by trial and error.
(3) The mechanical properties of the resultant composite
membranes are strongly dependent on the intrinsic properties
of polyaniline and the percentage blended in. As polyaniline
possesses a more rigid backbone,”®”* the flexibility of its
membranes are limited. (4) The confined polyaniline chains
embedded in composite membranes cannot undergo a coil-to-
globule transition when treated with acids in order to actively
repel foulants. In order to graft polyaniline onto membranes or
attach bridging groups to polyaniline through chemical reac-
tions, dissolving polyaniline in DMSO or NMP is inevitable.
However, DMSO and NMP are strong organic solvents that can
readily dissolve and destroy the base UF membranes during the
modification process. Hence, grafting polyaniline onto
membrane surfaces without damaging the base UF membranes
has so far been unsuccessful.

Here we report the first oligoaniline modified filtration
membranes via photografting ATFB-TANI onto commercially
available PES UF membranes. The modified membrane
surfaces show enhanced hydrophilicity and improved perfor-
mance in terms of antifouling ability, BSA rejection, and pre-
venting bio-adhesions. This fast, facile, and non-destructive
modification process offers a new route to graft conducting
oligoanilines and can serve as the initiator for further poly-
merization as well.

Results and discussions

membrane surfaces
membranes, per-
its fast and non-

In order to graft TANI onto large scale
without ruining the base polymer
fluorophenylazide was applied due to
destructive photochemistry. As shown in Fig. 1a, TANI and 4-
azidotetrafluorobenzoic acid (ATFB) were stirred under basic
conditions for 48 hours in order to complete the coupling
reaction. Upon light activation, the phenylazides on ATFB-TANI
undergo decomposition of nitrogen (N,) to form singlet phe-
nylnitrenes, and the highly reactive phenylnitrene radicals can
undergo C=C addition and C-H and N-H insertion reactions.”
The synthesized ATFB-TANI complex was confirmed by the peak
shifts observed in '’F-NMR (Fig. 1c) when compared to the
ATFB starting molecule (Fig. 1b), along with the electrospray
ionization (ESI) spectrum with a mass observed within 0.7 ppm
of the expected mass (Fig. 1d). As a small molecule, ATFB-TANI
can be dissolved in a wide range of organic solvents, including
toluene, tetrahydrofuran, chloroform, acetone, ethanol, aceto-
nitrile, methanol, and NMP, as shown in Fig. 1e with the color
differences being attributed to solvatochromism.*”® The rela-
tively high solubility of ATFB-TANI in common organic solvents
compared to polyaniline indicates its advantageous

This journal is © The Royal Society of Chemistry 2019
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processability. In this report, we chose ethanol as the solvent to
carry out modifications, mainly due to its low toxicity, high
solubility toward ATFB-TANI, low solubility toward poly-
ethersulfone membranes, and high miscibility with water.

Here we demonstrate that facile surface modification using
ATFB-TANI can be applied to several important materials,
which specifically undergo C=C addition reactions, creating
covalent bonds with phenylnitrenes after UV light exposure. In
Fig. 2a and b, a lab grade Petri dish made of polystyrene
becomes more hydrophilic after modification as indicated by
water droplets spreading out and a very faint blue color. The
water droplet contact angle as measured by a goniometer
decreased from 63° to 42° (Fig. 2c and d). Analogously, a modi-
fied compressed graphite pellet also exhibits a decreased
contact angle (Fig. 2f and g) indicating increased hydrophilicity
(Fig. 2e). Furthermore, the ATFB-TANI molecule provides
a simple way to graft TANI onto carbon nanotubes (CNTs)
(Fig. 2h) and reduced graphene oxide (rGO) (Fig. 2k). Conven-
tionally, grafting polyaniline onto CNTs or GO/rGO requires
surface functional groups via harsh chemical pre-treatments in
order to obtain active sites for chemical grafting or polymeri-
zation.*>*»”* Here, conducting TANI is successfully chemically
grafted onto these materials via a non-destructive photochem-
ical method (Fig. 2i, j and 1).

Since ATFB-TANI can dissolve in common organic solvents,
large-scale modifications are possible. Fig. 3a shows poly-
ethylene terephthalate (PET) films subjected to an increasing
number of dip-coatings. The coating process was performed by
repeated dip-coating, UV light exposure, and ethanol washing.

