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The four hole oxidation of water has long been considered the kinetic bottleneck for overall solar-driven
water splitting, and thus requires the formation of long-lived photogenerated holes to overcome this
kinetic barrier. However, photogenerated charges are prone to recombination unless they can be
spatially separated. This can be achieved by coupling materials with staggered conduction and valence
band positions, providing a thermodynamic driving force for charge separation. This has most aptly been
demonstrated in the WOz/BiVO,4 junction, in which quantum efficiencies for the water oxidation reaction
can approach near unity. However, the charge carrier dynamics in this system remain elusive over
timescales relevant to water oxidation (us—s). In this work, the effect of charge separation on carrier
lifetime, and the voltage dependence of this process, is probed using transient absorption spectroscopy
and transient photocurrent measurements, revealing sub-us electron transfer from BiVO, to WOs. The
interface formed between BiVO,4 and WOs is shown to overcome the "dead-layer effect” encountered in
BiVO,4 alone. Moreover, our study sheds light on the role of the WO3z/BiVO, junction in enhancing the
efficiency of the water oxidation reaction, where charge separation across the WO3/BiVO, junction
improves both the yield and lifetime of holes present in the BiVO,4 layer over timescales relevant to water
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Introduction

The renewable generation of fuel is essential for combatting
growing energy demands and rising atmospheric CO, levels.
Inorganic semiconductor systems have shown the best effi-
ciencies for converting sunlight into fuels - most prominently
in the production of hydrogen fuel from solar water splitting.
However, it is well understood that the oxidation of water is the
kinetically limiting step in the overall reaction, therefore
developing materials that oxidise water efficiently is essential
for improving the efficiency of water splitting systems.

Metal oxides such as BivO,, WO, TiO,, and o-Fe,O; are
amongst the most studied semiconductors for the water
oxidation reaction.’® They are well known for their stability and

“Imperial College London, Department of Chemistry, South Kensington, London, SW7
2AZ, UK. E-mail: a.kafizas@imperial.ac.uk

*Institute of Advanced Materials (INAM), Universitat Jaume I, 12006, Castello de la
Plana, Spain

“University College London, Department of Chemistry, Gordon Street, London, WC1H
0A], UK

“The Grantham Institute, Imperial College London, South Kensington, London, SW7
2AZ, UK

T Electronic supplementary information (ESI) available: Including XRD, SEM,
UV-visible absorption, current-voltage curves, IPCEs, additional TAS and TPC
data, and EIS. See DOI: 10.1039/c8sc04679d

This journal is © The Royal Society of Chemistry 2019

deep valence band positions, making them attractive materials
for oxidising water. Time-resolved studies have shown that
water oxidation on metal oxides is kinetically slow, and typically
takes place over several hundred milliseconds.””® Moreover,
under operational conditions, the rate limiting step has been
shown to involve the concerted reaction of multiple holes (or
oxidised equivalents);>'* similar to the manganese calcium
cubane cluster in PS I1.*** As such, metal oxides require long-
lived holes to oxidise water efficiently."*** Several strategies
have been employed to increase hole lifetime in metal oxides,
such as the use of surface co-catalysts and passivation layers
that inhibit surface electron-hole recombination.'*'” However,
one of the most promising strategies for extending charge
carrier lifetime is to couple semiconductors with staggered
band alignment, which promotes the spatial separation of
charge. This has been shown to synergistically enhance the
activity in a number of systems including anatase/rutile TiO,,
Cu,0/TiO, and WO;/BiVO,.>'®* Using transient optical spec-
troscopy techniques, in agreement with previous reports, we
show the enhancement in the performance of the WO;/BiVO,
heterojunction to be a direct result of fast electron transfer from
BiVO, into WO0;.2*** This leads to an overall decrease in
recombination at timescales consequential to photocatalysis.
BiVO, is emerging as one of the most popularly studied
materials for driving the water oxidation reaction. The most
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active phase (monoclinic scheelite) is an n-type semiconductor
with a band gap of 2.5 eV (i.e. can absorb ~10% of the solar
spectrum) and a deep valence band (~+2.5 Vgyg) providing
a large thermodynamic driving force for the water oxidation
reaction.** However, it is often argued that this material suffers
from poor electron transport properties, resulting in high
recombination losses.**® Tungsten trioxide (WO;) is another
frequently studied material for water oxidation. It possesses
a wider indirect bandgap of 2.7 eV (i.e. can absorb ~7% of the
solar spectrum), a deeper valence band (~+3.2 Vgyug) and can
typically oxidise water at less anodic potentials.* When held at
the thermodynamic water oxidation potential (1.23 Vgyg),
intrinsic BiVO, and WO; photoanodes typically show photo-
currents in the region of 1-2 mA cm™? at 1 sun irradiance,
significantly less than their theoretical limit (BiVO, ~ 7.5 mA
cm %; WO; ~ 5.3 mA cm ?).>* Nevertheless, when these two
materials are coupled together to form a WO5/BiVO, junction,
substantially higher photocurrents have been observed,
approaching the theoretical limit for this system."

