1. Introduction

It is well known that the coordination number of atoms in compounds can greatly affect chemical properties\(^1\) and exploring new coordination motifs of elements is of importance to understand their chemical behavior and expand their applications.\(^2\) Iodine has, with the exception of astatine, the lowest electronegativity, the largest polarizability, and the largest atom size of the halogens.\(^3\) These properties and the ability to readily engage in hypercoordination, i.e. allowing for more atoms in its coordination sphere than what is predicted by the octet rule, combined with its low toxicity, make iodine distinct from the lighter p-block elements. The ability of iodine to engage in hypercoordination allows fabrication of compounds that are potential substitutes for transition metal-based catalysts.\(^4,5\) Commercially available hypercoordinated iodine compounds have shown promise for mildly and highly selective oxidizing ability and environmentally benign catalysis.\(^6\)

The highest known coordination number in a neutral iodine fluoride compound is seven, in IF\(_7\).\(^1\) Isoelectronic XeF\(_7\) and TeF\(_7\)\(^1\) have been synthesized.\(^1\) With the exception of some caged ions,\(^1\) higher coordination numbers in neutral main group compounds are, to the best of our knowledge, non-existent. XeF\(_8\) has been shown unstable even under pressures reaching 200 GPa.\(^1\) Chemically, the limit in the coordination number of iodine can be rationalized from the atom’s seven valence electrons. Formally, the valence shell of iodine in IF\(_7\) can either be seen allowing for seven polar covalent bonds or, alternatively, the formation of closed-shell I(VII) surrounded by 8 atoms.\(^1\) The coordination number of iodine in IF\(_8\), IF\(_9\), TeF\(_8\), ReF\(_8\), and ZrF\(_8\)\(^1\) have been synthesized as the [NO\(_2\)]\(^{\pm}\)[IF\(_8\)]\(^{\pm}\) salt.\(^1,2\) The coordination geometry of IF\(_8\) is square antiprismatic. This kind of arrangement is commonly observed in different transition metal octafluorides, for example in TaF\(_8\), ReF\(_8\), and ZrF\(_8\).\(^3,4\)

By this logic, octacoordination should be allowed by the addition of one electron. Indeed, anionic octafluoride (IF\(_8\)\(^{\pm}\)) has been synthesized as the [NO\(_2\)]\(^{\pm}\)[IF\(_8\)]\(^{\pm}\) salt.\(^2,3\) The coordination geometry of IF\(_8\)\(^{\pm}\) is square antiprismatic. This kind of arrangement is commonly observed in different transition metal octafluorides, for example in TaF\(_8\), ReF\(_8\), and ZrF\(_8\).\(^3,4\)
Does this mean that the quest for higher coordination numbers in neutral iodine fluorides is over?

We do not believe so. Pressure is known to fundamentally change the chemistry and structure by, for example, overcoming reaction energy barriers, shortening interatomic distances, and modifying atomic orbital energy levels.\(^\text{22,23}\) There are many examples of the utility of pressure in allowing remarkable new hypercoordinated compounds, for example \(\text{H}_2\text{I}_7\), \(\text{XeF}_6\), \(\text{HgF}_4\), \(\text{Li}_2\text{Cs}\), \(\text{CsF}_5\), \(\text{AuF}_6\), \(\text{Li}_2\text{Au}\), \(\text{AH}_6\) (\(A = \text{Sr}, \text{Ba}\)), \(\text{LaH}_{10}\), and \(\text{BaReH}_6\).\(^\text{24}\)

To explore the effects of pressure and search for higher coordination numbers in iodine fluorides, we have performed an extensive structure search of selected stoichiometries of \(\text{IF}_x\) (\(x = 1/3, 1/2, 2/3,\) and \(1-12\)) from 100 to 300 GPa using swarm-intelligence-based structural prediction calculations. Dynamical stability is an important criterion when predicting structural stability. The calculated phonon spectra of the predicted phases are shown in the ESI† and show no phonon modes with imaginary frequencies (Fig. S1†). The most notable of our predictions is the stabilization of a molecular \(\text{IF}_5\) phase of \(R3\) symmetry at 300 GPa. The cubic coordination geometry of this molecular solid is distinct from the square antiprismatic structure in \(\text{IF}_8\). We will return to discuss this unprecedented iodine coordination sphere and its underlying electronic structure.