View Article Online
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Both undoped (EB) and doped (ES) PET films show a gradual
decrease in the transparency as the number of coating layers is
increased. The percent transmittance of both EB and ES PET
films is around 95% for a monolayer, and about 80% after 15
layers of modification (Fig. 3b and c). The sheet resistances of
the doped conducting PET films decrease from around 10 Q
sq " (Fig. S11) to 10° Q sq ! (Fig. 3d). The high sheet resistances
may be explained by the rather sparse grafting density, and
short chains of TANI that do not greatly enhance carrier
hopping.” The modified films show similar sheet resistances,
implying that the ATFB-TANI molecules grafted onto previous
layers may react with those on pre-modified molecules, result-
ing in the loss of some conjugation for the pre-existing layers.

Spray-coating combined with stencil masks is a method
often used for large scale patterning. The schematic in Fig. 3e
demonstrates how ATFB-TANI molecules dissolved in an
ethanol solution can be airbrushed onto PET films using stencil
masks to form a “UCLA” pattern. This achieves a highly trans-
parent UCLA patterned coating after exposure to UV light and
an ethanol rinse, as shown in Fig. 3f. Such a facile, fast, and
non-destructive modification with ATFB-TANI to make highly
transparent coatings could prove useful for biomedical appli-
cations such as artificial skin. The idea is to prevent common
infections such as those caused by Staphylococcus epidermidis (S.
epidermidis).”®”® Adhesion tests on both modified and unmod-
ified PET films were carried out by exposure to S. epidermidis.
The observed images with stained cells on unmodified (Fig. 3g),
and one, five, and ten-fold modified (Fig. 3h-j) PET films show
a readily noticeable drop in the number of cells adhered

N
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Fig.1 The synthesis procedure and characterizations of 4-azidotetrafluorobenzoyl-tetraaniline (ATFB-TANI). (a) ATFB-TANI was synthesized by
coupling tetraaniline (TANI) with 4-azidotetrafluorobenzoic acid (ATFB). The ATFB-TANI can be covalently grafted onto the substrates by utilizing
azide photochemistry. The °F-NMR spectra of (b) ATFB and (c) ATFB-TANI. (d) Electrospray ionization (ESI) spectrum showing the molar mass of
ATFB-TANI is 0.7 ppm away from the calculated value. (e) Photo showing ATFB-TANI can be dissolved in common organic solvents.
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Fig. 2 Images of water droplets on (a) an unmodified and (b) a modified polystyrene-based Petri dish. The contact angles of (c) unmodified and
(d) modified Petri dish are 63° and 42°, respectively. The contact angle of (e) a compressed graphite pellet decreases from (f) 60° to (g) 35° after
modification. The transmission electron microscopy (TEM) bright field images of (h) unmodified, (i and j) modified multi-walled carbon nanotubes
(MWCNTSs) and (k) unmodified and (1) modified reduced graphene oxide (rGO).

(Fig. S2t). A statistical bar graph reveals that the surface PET films is significantly lower than the one-fold ones, but
coverage percentage of S. epidermidis drops more than 50% similar with the ten-fold ones, indicating that the surface
from the unmodified to the more modified films (Fig. 3k). Note modification can be effective with no more than five times of
that the surface coverage of S. epidermidis for five-fold modified treatment.
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Fig. 3 (a) Undoped (EB) and HCl doped (ES) polyethylene terephthalate (PET) films with different numbers of modifications showing their
transparencies. UV-vis spectra show the transmittances of (b) undoped and (c) doped PET films with a pristine PET film as the reference. (d) The
measured /-V curves of a pristine PET film and modified PET films after doping. (e) A schematic showing (f) a UCLA pattern by spray-coating
ATFB-TANI solutions on top of a 13.5 cm x 8.0 cm PET film through stencil masks, followed by UV light exposure. Microscopic images showing
the surface coverage of Staphylococcus epidermidis on the (g) unmodified, (h) 1, (i) 5, and (j) 10 times modified PET films, along with (k) a statistics
bar graph ((g—j) are under the same magnification).
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(a) Photographs of unmodified (left) and modified (right) polyethersulfone (PES) membranes. (b) Scratches are easily seen on the modified

membrane (bottom) compared to the unmodified one (top). The (c) ATFB-TANI molecule and (d) the modified membrane can be protonated and
deprotonated when treated with acids and bases. (e) The UV-vis spectra and photo (inset) of undoped (blue) and doped (green) ATFB-TANI