Although the WO,/BivVO, junction has been shown to exhibit
high water oxidation efficiencies, to the best of our knowledge,
there have been no in operando studies of charge carrier behaviour
that interrogate the system at the timescale of water oxidation. To
date, all transient absorption studies have focussed on the ultra-
fast timescales (fs-ns), when charge generation and trapping
processes occur with a lack of insight into charge carrier dynamics
under operational conditions (i.e. applied potential).>***** As such,
the precise role of this junction in inhibiting electron-hole
recombination and promoting water oxidation remains elusive.

In this article, we investigate the charge carrier dynamics in
the WO;/BivVO, junction during water oxidation using comple-
mentary transient absorption spectroscopy (TAS) and transient
photocurrent (TPC) measurements. Our study shows that pre-us
electron transfer from BiVO, to WOj3, results in a significant
improvement in the yield of holes accumulated at the surface in
the heterojunction, with respect to BiVO, alone. Moreover,
anodic bias is found to substantially improve this electron
transfer process, reducing recombination losses. These results
thus shed new light on the role of this junction in facilitating
synergistic improvements in water oxidation activity.

Results

BivO, and WOj; thin films were prepared using metal organic
decomposition (MOD) and aerosol assisted chemical vapour
deposition (AA-CVD), respectively. X-ray diffraction confirmed
the formation of monoclinic scheelite BiVO, and monoclinic y-
WO; (Fig. S11). The deposited materials were flat and dense, as
confirmed by SEM imaging (Fig. S21). The films were further
characterised by UV-Visible absorption spectroscopy (Fig. S37),
with the band edge observed at ~500 nm for BiVO, and
~375 nm for WO;.

Photoelectrochemical performance

Fig. 1a and b shows the photocurrent response of BiVO, and
WO3/BiVO,, respectively, under 1 sun irradiance. The spectral
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irradiance for the simulated 1 sun light source is provided in
Fig. S4.7 The densely packed BiVO, photoanodes studied herein
display a strong performance dependence with film thickness
(Fig. 1a). BiVO, films that were =125 nm in thickness showed
both a positively shifted onset potential and low photocurrents.
However, at thicknesses of =175 nm, the onset potential shifted
negatively (~0.6 Vgyg) with a concurrent substantial increase in
photocurrent. The same trend was also observed with back
irradiation (Fig. S5). In contrast, when BiVO, was deposited on
WO;, much higher photocurrents were observed, even at low
film thickness (Fig. 1b). The photocurrents obtained from the
WO; photoanode alone is negligible due to poor light harvest-
ing properties and is presented in Fig. S51 for comparison. The
absorbed photon to current efficiency (APCE) for the films
under simulated 1 sun illumination are presented in Fig. S6b.7
Interestingly, when comparing the absorbed photon density
with the photocurrent obtained at 1.23 Vyyr as a function of
BivVO, film thickness, key differences between BivO, and WO,/
BiVO, were observed, as illustrated in Fig. 1c and d. Considering
the behaviour of BiVO, in Fig. 1c - back illumination generally
gives rise to a better photocurrent response than front, attrib-
uted to poorer electron transport through the material with
respect to hole transport.”® Although the photocurrent improves
with increasing film thickness, it is clear that at lower thick-
nesses the performance is not limited by poor photon absorp-
tion (Fig. 1c). This trend with thickness is recognised as
a signature characteristic of a “dead-layer effect” and has also
been observed for hematite photoanodes (where the material
becomes active once film thickness exceeds the inactive layer
depth).>® Although the exact cause of the dead layer remains
undefined, it is believed to arise from lattice mismatch at the
semiconductor/FTO interface, which results in the formation of
amorphous material close to the interface rich in trap states.”
The performance of BiVO, has been shown to improve with the
addition of a SnO, underlayer,***”*® which may explain why the
a WO; underlayer in the WO;/BiVO, system shows a substantial
improvement in the activity of thin (<125 nm) BiVO, layers
(Fig. 1a and b).