2. Results and discussion

2.1 Stability and crystal structures

The relative stabilities of the different binary compositions were estimated by calculating the enthalpy of formation at \(T \to 0\) K and building the convex hull based on the most stable structures of the considered compositions (Fig. 1a). In Fig. 1a, the thermodynamically stable \(\text{IF}_x\) structures are depicted as filled symbols, which resist decomposing into elemental solids or other stable compounds. Besides reproducing the known structures of \(\text{IF}_x\) (\(x = 3, 5, 7\)) under ambient conditions,\(^\text{10}\) some unexpected compounds with stoichiometries of \(\text{IF}_x\) (\(x = 8, 10, 11, 12\)) are predicted to become thermodynamically stable under high pressure. Note that these stoichiometries do not mean the same coordination number of fluorine around iodine. The maximal coordination number found is 8. The crystal structures of iodine fluorides that show stability in some part of the investigated pressure range are shown in Fig. 2. The stable structures will be discussed separately. All other considered stoichiometries, not shown in Fig. 2, have enthalpies that sit slightly above the solid line in Fig. 1a and are either unstable or metastable. Decomposition enthalpies with respect to stable \(\text{IF}_x\) compounds and elemental solid \(\text{I}_2\) or \(\text{F}_2\) are shown in Table S1.†

A pressure-resolved phase diagram of iodine fluorides was built to facilitate experimental studies and is shown in Fig. 1b. At ambient pressure, the known molecular crystals of \(\text{IF}_x\) (\(x = 3, 5\) and \(7\)) are reproduced (Fig. 2a, c, and f). Under compression, these molecular structures are predicted to undergo phase transitions and eventually transform into aggregated phases. For \(\text{IF}_3\), the ambient pressure orthorhombic \(Pnma\) structure transforms to a monoclinic phase (space group \(P2_1/m\)) at 23 GPa (Fig. 2b). The \(P2_1/m\) phase contains a zigzag iodine chain, in which an I–I distance of 2.7 Å is nearly the same as that in the \(\text{I}_2\) molecule at 1 atm. The \(\text{IF}_3\) molecular phase is predicted to become unstable with respect to \(\text{IF}_5\) and \(\text{I}_2\) above 140 GPa. Under compression, \(C2/c\)-structured \(\text{IF}_5\) is predicted to first transform to another molecular phase with \(Pm\) symmetry at 28 GPa (Fig. 2d) and subsequently into a non-molecular \(P2_1/m\) phase above 139 GPa (Fig. 2e). In contrast to \(\text{IF}_5\), \(\text{IF}_7\) directly transforms into a non-molecular \(P2_1/m\) phase at 20 GPa (Fig. 2g). Compared with the structures under near ambient conditions (Fig. 2c and f), the \(\text{IF}_5\) and \(\text{IF}_7\) molecular phases become gradually more distorted with compression. \(\text{IF}_8\) is predicted to transform into an orthorhombic structure with \(Pmmn\) symmetry, consisting of face-sharing 14-fold \(1-F\) polyhedra (Fig. 2e) at 200 GPa. \(P2_1/m\)-structured \(\text{IF}_2\) is similarly predicted to be structured as an edge-sharing 12-fold polyhedron (Fig. 2g) at 100 GPa.

2.2 Unexpected \(\text{IF}_8\)

We arrive next to the \(\text{IF}_8\) stoichiometry. Here a new stable compound with \(R3\) symmetry is predicted to be stable above 260
After examining the results of our structural searches, we found another IF$_8$ phase with a square antiprismatic structure (space group Pn3n). However, the Pn3n-structured IF$_8$ [Fig. S4†] is unstable with respect to the quasi-cubical IF$_8$ (i.e. R3-structured IF$_8$) by 14.6 eV per formula unit. The large difference in enthalpy between the two structures can be attributed to a more favorable pV-term for the R3 structure and to the occupation of anti-bonding levels involving I 5d levels in the Pn3n structure (details are provided in the ESI†).

2.3 Chemical bonding and electronic properties of IF$_8$

Under normal ambient conditions molecular IF$_7$ takes a pentagonal bipyramidal coordination and ionic IF$_7^-$ a square antiprismatic coordination. The coordination sphere of these closed-shell molecules can be straightforwardly rationalized with simple valence shell electron-pair-repulsion (VSEPR) arguments, in which ligands maximize distances to their neighbors to minimize exchange, or Pauli repulsion. In contrast, molecular IF$_8$ is an electron deficient radical, with one hole in its valence p-shell. Under ambient conditions we are correct to expect such a structure to dissociate into IF$_7$ and an F atom. So how can IF$_8$ represent a stable composition under high compression, and why does it take its peculiar cubic structure?