dissolved in dimethyl sulfoxide (DMSQO). (f) UV light treated TANI stained

Next, we grafted TANI onto polyethersulfone (PES) UF
membranes. The unmodified UF PES membranes appear white,
while the modified membranes exhibit a lightblue color even
after rinsing with DI water and ethanol (Fig. 4a). Unlike the
modification of colored materials, one can directly observe the
modification of these initially transparent membranes as they
develop a blue hue. The colored modification also makes any
surface imperfections on the membrane readily visible (Fig. 4b).
Similar to aniline oligomers and polyaniline, ATFB-TANI can
undergo a doping/de-doping process by treating with acids/
bases. During the doping process, the imine nitrogens in the
blue emeraldine base form become protonated, forming the
green emeraldine salt form with the positively charged back-
bone surrounded by counter-anions to balance the charge
(Fig. 4¢).” The modified membrane can be reversibly proton-
ated with acid and deprotonated with base, switching from the
blue emeraldine base form to the green emeraldine salt form
(Fig. 4d). Note that the color change of the modified membranes
takes a slightly longer time, about 3 to 5 seconds more, than

This journal is © The Royal Society of Chemistry 2019

membranes appeared colorless after rinsing in a vial of ethanol.

protonating/deprotonating in solution. The reason is simply
due to the slower diffusion rate of the dopants in solids when
compared to liquids. Fig. 4e shows the UV-vis spectra of both
the blue emeraldine base (EB) and the green emeraldine salt
(ES) forms of ATFB-TANI dissolved in DMSO. Similar to TANI,
the broad peak at ~600 nm, i.e. the blue color, can be attributed
to the benzenoid to quinoid excitation transition, while the
sharper peak for emeraldine salt at ~440 nm can be attributed
to the allowed optical transition from the highest occupied
molecular orbital (HOMO) to the higher bipolaron state.*>°%
To confirm the chemical grafting of ATFB-TANI onto the PES
membrane surfaces, we performed the same modification
procedure with TANI instead of ATFB-TANI in an ethanol
solution. Without the assistance of azides, the TANI modified
membrane after the treatment of UV light maintained its
unaltered white color after rinsing with ethanol (Fig. 4f). In
contrast, the ATFB-TANI modified PES membrane remained
blue after rinsing with ethanol, indicating that the blue color of
ATFB-TANI modified membranes is not stained, and the ATFB-

Chem. Sci,, 2019, 10, 4445-4457 | 4449
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Fig. 5

(@) ATR-IR spectra of both modified and unmodified PES membranes. (b) X-ray photoelectron spectroscopy (XPS) spectra and F 1s

spectrum (inset) of the modified and unmodified membrane surfaces. (c) Captive bubble images under deionized water, and (d) contact angles
under different pH aqueous solutions of modified and unmodified membranes.

TANI is successfully grafted on by photochemistry. The degree
of grafting (DG) of ATFB-TANI onto a membrane is 9.74 + 1.30
g cm 2, which is comparable to previous reports for the degree
of grafting for other polymers (200 < DG < 1000 ug cm™?), in
terms of the number of moles per surface area.*** Fig. S3}
shows a modified membrane soaked in water for nearly one
year, the blue color indicates the excellent stability of the
grafting. Attempting a more careful examination using attenu-
ated total reflectance infrared (ATR-IR) spectroscopy did not
show the difference between the unmodified and modified
membranes (Fig. 5a), likely due to the small amount of ATFB-
TANI attached. Hence, a more sensitive and precise surface
technique, such as X-ray photoelectron spectroscopy (XPS), was
needed. The XPS spectra, as shown in Fig. 5b, cannot clearly
differentiate the azide signal at 406.5 eV due to the existence of
a high nitrogen signal from the commercially available
unmodified membranes. However, the fluorine peak at 687.6 eV
is evident, revealing that a small amount of ATFB-TANI has
indeed been grafted onto the membrane.®¢-®

Due to the high-water permeability of these PES membranes,
their hydrophilicity was examined using a captive bubble
contact angle goniometer. A previous study showed that TANI
decorated polymeric films possess lower contact angles.* The

4450 | Chem. Sci., 2019, 10, 4445-4457

interfacial energy of TANI/water is comparatively smaller than
PES/water, resulting in more rounded air bubbles, i.e. lower
contact angles, for modified membranes (Fig. 5c). Although the
interfacial energy of modified membranes is expected to change
when exposed to acids because of the protonation of the imine
nitrogens, the contact angles observed were consistently around
30 degrees different between unmodified and modified
membranes at various pH values, as can be seen in Fig. 5d. This
phenomenon can be explained by the insignificant differences
in interfacial energy due to the very small amount of surface
modification. The relatively more hydrophilic nature of the
modified surfaces at different pH values indicates that these
membranes are capable of being operated under harsh condi-
tions. Polyaniline films may also possess increased roughness
which can affect the contact angle measurement;*® TANI, as
a small molecule, slightly increases the surface roughness, from
2.72 nm to 3.49 nm for the unmodified and modified
membranes, respectively (Fig. S4T).