When illuminated from the front, the photocurrents
observed in the composite WO;3/BiVO, films are largely gov-
erned by the light absorbed by the film, as shown in Fig. 1d.
However, for both back and front illumination in Fig. S6b,T the
APCE is greater at low thicknesses, which gradually decreases
with increasing thickness of BiVO,. This is likely due to charge
diffusion length limitations, where hole diffusion lengths in
BiVO, have been reported to be in the region of ~100 nm.* This
effect is further illustrated when comparing the effect of back
irradiation on APCE, which falls significantly from 85% to 40%
when BivVO, film thickness increases from 75 nm to 350 nm
(Fig. S6bf¥). This is in stark contrast to bare BiVO,, and consis-
tent with hole transport to the semiconductor-electrolyte
surface being the limiting factor in WO;/BiVO, (as opposed to
electron transport to FTO and extraction from the material). A
possible explanation for this observation could be related to the
penetration depth of light and in turn, charge generation. When
the films are illuminated from the back, charge generation is
likely to be closer to the WO;/BiVO, interface, as opposed to the

This journal is © The Royal Society of Chemistry 2019
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Fig.1 Photocurrent measurements of (a) BiVO, and (b) WO3/BiVOy, films of varying BiVO, thickness (and fixed WO3 thickness of 200 nm), under
front illumination (i.e. through BiVO, side) using simulated 1 sun irradiation, in 0.1 M phosphate buffer, pH 7. Photons absorbed by the sample
compared with the photocurrent obtained at 1.23 Vrye for front (solid circles) and back illumination (open circles) under simulated 1 sun irra-

diation for (c) BiVO4 and (d) WO=/BiVO,.

BivO,/electrolyte interface when illuminated from the front.
Considering the former case, from the timescales determined
from our transient absorption and transient photocurrent data
(discussed later), we show that electron injection into WO; from
BiVO, is much faster than electron injection into FTO.

Transient absorption spectra

TAS can be used to monitor time-resolved behaviour of photo-
generated charge, therefore it can be employed to observe if (i)
charge separation occurs across the WO;/BiVO, interface and
(ii) if this results in enhanced charge carrier lifetimes. Previous
TAS studies of BiVO, have shown that photogenerated holes in
BiVO, give rise to a broad absorption spectrum, absorbing most
strongly at ~550 nm.® Due to the low absorption coefficient of
electrons in BiVOy, the signal arising from these species was not
detected or probed over the range of wavelengths studied
herein. Fig. 2a shows the transient absorption spectra of BiVO,
and WO3/BiVO, with applied anodic bias of 1.23 Vgyg at 10 ps
and 10 ms. In order to isolate the effect of electron transfer from
BiVO, to WO;, films were excited with front illumination, via the
BiVO, side. This ensures that charge generation occurs
predominantly within the BiVO, layer, thus avoiding recombi-
nation pathways that occur when both electron and hole

This journal is © The Royal Society of Chemistry 2019

transfer occurs simultaneously at the interface by photoexciting
both materials, as reported by Grigioni et al.>* According to
the absorptance of each material (Fig. S3at), 85% of the light at
355 nm is absorbed by the 350 nm thick BiVO, layer, with 4% of
the light likely to be absorbed by the 200 nm WO, layer. Thus in
our TAS studies, BiVO, film thickness was held constant at
350 nm to maximise light absorption in the BiVO, layer. The
observed trends in charge carrier dynamics were verified using
an excitation wavelength at which the WO; layer is not excited
(see Fig. S7c in ESIT).

The shape of the transient absorption spectrum of BiVO,
under anodic bias, presenting a maximum at 550 nm, is in
agreement with previous reports (Fig. 2a, grey trace).® However,
the WO;/BivVO, heterojunction shows a different spectral shape
at early timescales, with an additional absorption feature at
longer wavelengths that is not present in bare BiVO, (Fig. 2a,
red trace). This feature disappears by 10 ms, following which
the spectrum of the heterojunction is analogous to that of bare
BiVO,, but with a ~two-fold increase in amplitude at 500 nm.
Previous works have shown that photogenerated electrons in
WO; present a broad transient absorption feature at around
800 nm, which extends into the near-infrared region.**** Given
we also observe this absorption feature in the heterojunction
when the excitation wavelength does not excite WO; (Fig. S7c,

Chem. Sci,, 2019, 10, 2643-2652 | 2645
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Fig. 2 Transient absorption spectra of BiVO, (grey) and WO=/BiVO,4
(red) at 10 ps (solid) and 10 ms (open circles) under front illumination in
0.1 M phosphate buffer, with BiVO, film thickness of 350 nm, pump
fluence: 500 pd cm™2. At (a) 1.23 Vrye and (b) no applied bias (open
circuit conditions).

ESIT), this shows that at early timescales (microseconds) the
heterojunction contains holes in BiVO, and electrons in WO;.
This indicates pre-us electron transfer from BiVO, to WOj3; in
accordance with previous reports.” The electron signal in WO,
will be discussed in further detail later.