We think that this can be explained in the following way: first, we know that the difference in electronegativity between F and I will not change meaningfully under high compression, and so we cannot expect a drastic change in the electronic structure for this reason. In atomic iodine, the 5d levels lie 8.2 eV above the 5p levels. Consequently, mixing, or hybridization, with 5d is not considered important for the chemical behavior of iodine under normal conditions. As we shall see, this changes under compression. To understand why, we take a molecular orbital (MO) perspective.

We know that for a cubic ligand field, the expected splitting of non-bonding d-orbitals is three (T_{2g}) – over – two (E_g). Work on 8-coordination by Burdett, Hoffmann and Fay (BHF) compared different coordination geometries using group theory arguments and extended Hückel calculations. Among other things, it was demonstrated that the E_g levels (the $d_{x^2-y^2}$ and the d_{z^2} orbitals) should be non-bonding because they do not point along the bond axes of a cubic ligand field. However, the BHF work did not evaluate interactions that would occur with ligand p-levels in this specific coordination environment. The rarity of the cubic coordination sphere in nature is undoubtedly the reason for its near absence in the scientific literature.

To remedy the situation, we show in Fig. 3 the molecular orbital (MO) diagram for I 5s, 5p and 5d interacting with F 2p levels in a cubic (O_h symmetric) coordination geometry. This diagram is a sketch constructed from symmetry arguments applied to an isolated IF$_8$ molecule. The energy orderings have been predicted using DFT calculations on the different fragments in vacuum. Two orbital combinations, of A_{1g} and T_{1u} symmetry, predict the specific interactions of I 5s and 5p with the corresponding symmetry adapted MOs of the F$_8$ ligand cage. Assuming that the energy ordering shown in Fig. 3 is correct, five out of the six occupied MOs of these symmetries are I–F

Fig. 2 Stable crystal structures of the considered I–F compounds. (a) Pnma phase of IF$_3$ at 0 GPa. (b) P2$_1$/i/m phase of IF$_5$ at 100 GPa. (c) C2/c phase of IF$_5$ at 0 GPa (d) P1 phase of IF$_5$ at 100 GPa. (e) Pmmn phase of IF$_5$ at 200 GPa. (f) Aea2 phase of IF$_7$ at 0 GPa. (g) P2$_1$/i/m phase of IF$_7$ at 100 GPa. (h) P1 phase of IF$_{10}$ at 200 GPa. (i) P3 phase of IF$_{10}$ at 300 GPa. (j) P1 phase of IF$_{11}$ at 300 GPa. (k) P1 phase of IF$_{12}$ at 300 GPa. Black and red balls denote I and F atoms, respectively. The unit cell is drawn with black solid lines. Detail structural parameters of these I–F compounds are shown in Tables S2 and S3.†
levels of atomic I are known from experiment.

Calculations on frozen fragments of IF$_8$ and F$_8$ in vacuum. The energy not to scale. Approximate energy orderings were predicted using DFT responsible for I5d levels relative to the ligand F orbitals, and we will return to A positive charge on iodine also helps to decrease the energy of I5d –F bonding are based on symmetry arguments, and this will not change under pressure. What might change is the relative importance of the MOs, their energy relative each other, and the degree of mixing of what are, under ambient conditions, unoccupied I5d-levels. How can occupation of I5d orbitals be possible under compression?

That orbitals of different kind can cross due to compression is well known.44–45 Mao-Sheng Miao and Roald Hoffmann have given a nice explanation as to why orbitals can cross in compressed atoms.46 In brief, orbitals that are smaller, and have fewer radial nodes, are less affected by compression. For a given principal quantum number, compression tend to increase level energies as $s > p > d$. In complex systems such as IF$_8$, the purely physical effect of pressure is one factor affecting level ordering. A positive charge on iodine also helps to decrease the energy of I5d levels relative to the ligand F orbitals, and we will return to address the oxidation state of iodine. As we shall see, chemical interactions with F atoms play a key role for bringing down I5d levels in IF$_8$.