To evaluate their antifouling properties, the PES membranes
were subjected to a 1.0 g L' of bovine serum albumin (BSA)
solution with a pressure of 50 psi. The membranes were first
compacted with deionized (DI) water until the permeation flux
reached equilibrium. After exposure to the 1.0 g L™ BSA feed

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 (a) Flux decline for unmodified and modified PES membranes

after adding bovine serum albumin (BSA). (b) Flux declines and
recoveries of a modified membrane after three cycles of fouling and
water washing.

solution, the permeation flux decreased dramatically due to the
formation of a cake layer during the fouling process.** As shown
in Fig. 6a, the modified membrane exhibited a smaller flux
decline after 45 minutes of BSA fouling compared to the
unmodified one. The reason may be the more hydrophilic
surfaces created after modification; however, the improvement
is not significant likely due to the high pressure (50 psi) applied.
As mentioned above, the hydrophilic surfaces of the modified
membranes form a few-nanometer-thick hydration layer that
prevents the adhesion of foulants directly onto the membrane
surfaces. Thus, the foulant BSA will experience much lower
adhesion forces from the modified membranes. Hence, the

Table 1 Summary of membrane performance
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modified membranes were tested with cycles of fouling and
water washes. The water wash should remove much of the
accumulated BSA from the more hydrophilic membrane
surfaces due to lower interaction forces and thus give a higher
recovery rate. In Fig. 6b, the modified membranes were
repeatedly water washed for 5 minutes after 45 minutes of BSA
fouling. Note that the water wash duration on the graph shows
about 10 minutes because of the extra time spent on cleaning
and filling the water tank. The flux recovery percentages were
found to be 73.30 + 2.41%, 60.77 + 2.41%, and 56.59 + 0.15%
for the first, second, and third fouling experiments, respectively,
carried out on the modified membranes. Note that the average
flux recovery of the modified membranes after three times
fouling (56.59 + 0.15%), is still comparable to the first flux
recovery of the unmodified membranes (56.35 + 6.45%) and
other polyaniline blended membranes.”*** The flux recovery
percentages decrease with each cycle due to the irreversible
fouling that occurrs from the BSA, preventing a full recovery on
both the modified and unmodified membranes.

In addition, the modified membranes possess a better BSA
rejection rate of 97.53 = 1.12%, comparable to polyaniline
composite UF membranes,"*#***% while the unmodified
membranes possess a rejection rate of only 91.66 + 0.85%.
Furthermore, the modified membranes have slightly higher
permeation flux compared to the unmodified
membranes.” This counter-intuitive increase in the permeation
flux is likely due to slight swelling of the PES membranes
induced by their immersion in ethanol during the modification
process.”® The performances of both unmodified and modified
membranes are summarized in Table 1.

Conjugated aniline oligomers can be easily protonated and
deprotonated under different pH conditions. We performed
fouling on modified membranes, followed by washing with
water at different pH values. However, washing at different pHs
did not give superior results to washing at neutral pH, indi-
cating that the doping/de-doping of TANI did not effectively
expel BSA during the wash cycle.”” Based on the Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory,”® polyaniline nano-
fibers are able to form stable colloids within a pH range from
2.2 to 3.5, while forming precipitates at pH values less than 1.5
and greater than ~5.” The pH responsive polyaniline nano-
fibers swell from a coiled state to a globule state when exposed
to an appropriate pH environment. However, TANI only forms
a stable dispersion in a solution of pH = 1 (zeta potential equal
to 14.83 mV), as shown in Fig. 7a (15 hours standing), and it has
been observed to last for at least 6 months. The moderately
destabilized TANI under pH = 0.5 and more stabilized disper-
sion under pH = 2 after adding 0.1 M NacCl indicate that the
TANI has a very narrow pH range for being stabilized in

water

Pure water permeability

Contact angle at ~ Root-mean-square

Membrane at 50 psi (LMH) BSA rejection (%)  Flux decline (%)  Flux recovery (%)  pH 7 (degree) roughness (nm)
Unmodified 181 + 21.0 91.06 £ 0.85 46.85 £ 5.22 56.35 £ 6.45 76.3 = 1.6 2.72 + 0.30
Modified 227 £ 4.9 97.53 £ 1.12 40.70 £ 8.95 73.30 £ 2.41 49.8 £ 0.4 3.49 £ 047
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Fig.7 (a) Optical images of TANI dispersed in aqueous solutions (2 mg mL™Y) at different pH and (b) with 0.1 M NaCl added after standing for 15

hours.

suspension (Fig. 7b). Therefore, for future research, in order for
the grafted TANI molecules to be able to repel foulants merely
via changes of solution pH, knowing the precise pH of the
solution and the isoelectric point for the chosen foulants will be
crucial.