In Fig. 2b, there is no significant enhancement of carrier
lifetime in the absence of any applied potential for the hetero-
junction in comparison to bare BiVO,. Additionally, in contrast
to Fig. 2a, the signal contribution from electrons transferred to
WO; is less pronounced in the absence of applied potential.
This lack of enhancement indicates the need for applied bias to
increase the efficiency of charge transfer across the interface,
and more importantly, shows that the conduction band offset
alone is insufficient in driving electron transfer. Loiudice et al.
has previously reported the transient absorption decay of holes
in BiVO, and the heterojunction in air, where a substantial
enhancement of hole lifetime in the heterojunction is observed
in the ms-s region, whilst the bare BiVO, signal decays to zero
by 10 ms.** However in our study, measurements are conducted
in electrolyte, which can induce band bending at the
semiconductor/electrolyte interface that can prolong photo-
generated hole lifetimes in bare BiVO,. In electrolyte, the dark

2646 | Chem. Sci, 2019, 10, 2643-2652
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open circuit potential obtained for bare BiVO, is around ~+0.6/
0.7 Vrug, which when compared to the flat band potential of
BivVO, (~+0.1 Vgyg),® signifies the presence of substantial band
bending that can accommodate hole accumulation at the
surface. Thus, in the TAS spectra presented in Fig. 2b, no
significant enhancement in photogenerated carrier lifetime for
the heterojunction system (red trace) is observed in the ps-s
timescale, compared to bare BiVO, (grey trace) under open
circuit conditions.

Transient absorption kinetics of surface holes

The effect of applied bias on the charge carrier dynamics was
monitored in BiVO, and WO;/BiVO,. As mentioned earlier, the
electron signal in WO; is broad, stretching into the NIR, with
a peak maximum at around 800 nm. Holes in BiVO, were pro-
bed at 500 nm to minimise overlap with WOj; electron absorp-
tion. Fig. 3a and b show kinetic traces of the photogenerated
holes for BiVO, and WO;/BiVO, respectively as a function of
applied potential. While the lifetime and population of holes
increase with increasing anodic bias in both systems, the
increase is more substantial in the heterojunction (Fig. 3b) in
comparison to bare BiVO, (Fig. 3a). Anodic bias results in the
formation of a wider space charge layer at the semiconductor/
electrolyte interface, increasing band bending and facilitating
greater hole accumulation at the surface. In contrast, in the
presence of a hole scavenger, shown in Fig. S9,T hole accumu-
lation in the heterojunction is much less bias dependent, due to
a more facile oxidation of sulphite in comparison to water. The
biphasic nature of the hole decay dynamics observed in bare
BiVO,, consistent with previous reports, consists of trap-
mediated bimolecular recombination that dominates at
earlier timescales (<ps-ms) and water oxidation coupled with
back electron-hole recombination processes that take place
over slower timescales (ms-s).**** Fittings of the kinetic traces
in Fig. 3a and b are provided in the ESI (Fig. S117).

Back electron-hole recombination is a process whereby
photogenerated holes, which accumulate at the surface of the
semiconductor owing to band bending, recombine with elec-
trons in the bulk due to coulombic attraction (this is sometimes
referred to as surface recombination), thus resulting in a back-
flow of electrons from the external circuit into the photoanode.
It has been extensively studied in a-Fe,O3, BiVO, and TiO,.**"*”
In bare BiVO,, at early timescales, bimolecular recombination,
even with appreciable anodic bias, plays a significant role.
However, this recombination pathway is significantly sup-
pressed in the WO;/BiVO, heterojunction with increasing
anodic bias, resulting in more substantial increase in hole
lifetimes in BiVO, (Fig. 3b). The requirement for long-lived
holes is a consequence of the slow kinetics of water oxidation
on BiVO, (and metal oxides in general), which is on the order of
0.7-1 s~' on BiVO, under pulsed laser illumination.*” These
kinetics are apparent as the slow decay phase from 0.01 ms to
1 s in Fig. 3a and b. No acceleration of this slow decay phase,
assigned to water oxidation, is observed for the heterojunction
over bare BiVOy,, as the rate of catalysis is limited by the material
in which holes accumulate. On the other hand, in the

This journal is © The Royal Society of Chemistry 2019
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Fig.3 Transient absorption kinetics of BiVO4 and WO3/BiVO,4 when excited at 355 nm under front illumination, with applied anodic bias (0.2 Vrue
interval) in 0.1 M phosphate buffer with BiVO, film thickness of 350 nm, pump fluence: 500 uJ cm™2. TA decay traces of holes probed at 500 nm
in (@) BiVO4 and (b) WO3/BiVOy,. (c) TA trace of electrons in WO=/BiVO, (red, solid line) at 1.23 Vg probed at 800 nm accompanied with the
integrated transient photocurrent traces at the same bias for BiVO, (grey, dotted) and WOz/BiVO, (red, dotted). (d) The dependence of the film
resistance as a function of applied bias (top panel) and the TA amplitude at 1 ms of holes at 500 nm with anodic bias (solid circles), in BiVO,4 (grey)
and WO3/BiVO, (red) compared with the corresponding integrated transient photocurrent extracted from the films as a function of applied bias

(open circles) (bottom panel).

heterojunction, a substantial improvement in charge carrier
separation results in an increase in the population of long lived
holes, and an overall increase in water splitting activity.