We can use the MO diagram in Fig. 3 to understand that as the volume of the F$_8$ cage decreases, as it will under compression, the overlap between I and F-based orbitals will naturally increase. Of course, iodine atoms and F$_8$ are just fictional references here – what matters are the IF$_8$ orbitals. Because the occupied T_{2g} and E_g MOs of IF$_8$ are all I–F bonding, these MOs will come down in energy relative to the other MOs as the pressure mounts and overlaps increase. The same goes for the I–F bonding A_{1g} and T_{1u} orbitals, which, together with the T_{2g} and E_g set, are predicted to drive the stabilization of the high symmetry cubic coordination under high pressure. Put differently, participation of I5d, and the cubic coordination geometry, can be rationalized by symmetry facilitated bonding interactions with the ligand framework, which become increasingly pronounced as the volume of the system decreases (Fig. S5†). The ligand coordination is essential for bringing down the d-orbitals of iodine. There is, for example, no participation of I5d levels in similarly compressed elemental iodine (Fig. S6†). There are, as the MO diagram shows, also simultaneous F–F interactions of both bonding and antibonding character in IF$_8$. However, as we shall see and quantify, I–F bonding interactions are significantly larger than F–F interactions, which largely cancel out under compression.

How does this analysis fit with the predicted R3 structure of IF$_8$ at 300 GPa? Remarkably well, as it turns out. First, our crystal orbital Hamilton populations (COHPs) confirm the predominantly molecular character of the electronic structure, already inferred by the predicted bond lengths. The integrated COHP up to the Fermi level between iodine and its 8 nearest neighbors (F1 & F2) is $-6.4/–6.2$ eV, which is indicative of strong bonding interactions. In contrast, iodine’s interactions with its third nearest neighbor (F3) is estimated as -0.7 eV, which clearly suggests that R3-structured IF$_8$ can be viewed predominately as a molecular crystal. The integrated COHPs between F1–F1, F1–F2 and F1–F3 are 0.06, 0.07 and -0.14 eV, respectively (F3 refers to an F atom in the nearest neighboring IF$_4$ unit). That F–F bonding and anti-bonding interactions within the IF$_8$ molecule largely cancel out, but are destabilizing overall, is in qualitative agreement with the MO diagram in Fig. 3. Bonding between IF$_8$ molecules (I–F3 and F1–F3) comes out as exclusively stabilizing in the COHP analysis (Fig. 4c and S4c†).

At 300 GPa, iodine’s 5d band penetrates well into the valence region, where it undergoes a significant dispersion and mixes both with the 5s and 5p levels of iodine, and with the valence shell of fluorine (Fig. 4b). Our COHP analysis clearly shows significant bonding interactions involving d-levels below the Fermi level (Fig. 4c). The only anti-bonding interactions observed near the Fermi level are of I5s–F 2p and F 2p–F 2p character, in good agreement with the schematic MO analysis of the IF$_8$ molecule in Fig. 3. The only other anti-bonding states identified in the COHP are due to overlap with F 2s, which we omitted from Fig. 3 for clarity.

What about the metallicity of the material? That the R3-structured IF$_8$ shows metallicity (Fig. 4) is expected from the
fact that it’s a molecular solid of an open-shell molecule. In contrast, the P2_1/m-structured IF_7, a molecular solid of a closed-shell molecule, is a semiconductor (Fig. S7†). We did perform an in silico experiment by artificially adding one electron to the IF_8 unit cell (the negative charge being compensated by a smeared out positive background charge in our program). The result of the extra electron is a material with semiconducting character that exhibits a similar Projected Density of States (PDOS) distribution (Fig. S8†). In IF_8, the Density of States (DOS) at the Fermi-level is dominated by the F 2p-bands. That the Fermi level should be dominated by F 2p is expected, and is also in good agreement with our MO analysis of the isolated IF_8 molecule (Fig. 3), which predicts the highest occupied level to be a pure F 2p–F 2p antibonding level of E_g symmetry. Spin-polarized calculations on the R3 phase of IF_8 shows that the material is not magnetic (Fig. S9†).

Because of significant mixing of s, p and d levels of iodine, we can conclude that a valence expansion of iodine has occurred. This implies that the IF_8 molecule, predicted to exist in the crystalline state at 300 GPa, is not only hyper-coordinated but also hypervalent. Expansion of iodine’s valence space is here a consequence of additional energy levels being available for bonding, not a classification based on the fact that the number of ligands around iodine exceeds seven. Our bonding and density of states analyses are based on orbital projection methods, which differ slightly depending on the program used. Even though these methods are not exact, in that they do not recover all of the electron density, all approaches that we tested (see the Fig. S10†) do support the general conclusion that there is a valence expansion and that the 1s 5d levels are essentially equally populated. The d_z^2 orbital does appear to be slightly more populated on average, which may explain the small structural deviation from a perfect cube (Table S4†).