Another key indicator for evaluating membranes is the
adhesion of microorganisms and the proliferation of bacteria
on the membrane surfaces. As such, we performed experiments
in which both unmodified and modified PES membranes were
soaked in BSA solutions, and E. coli cultured in Luria-Bertani

a) c)

unmodified

1.0 mM modified

2.0 mM modified

T
~

BSA Surface
Coverage Percentage
o
L
———i

Fig. 8

broth, followed by observing the surface coverage of BSA and E.
coli adherence under a fluorescent microscope. Intermediately
modified membranes (designated 1.0 mM modified) were also
used in these tests in order to examine the effects of the ATFB-
TANI attachment on the UF membranes. In Fig. 8a, it can be
seen that the modified membranes show significantly lower BSA
adhesion compared to the unmodified membranes. The quan-
tified BSA surface coverage is 4.10 £ 0.47%, 0.148 £ 0.077% and
0.033 £+ 0.025% for the unmodified, 1.0 mM and 2.0 mM
modified membranes, respectively (Fig. 8b). The extremely low

E. coli Live E. coli Dead

£33

E. coli Surface
Coverage Percentage

(a) BSA and (c) E. coli adhesion test microscopic images and (b and d) their surface coverage percentages of unmodified, 1.0 mM and

2.0 mM modified PES membranes. (All images share the same scale bar.)
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adhesions are believed to be due to the hydration layer created
at the surface of the hydrophilic ATFB-TANI modified
membranes. The low BSA adhesion also provides an explana-
tion for the higher flux recovery and BSA rejection observed with
the modified membranes. Note that we used pH neutral water
for both membrane fouling tests and BSA adhesion testing, so
the TANI is not positively charged enough to have a strong
interaction with negatively charged BSA. Severe flux decline and
very low flux recovery were observed when using hydrochloric
acid (pH = 1, 2) for membrane fouling testings.®” On the other
hand, although polyaniline has been reported as an antibacte-
rial material,*** we could not find any membrane filtration
related studies with E. coli. As E. coli is known to have stronger
interactions with hydrophobic materials,'* we expected that the
hydrophilic modification would prevent E. coli adhesion. As can
be seen in Fig. 8d, the live E. coli surface coverage for unmod-
ified membranes is 7.66 £ 2.12%, which drops dramatically for
the 1.0 mM and 2.0 mM modified membranes to 0.242 +
0.216% and 0.057 + 0.058%, respectively. The dead E. coli
surface coverage was found to be 5.44 & 2.04%, 0.396 + 0.275%,
and 0.187 * 0.053%, respectively. While these results do not
suggest that TANI possesses antibacterial properties, they do
indicate that only a small amount of modification is needed to
dramatically lessen the adherence of E. coli by up to two orders
of magnitude.

Conclusions

By synthesizing a novel ATFB-TANI molecule with a UV reactive
azide group, a facile method for chemically grafting conjugated
TANI onto important materials including graphite, carbon
nanotubes, reduced graphite oxide and polymers is now avail-
able. Dip-coating or spray-coating with stencil masks leads to
highly transparent, patterned, and low S. epidermidis adhesive
PET films that show potential for low bio-adhesion coatings.
Unlike conventional composite membranes, ATFB-TANI mole-
cules can be grafted onto commercial polysulfone ultrafiltration
membranes without complex pre-treatments. The TANI modi-
fied membranes exhibit increased hydrophilic surfaces, leading
to low flux decline, high flux recovery, a high rate of BSA
rejection, and low BSA and E. coli adhesions. The design
concept of the ATFB-TANI molecule may inspire other modifi-
cations for grafting a variety of conjugated oligo/polymers to
create hydrophilic and low bio-adhesion surfaces or to help with
other materials suffering from processability issues.

Experimental section
Materials

Polyether sulfone (PES) UF membranes were purchased from
Synder Filtration (LX, 300 kDa). Aniline dimer, ferric chloride
hexahydrate, bovine serum albumin (BSA) (heat shock fraction,
pH = 7, =98%), sodium azide (NaNj;), acetone, sodium
hydroxide (NaOH), methanol, triethylamine (NEt;), 4-dimethy-
laminopyridine (DMAP), dichloromethane (DCM), ammonium
hydroxide, and deuterated dimethyl sulfoxide (de-DMSO) were
purchased from Sigma Aldrich. Escherichia coli (E. coli), Luria-
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Bertani (LB) broth, and S. epidermidis were purchased from
ATCC. Graphite powder (SP-1 325) for making graphite pellets
was purchased from Bay Carbon Inc. The multi-walled carbon
nanotubes (MWCNTSs) (outer diameter >50 nm; length = 10-20
um; purity > 95 wt%) were purchased from Cheap Tubes.
Polystyrene Petri dishes were purchased from Fisher Scientific.
Polyethylene terephthalate (PET) films (PP2950) were purchased
from 3 M. All chemicals were used as received.