Electron transfer, charge extraction and performance

Transient photocurrent measurements monitor the charge
extraction processes from the photoanode following photoex-
citation, and therefore allow direct probing of the timescale of
charge injection into the back contact.

Consequently, we can directly compare the transient optical
signal of electrons against the timescale of charge extraction.
This is shown in Fig. 3c where the transient absorption decay at
800 nm (red, solid), probing primarily WOj; electrons, is plotted
against the integrated transient photocurrent (charge extrac-
tion) from the photoanode (red, dotted), at 1.23 Viyg.

Firstly drawing our focus on the TPC data in Fig. 3c, we
observe a 5-fold increase in the integrated transient photocur-
rent (charge) extracted from the heterojunction (red, dotted)
compared to bare BiVO, (grey, dotted), a direct consequence of

This journal is © The Royal Society of Chemistry 2019

effective charge separation suppressing bulk recombination in
the heterojunction. We also observe that the onset of charge
extraction is around 50 ps for the heterojunction, which is an
order of magnitude later than the bare BiVvO, photoanode. This
slower extraction from the heterojunction is due to the slower
electron transport properties of WO; compared with BiVO,. It
has been reported that electron transport in WO; is the slowest
amongst common metal oxides (i.e. BiVOy, TiO, and Fe,03).** A
direct comparison of charge extraction times in the different
systems studied herein is shown in Fig. S8e,t which confirms
electron extraction is indeed slower for WO; as a stand-alone
material than it is for BiVO,. This is consistent with the
previous report, and manifests as an overall slower charge
extraction from the heterojunction system.

Secondly, in the heterojunction, comparing the optical decay
of electrons (red, solid) with charge extraction (red, dotted) in
Fig. 3¢, we find that the optical signal decays prior to the onset
of charge extraction (<50 ps). This indicates that a portion of
electrons are lost at early timescales and not collected (<50 ps,
~30% loss of signal). In addition, from the photogenerated hole

Chem. Sci, 2019, 10, 2643-2652 | 2647


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc04679d

Open Access Article. Published on 16 January 2019. Downloaded on 11/7/2025 2:33:46 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

kinetics of the heterojunction in Fig. 3b, we also observe
a similar decay of the signal at early timescales (<50 us), which
we tentatively attribute to the bimolecular recombination of
electrons and holes at the WO,/BiVO, interface before charge
extraction takes place. We find that most of the charge is
extracted by 10 ms in the heterojunction (Fig. 3c, red dotted).
We also monitor the electron extraction from the photoanode
optically in the transient absorption spectra in Fig. 2a (red, open
circle), where the spectra of the heterojunction at 10 ms (once
electron extraction is complete) resembles that of holes accu-
mulated at the surface of BiVO, (grey, open circles). The bias
dependence of the optical signal arising from electrons trans-
ferred to WO; is presented in Fig. S8a,f which shows how
charge separation across the WO;/BiVO, interface improves
with anodic potential.

Fig. 3d compares the relationship between the optical signal
of holes in BiVO, at 1 ms with the total charge extracted from
the photoanodes and the overall resistance of the photoanodes,
as a function of applied potential. If we also compare the optical
signal of electrons transferred to WO; prior to the onset of
charge extraction against the charge extracted, we see a similar
relationship (Fig. S8ft). Firstly, turning our attention to the
transient absorption and photocurrent data, we observe a direct
correlation between extended hole carrier lifetime at 1 ms and
increased charge extraction, from moderate to high anodic bias.
Moreover, compared to bare BiVO,, a greater proportion of the
charge separated at 1 ms in the heterojunction manifests as
charge that can be extracted. From the plot, it is evident that
charge separation in the heterojunction improves with
increasing applied potential compared to BiVO,, which is in
good agreement with previous electrochemical impedance
spectroscopy (EIS) studies.®® This further correlates with film
resistance determined from impedance measurements herein,
where the resistance of the heterojunction lowers considerably
with increasing bias in relation to bare BiVO,. In comparison,
this resistance, originating from the slope of the j-V curve, is
almost constant for the pristine BiVO, sample for the voltage
range examined.