What about the oxidation state of iodine? Because the predicted R3 phase of IF_8 is metallic, a formal ionic extrapolation is not possible. If we nonetheless consider each F ligand as F^– and remove one electron from the ligands due to the radical character (the F 2p hole), the oxidation state of iodine in IF_8 becomes +VII. Our best estimate of the total iodine orbital occupation in IF_8 corresponds to an atomic charge of +3.8, when calculated using a Mulliken-type approach. The relative occupation of the I-based orbitals is s^1p^1.7d^1. We must stress that these values are approximate and sensitive to the internal basis set used in the projection scheme. Nevertheless, the orbital-based charge is in strikingly good agreement with a separately calculated QTAIM charge of +4.0 on iodine (see the ESIF). Combined, the orbital and charge density analyses, and the Electron localization Function (ELF, Fig. S11†) suggest a rather large degree of covalency in IF_8, and the presence of strong polar covalent and hypervalent bonds.

3. Conclusion

First-principles swarm structural search calculations have been employed to explore the phase stabilities and structures of I–F compounds under high pressure. Pressure favors the stabilization of fluoride-rich compounds (IF_8 = 3, 5, 7, 8, 10, 11, and 12) rather than iodine-rich compounds. Several I–F compounds are predicted to undergo pressure-induced molecular to extended phase transformations, accompanied by semiconductor to metal transitions. We have focused our analyses on a predicted R3 phase of IF_8, where pressure stabilizes a unique cubical molecular structure. The predicted cubical coordination geometry is unique in main group chemistry, where square antiprismatic octa-coordination is common. The molecular crystal has an electron-deficient electronic structure that causes it to be metallic. Various molecular orbital and crystal orbital
projection-based analyses support a conclusion that the electronic and geometric structure of IF₆ is a consequence of valence expansion of iodine.

4. Computational details

Searches for I–F binary compounds were performed with the CALYPSO structure prediction method[^1][^2] while allowing for up to 4 formula units per unit cell. The predictive accuracy of this methodology has been repeatedly demonstrated on various systems, from elemental solids to binary and ternary compounds[^3][^4][^5]. The Vienna Ab initio Simulation Package (VASP) code[^6] and the Perdew–Burke–Ernzerhof[^7] functional in the generalized gradient approximation[^8] were adopted to perform structural relaxations within the framework of density-functional theory (DFT). The electron–ion interactions were represented by means of the all-electron projector augmented-wave method with 5s²5p⁵ and 2s²2p⁵ treated as the valence electrons of I and F atoms, respectively. A plane-wave basis set cutoff of 950 eV and the Monkhorst–Pack scheme[^9] with a dense k-point grid spacing of 2π/0.032 Å⁻¹ in the Brillouin zone were used to converge energies to less than 1 meV/atom. To ensure the validity of the pseudopotentials used, the equation of state of IF₆ was also calculated using the full-potential WIEN2k code[^10] with nearly identical results to the VASP calculations (Fig. S12†). Phonon calculations were performed using a supercell approach with the finite displacement method[^11] using Phonopy.[^12] The Electron Localization Function (ELF) was used to estimate the degree of electron localization[^13]. Crystal Orbital Hamilton Population (COHP) analyses were performed using the LOBSTER program.[^14][^15] Van der Waals (vdW) interactions were included using the optB88-vdw approach.[^16] DFT calculations on molecular fragments were made using Gaussian 16, revision B.01.[^17]

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This research was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0201200 and 2016YFB0201201), the National Natural Science Foundation of China (Grants No. 21573039, 21873017, 11534003, 11774127, and 11274136), the 2012 Changjiang Scholars Program of China, the Program for JLU Science and Technology Innovative Research Team, and the Science Challenge Project No. TZ2016001. Parts of the calculations were performed at the High-Performance Computing Center of Jilin University and Tianhe-2-JK in the Beijing Computational Science Research Center. M. R. acknowledges financial support from Chalmers University of Technology and computational resources provided by the Swedish National Infrastructure for Computing (SNIC) at C3SE. Toby Zeng and Roald Hoffmann are acknowledged for valuable discussion and comments.

References

Edge Article

68 M. J. Frisch, et al., Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016See the ESI† for full list of authors.