ATFB-TANI synthesis

Tetraaniline. Tetraaniline (TANI) was synthesized through
a modified method.” ' Aniline dimer, N-phenyl-1,4-
phenylenediamine powders (1.89 g, 7 mmol, 1 equiv.) were
rapidly stirred with hydrochloric acid (50 mL, 1.0 M) for 30 min
in a 250 mL round bottom flask. Ferric chloride hexahydrate
(2.76 g, 15 mmol, 2.1 equiv.) was dissolved in hydrochloric acid
(50 mL, 1.0 M) and quickly poured into the round bottom flask
followed by an additional 50 mL of 1.0 M hydrochloric acid. The
reaction was stirred at room temperature for about two hours.
The precipitate was centrifuged and washed with 0.1 M hydro-
chloric acid multiple times (at least 3 times with 50 mL per
wash) in order to fully remove iron ions. The precipitate was
then mixed with ammonium hydroxide (50 mL, 2.0 M) and
acetone (300 mL) for 30 min resulting in a bright blue solution.
The solution turns gray if the iron ions are not completely
removed during the hydrochloric acid wash. The acetone was
removed using a rotary evaporator. The dispersion was then
centrifuged and washed with DI water several times until the
supernatant became pH neutral. The powder was collected after
the precipitate was rinsed out with ethanol and air dried over-
night, producing a blue solid with a 65% yield. The Matrix
Assisted Laser Desorption/Ionization (MALDI) spectrum of
TANI is presented in Fig. S5.F

4-Azidotetrafluorobenzoate. NaN; (0.154 g, 2.38 mmol, 1.07
equiv.) and methyl pentafluorobenzoate (0.499 g, 2.21 mmol, 1
equiv.) were mixed together in a solution of acetone (20 mL) and
water (7 mL) and refluxed for 10 hours. The mixture was cooled
and water (20 mL) was added to form a white precipitate. The
precipitate was then filtered and washed with CHCl; (3 times)
and left to dry to produce a white solid (82% yield). "°F NMR
(400 MHz; CDCl,): 6 138.858 (m, 2F), 151.113 (m, 2F).

4-Azidotetrafluorobenzoic  acid. Methyl 4-azidotetra-
fluorobenzoate (0.473 g, 2.12 mmol, 1 equiv.) was dissolved in
methanol (10 mL). A 20% NaOH solution (0.8 mL) was added
slowly to a stirring solution of methyl 4-azidotetra-
fluorobenzoate and then stirred overnight. The reaction was
next cooled to 0 °C in an ice bath and slowly acidified with 2 N
HCI to reach a pH < 1, then extracted with CHCI; (3 times) and
dried to produce a white solid (yield = 89%). '°F NMR (400
MHz; de-acetone): 6 141.323 (m, 2F), 151.660 (m, 2F).

ATFB-TANI. 4-Azidotetrafluorobenzoic acid (0.552 g,
2.35 mmol, 1 equiv.), trimethylamine (0.260 g, 2.58 mmol, 1.1
equiv.) and 4-dimethylaminopyridine (0.287 g, 2.35 mmol, 1
equiv.) were dissolved in 10 mL of DCM. TANI (1.11 g,
3.05 mmol, 1.3 equiv.) was then added and stirred for 48 hours
at room temperature. The reaction mixture was then washed

Chem. Sci., 2019, 10, 4445-4457 | 4453
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with DI water (3 times). After evaporation under reduced pres-
sure, a violet solid product (yield = 84%) was collected and used
without further purification. The product was stored in the dark
before use. '°F NMR (400 MHz; dg-acetone): 6 137.357 (m, 2F),
150.801 (m, 2F).