Discussion

Our results show that the WO;/BiVO, heterojunction exhibits
a higher water oxidation performance than bare BiVO, due to
faster electron transfer from BiVO, to WO; than BivVO, to FTO.
This results in more effective charge separation that limits
bimolecular recombination losses. This is consistent with the
resistance calculated for the heterojunction being lower than
that of the bare materials, leading to lower bulk recombination
losses.*® In bare BiVO,, we observe from TPC measurements
that charge injection into FTO begins from around 20 ps but the
majority of the charge is extracted after 100 us (Fig. 3c).
However, in the heterojunction, our TAS measurements (Fig. 2a)
show that electrons were transferred from BiVO, to WO; on the
pre-us timescale. This fast electron transfer to WO; minimises
the recombination loss pathways that can occur when the
electrons and holes reside within the same material. Prolonging
charge lifetime through charge transfer and vectoral separation
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has evolved in nature over billions of years and is specifically
employed in photosystem II (PSII) for driving water oxida-
tion.*>*® Taking inspiration from PSII, where an assortment of
processes such as light absorption, charge separation and
transfer occur successively, we can mimic this approach to
maximise the efficiency of photoelectrodes for water splitting.**
By forming a staggered heterojunction like WO;/BiVO,, we
demonstrate how this system spatially separates photo-
generated charge, and thus prolongs the lifetime and pop-
ulation of photogenerated holes that drive the kinetically
limiting water oxidation reaction.

Fast electron transfer from BiVO, to WO; highlights that, in
the bare BiVO, films, slower electron injection into FTO limits
the performance. This slower injection into FTO combined with
the dead layer effect observed for thin bare BiVO, films under-
lines the limitations of the FTO/BiVO, contact, and why it has
been shown to improve in presence of underlayers that form
a more favourable interface.”® We can directly compare the
timescales of charge extraction in the WO;/BiVO, hetero-
junction with that of the bare WO; and BiVO, in Fig. S8e.T From
this, we can draw two main conclusions: (i) charge extraction at
these studied thicknesses, is fastest in BiVO, and follows the
order: BiVO, < WO; < WO3/BiVO,. This explains the order of
magnitude difference in charge extraction timescales between
BiVO, and WO3/BiVO,, owing to slower charge transport
through the WO; layer. (ii) Although electron extraction into the
back contact is slower in WQO;, this doesn't limit the overall
performance of the heterojunction as it does for bare BiVO,,
because the electrons and holes reside in separate materials,
and this spatial separation of charge inhibits the bulk recom-
bination. This is in agreement with the findings of a previous
impedance spectroscopy based study of mesoporous WO3/
BiVO, heterostructures.*® Using time-resolved optical spectros-
copy techniques we were able to directly observe the electrons
that were transferred from BiVO, to WO;, and conclude that the
performance enhancement in the heterojunction is a direct
result of faster electron injection into WO; from BiVO, than
injection into FTO directly from BiVO,. These charge transfer
are illustrated in Scheme 1.

We note that while photocurrents under simulated 1 sun
irradiation (Fig. 1a and b) demonstrate a ~2-fold increase in
photocurrent in the heterojunction compared with bare BivO,
at 1.23 Vgyg, our transient photocurrent measurements show
an ~5-fold increase in the photocharge extracted following
excitation at 355 nm. This difference in performance can be
attributed to two main factors: (i) the wavelength dependence of
sample performance and (ii) the differing photoresponse of our
samples to pulsed and continuous light sources. Firstly,
considering (i), the wavelength dependence of the photo-
response is reflected in the IPCE of the films shown in Fig. S6a.f
The enhancement in efficiency of the heterojunction with
respect to bare BiVO, is more pronounced at 355 nm compared
to longer wavelengths. Therefore, when irradiated with
a continuous Xe-lamp light source at simulated 1 sun, as seen in
Fig. S4,T most of the photon flux of the light source lies in the
region where the enhancement manifests as a two-fold increase
in performance. Secondly considering (ii), the photoresponse of
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Scheme 1l Schematic representation of charge transfer processesin (a) BiVO4 and (b) WO3/BiVOy,; where (i) denotes holes reacting with water to
form oxygen, (i) is the electron transfer from BiVO, to WO3 and (iii) is the electron transfer from the semiconductor to the FTO.

a material can vary when illuminated with an excitation pulse or
a continuous light source. This indicates that the WO;/BiVO,
heterojunction is more resilient to bimolecular recombination
than BivVO, alone.

Hole lifetimes are found to improve with increasing anodic
bias where the initial TA signal amplitude of the heterojunction
is heavily dependent upon the bias applied. At potentials close
to the photocurrent onset (0.6 Vryg), the amplitude for holes in
the heterojunction at 10 ps is lower than it is for bare BiVO,.
This may be a result of recombination processes at the junction
interface being predominant on the pre-ps timescale, which can
be circumvented by increasing the anodic bias applied (and
hence the band bending of BiVO, at the semiconductor/liquid
interface) to favour charge separation. Although pre-us carrier
dynamics are not probed in this study, there have been other
TAS studies of the charge carrier dynamics on the ultra-fast
timescale for this heterojunction in the absence of applied
bias.”»**** Their findings suggest the presence of loss mecha-
nisms due to recombination across the interface of the mate-
rials following fast charge transfer to WO;.

Previous studies have shown that the typical conduction
band positions of WO; and BiVO, are +0.41 Vggg and +0.02 Vepg
whilst the valence band positions are expected to be around
+3.18 Vgur and +2.53 Vgye for WO; and BivVO,, respectively,
forming a type II staggered heterojunction (Scheme 1b).*>
Hence, there is a thermodynamic driving force for electrons
generated in the conduction band of BiVO, to transfer to the
conduction band of WO;. However, our bias dependence
studies show that at low to modest bias (<0.6 Vgyg), electron
transfer to WO; is inefficient, and any spatial separation of
charge does not prevent interfacial recombination. Modest
applied potentials (>0.6 Vryg) are required for charge separa-
tion to occur efficiently. In accordance with typical band
alignments drawn for n-n heterojunctions where bands are
assumed to be pinned at the interface, Fermi level alignment
would give rise to formation of space charge layers at the
interface that can hinder charge transfer (i.e. a Schottky
barrier).*** Therefore, there is scope for finding other

This journal is © The Royal Society of Chemistry 2019

combinations of semiconductors with staggered band align-
ment that can form a more favourable interface that precludes
the need for applied bias to enhance charge separation.
Furthermore, this should result in an earlier onset of photo-
current. Further studies of the exact nature of the alignment at
the interface can shed light into the need for anodic bias to
facilitate efficient charge separation in this system, but this is
beyond the scope of this study.

Overall, we find that the n-n type heterojunction increases
photocurrent by minimising bimolecular recombination,
specifically at timescales that directly compete with water
oxidation. As electrons are transferred to the WO; on the pre-us
timescale, this significantly reduces the proportion of charge
that undergo bimolecular recombination compared to bare
BiVO, for which charge injection into FTO lies on the ~20-100
ps timescale. On the other hand, slow charge transport prop-
erties of WO; can give rise to interfacial recombination
observed prior to charge extraction from the heterojunction
photoanodes, leaving scope for other materials to serve as better
electron acceptor layers.

Conclusions

For the first time, to our knowledge, we have measured the time-
resolved behaviour of charge carriers in WO;/BiVO, hetero-
junction photoanodes in operando at timescales relevant to
water oxidation. WO;/BiVO, junctions exhibit superior perfor-
mance with respect to the bare materials. Our findings suggest
that the performance enhancement results from a combination
of factors. These include reduced electron-hole recombination
processes resulting from better charge transfer from BiVO, to
WO; than direct injection into FTO. Moreover, the presence of
a WO; underlayer eradicates the dead-layer effect observed in
very thin films of BiVO, (<125 nm), significantly improving
photoelectrochemical performance. Our transient absorption
studies show that the band alignment present in the WO;/BiVO,
heterojunction does not enhance charge lifetime alone, and
requires anodic bias (>0.6 Vgyg) to increase the lifetime and
population of holes that oxidise water on the ms-s timescale.
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This work demonstrates an effective example of how inorganic
systems can be used to increase charge carrier lifetime, similar
to natural photosynthetic systems, and compete with the slow
kinetics of water oxidation.

Experimental
Materials fabrication

All materials were prepared on FTO substrate (2.5 cm x 2.5 cm,
TEC 15, Hartford Glass Co.). Before deposition, the substrates
were washed with a standard glass cleaner, followed with
deionised water, acetone and iso-propanol and subsequently
heated to 500 °C for 10 minutes. All chemicals were purchased
from Sigma-Aldrich unless specified otherwise.

WO; films were prepared using aerosol assisted chemical
vapour deposition (AA-CVD) method previously reported.*®*” In
brief, the substrate is heated to 325 °C. A stock solution of
W(CO)s (0.6 g, 11.4 mM) was prepared in a 1:2 mixture of
methanol and acetone. Depositions of 1 mL of the stock solu-
tion results in a film thickness of ~200 nm, as verified previ-
ously.”® The solution was aerosolised with an ultrasonic
humidifier (2 MHz, Liquifog, Johnson Matthey), before being
carried into the reaction chamber with N, as the carrier gas (0.5
mL min~"). Following complete transfer of precursor solution,
the substrate is cooled to room temperature over N, flow,
forming oxygen deficient WO;_, which requires further
annealing at 500 °C in air for 1 hour to yield WO;.