Modification

The commercial PES membranes were soaked in DI water,
renewed every few hours, for at least two days in order to remove
the chemicals added for transportation and storage. First,
solutions of 1.0 mM and 2.0 mM ATFB-TANI in ethanol were
prepared. The unmodified membranes were quickly rinsed with
ethanol in order to remove any residual water that may lead to
uneven modifications. The membranes were then dipped into
the ATFB-TANI ethanol solution for one minute before irradia-
tion with a handheld UV light (254 nm) for one minute. The UV-
treated membranes were rinsed with ethanol and DI water,
respectively. The grafted membranes were soaked in DI water
for another 24 hours before use. In order to modify the Petri
dishes, 0.5 mL of 2.0 mM ATFB-TANI solution was pipetted onto
a Petri dish and gently swirled. The Petri dish was exposed to UV
light for 90 seconds before rinsing with ethanol several times.
The graphite pellets were made by compressing graphite
powders with a hydraulic press at 10 000 lb; ~0.2 mL of 2.0 mM
ATFB-TANI solution was then drop-cast on top of the pellets
followed by UV treatment for one minute, rinsing with ethanol
and then DI water. The multi-walled carbon nanotubes
(MWCNTSs) were dispersed in a 2.0 mM ATFB-TANI ethanol
solution (300 ug mL™"). The dispersion was ultrasonicated with
a tip-ultrasonication processor (Ultrasonics FS-300N, 20%
power) in an ice bath for 10 min. The well-dispersed solution
(2.5 mL) was exposed to UV light for 3 minutes, followed by
drop-casting onto a glass slide and gentle rinsing with ethanol
in order to remove the unreacted ATFB-TANIs. The TEM
samples were prepared by tapping TEM grids on the glass slide.
The graphene oxide (GO) was synthesized through a modified
Hummer's method, as reported elsewhere.'” As described
previously,'® a GO aqueous solution was mixed with ascorbic
acid and after vacuum filtration, the ascorbic acid was rinsed
out and dried in a 100 °C oven overnight. The reduced GO (rGO)
film was ultrasonicated with 2.0 mM ATFB-TANI ethanol solu-
tion for 1 minute, followed by UV treatment for 3 minutes. The
PET films were dipped into ATFB-TANI solutions for 10 seconds
and exposed to UV light for another minute, rinsed with ethanol
and air dried. The spray-coatings on SWCNT films and the
UCLA pattern on the PET film with stencil masks were carried
out by spraying 2.0 mM solution with an Image® Dual Action
airbrush. The airflow rate was 5 standard cubic feet per minute
(SCFH) with approximately 1 mL of solution sprayed out per
minute.

Membrane performance testing

To measure fouling, membranes were placed in a stainless-steel
holder. A feed tank was connected to a mechanical pump, which
flowed feed solutions across the membrane with an effective
area of 17 cm®. A pressure gauge was placed between the pump
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and the membrane holder to monitor the input pressure. The
output after membrane filtration was monitored with a flow
meter, and its readings were recorded by a connected computer.
The membranes were first compacted with DI water at 50 psi
until the flow reached a steady value. The fouling test began by
introducing 1.0 g L™ of BSA solution for 45 minutes. The flow
decline percentage was calculated based on the equation:

Flow decline (%) = (1 — J¢dJ;) x 100%

where J¢ is the flux after 45 min of fouling, and J; is the equili-
brated flux after compaction. After fouling, the feed tank was
refilled with DI water which was flowed across the membrane
for 5 minutes in a washing procedure, before carrying out the
next fouling cycle. The flow recovery percentage is defined as:

Flow recovery (%) = Jr/J; x 100%

where Ji is the flux reading after 5 min of DI water washing. It
should be noted that the inlet pressure was not tuned after its
original setting to 50 psi during membrane compaction;
therefore, the flux fluctuations may be attributed to both the
accumulation of foulants and the change in transmembrane
pressures (TMP).

The BSA rejection performance testing on the PES UF
membranes was conducted in a stainless-steel dead-end stirred
filtration cell (Sterlitech Corp., Kent, WA) with an active
membrane area of approximately 110 cm®. The stirred cell was
filled with DI water and pressurized. The water flow rate was
recorded using a digital flow meter (FlowCal 5000, Tovatech
LLC, South Orange, NJ). The membrane was then compacted at
50 psi until the flow rate was stable, approximately 1 hour for
each membrane. BSA rejection of each membrane was charac-
terized by filling the stirred cell with 1.0 g L™ of BSA solution
and pressurizing it at 50 psi. The BSA rejection rate was calcu-
lated through the equation:

R=1-A/A;

where A, and A¢ are the absorbance values of the permeate
solution and the feed solution at a wavelength of 279 nm,
respectively.