BiVO, films were prepared using a modified metal organic
decomposition, previously reported.**® Bismuth nitrate penta-
hydrate (0.1455 g, 200 mM) was dissolved in acetic acid (1.5 mL,
VWR) and vanadyl acetyl acetone (0.0768 g, 30 mM) was dis-
solved in acetyl acetone (10 mL, VWR). The two solutions were
then mixed and stirred at room temperature for 30 minutes to
prepare sol-gel. The sol-gel mixture was subsequently depos-
ited by spin-coating. 50 pL of the solution was used per layer.
Following the deposition of each layer, the substrates were
calcined to 450 °C for 10 minutes. This process was repeated
accordingly for the desired film thicknesses. After the deposi-
tion of the final layer, the films were calcined at 450 °C for 5
hours, forming densely packed BiVO, thin films. For the
purposes of this study, films of 3, 5, 7 and 14 layers were
prepared, giving thicknesses of approximately 75 nm, 125 nm,
175 nm and 350 nm, respectively. For the heterojunction films,
BiVO, was deposited on the as prepared WO; films.

Materials characterisation

UV-visible spectroscopy was measured using a Shimadzu UV-
2700 equipped with an integrated sphere. XRD patterns were
measured using a modified Bruker-Axs D8 diffractometer with
parallel beam optics equipped with a PSD LinxEye silicon strip
detector. The instrument uses a Cu source for X-ray generation
(V= 40 kv, I = 30 mA) with Cu K,,; (A = 1.54056 A) and Cu K,,,
radiation (A = 1.54439 A) emitted with an intensity ratio of 2 : 1.
The incident beam was kept at 1° and the angular range of the
patterns collected between 10 = 26° = 66 with a step size of
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0.05°. SEM images were obtained with a LEO 1525 scanning
electron microscope (FESEM, 5 kV).

Photoelectrochemical characterisation

Photoelectrochemical characterisation was carried out in
a three-electrode cell, with our photoanode material placed at
the working electrode, a Pt mesh at the counter electrode and
a saturated KCl,q Ag/AgCl as the reference electrode (Metrohm).
All measurements were carried out in 0.1 M phosphate buffer(,q)
(pH 7) for BiVO, and WO;/BiVO, films, and 0.1 M H,SO4(aq) (PH
1) for WO; films. Unless specified otherwise, TAS, TPC and PEC
were measured via front side (electrode-electrolyte) irradiation.
Applied potentials measured vs. Ag/AgCl (Vagiagci) Were con-
verted to applied potentials vs. the reversible hydrogen elec-
trode (Vrug) using the Nernst equation:

Vi = Vagagcr + 0.0591 x pH + VA yagci (1)

where Vgg/Agcl is the standard potential of the Ag/AgCl reference
electrode in sat. KCl (197 mV).

The impedance spectroscopy (IS) measurements were
carried out in a potentiostat/galvanostat Autolab (model
PGSTAT-30). Measurements were performed in a three-
electrode configuration, where a platinum wire was used as
counter electrode, the sample under study was used as the
working electrode, and an Ag/AgCl (3 M KCl) electrode was used
as the reference electrode. An aqueous phosphate buffer solu-
tion at pH 7 (0.1 M NaH,PO,/Na,HPO,) was used as electrolyte.
The electrochemical measurements were referred to the
reversible hydrogen electrode (RHE) through the Nernst equa-
tion (eqn (1)), where VRgagar (3 M KCI) is 0.210 V. Impedance
measurements under illumination conditions were carried out
with a 300 W Xe lamp using a thermopile to adjust light
intensity at 10 mW cm > (0.1 sun). The resistance was calcu-
lated using a model reported previously.*®

TAS and TPC measurements

Transient absorption spectroscopy (TAS) measurements were
carried out on a home-built configuration consisting of
a Nd:YAG laser (OPOTEK Inc., Opolette 355 laser system, 7 ns
pulse width) at 355 nm (and 450 nm for selective excitation of
BiVO,). The laser frequency was set to 0.7 Hz, and the laser
intensity adjusted to 500 uJ cm > (and 400 pJ cm ™2 for 450 nm
excitation). The light source used for the probe beam is a 100 W
Bentham IL1 tungsten lamp coupled to a monochromator
(OBB-2001, Photon Technology International). To filter scat-
tered laser light, the probe beam passed through longpass
filters and another monochromator set to the same wavelength
as the probe beam. To detect the transmitted photons, a Si-
photodiode was utilised (Hamamatsu). The obtained data
were processed through an amplifier (Costronics) and subse-
quently recorded by an oscilloscope (Tektronics TDS 2012B) for
the us-ms timescale, and the ms—s timescale data were recor-
ded with a DAQ card (National Instruments, NI USB-6211). For
each transient absorption decay, the data were averaged over
100 laser pulses. The system and data acquisition were
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controlled by a home programmed Labview software. The
electrical bias was applied using an Autolab potentiostat
(PGSTAT 101, Metrohm). Transient photocurrent (TPC) data
were obtained using a modified TAS setup where the decays of
the transient current signal were recorded on the scope coupled
to a ministat (Sycopel Scientific Ltd.).
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