Bacterial and BSA adhesion testing

The antifouling properties of the ATFB-TANI modified PES
membranes were investigated by a bacterial adhesion experi-
ment using E. coli as a model organism. E. coli cell cultures were
suspended in Luria-Bertani broth for 24 hours at 35 °C. 1 cm?
samples of modified and unmodified membranes were then
soaked in the E. coli suspension (~1 x 10’ CFU mL™ ") (CFU =
colony forming unit) at 37 °C while shaken at 35 rpm for 24 h.
The samples were then removed from the suspension and
rinsed with a 1 M PBS buffer solution to remove any unbound
cells. Membrane samples were then immersed and stained in
a SYTO 9 dye solution (live/dead Baclight Bacterial Viability Kit)
for 20 minutes. The samples were again rinsed with the 1 M PBS
buffer solution. The samples were then immersed in
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a propidium iodide solution (PI) for 20 minutes and again
rinsed with the 1 M PBS solution. SYTO 9 labels nucleic acids of
both live and dead cells, whereas PI only labels nucleic acids of
dead cells. When both dyes are present, PI exhibits a stronger
affinity for nucleic acids than SYTO 9 and therefore SYTO 9 is
displaced on the nucleic acids of dead cells. Images were then
taken using a fluorescence microscope using different filters to
view the SYTO9 and PI dyes. For BSA adhesion tests, the green
fluorescence protein (GFP) BSA was dissolved in DI water
(concentration equals to 50 pg mL~ '), and samples of the
membranes were immersed in that solution and placed in an
incubator at 37 °C and 50 rpm. After 24 hours, the samples were
removed, rinsed with DI water and imaged using a fluorescent
microscope. Image analysis was performed using Image]. The
surface coverage values were quantified by dividing the number
of colored pixels by the total number of pixels.

Characterization

The synthesized TANI was characterized by a Bruker UltraFlex
Matrix Assisted Laser Desorption/Ionization (MALDI-TOF)
spectrometer with 2,5-dihydroxybenzoic acid (DHB) as the
matrix. NMR spectra were carried out on a Bruker AV300.
Electrospray ionization mass spectrometry (ESI-MS) in meth-
anol solvent was utilized to determine the composition of ATFB-
TANI by comparison to Leucine Enkephalin. During ESI-MS
characterization, a signal for ATFB-TANI (C3,H;oN,F,0)" was
observed at 583.1748 m/z and had an isotope pattern consistent
with C, H, N, and O incorporation. The observed high-
resolution ESI-MS for ATFB-TANI differed from the calculated
masses by 0.7 ppm. UV-vis spectra were taken on a Shimadzu
UV-3101 PC UV-vis-NIR scanning spectrometer with quartz
cuvettes. The membrane topographies were investigated using
a Bruker Dimension FastScan Probe Microscope (SPM) with
silicon tips on nitride levers (Bruker Scanasyst-air) under the
Tapping mode. The root-mean-square roughness and the image
process were carried out by the software NanoScope Analysis.
The conventional contact angles were measured through a First
10 Angstroms Contact Angle Goniometer. The captive bubble
contact angles were measured through a homemade setup
where the membranes were clamped on glass substrates. The
membrane was then faced down and immersed into a trans-
parent acrylic box. Air bubbles were placed through a U-shape
needle connected to a syringe. The transmission electron
microscopy (TEM) images were collected on a Tecnai TF20 TEM
(FEI Inc.) operated under low dose mode. The electrical
performances of PET films were measured via a probe station
HP 4155B using toothless alligator clips as the metal contacts.
The measured Amperes were corrected to zero at zero voltage.
The attenuated total reflectance infrared (ATR-IR) spectra were
acquired on a PerkinElmer Spectrum One spectrometer equip-
ped with a universal ATR sampling accessory. The XPS data were
acquired using a Kratos Axis Ultra DLD spectrometer equipped
with a monochromatic Al Ka X-ray source. The pH values of
TANI dispersions (optical images) were calibrated by a pH meter
(Mettler Toledo). For measuring the zeta potentials, around
4 mg of aniline tetramer and polyaniline nanofibers,
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synthesized by interfacial polymerization, were sonicated and
vortexed until the powders were well-dispersed. 1.0 M HCl,q
and 1.0 M NaOH(,) (PanReact AppliChem) were used to adjust
each solution to a total volume of about 15 mL with the desired
pH value. The zeta potential values were measured via a Malvern
Zetasizer Nano-ZS. For measuring the degree of grafting (DG),
membranes were punched into circles with the diameter equal
to 0.7 cm, and the weight (W;) of the dried unmodified
membrane measured using a microbalance (Mettler Toledo)
recorded. The weights of dried modified membrane were then
recorded as Wr. The degree of grafting is defined as:

Wy — Wi

DG =
A

where A stands for the surface area of the membranes tested.
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