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A tandem dearomatization/rearomatization
strategy: enantioselective N-heterocyclic carbene-
catalyzed a-arylationy

In this study, the first example of the carbene-catalyzed tandem dearomatization/rearomatization reaction
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of azonaphthalenes with a-chloroaldehydes is described. This protocol enables the efficient assembly of

chiral dihydrocinnolinone derivatives in good yields with excellent enantioselectivities (up to 99% ee).
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Advances in reaction development for the stereoselective
construction of medicinally important scaffolds or high value-
added chemicals depend on utilizing innovative and long-
standing synthesis strategies." Over the past decade, a large
number of organic transformations driven by N-heterocyclic
carbene (NHC) catalysis have been rapidly developed that
enabled certain types of reaction manifolds and asymmetric
versions of important compounds.” Since the seminar report of
the Breslow intermediate in 1958, there has been an ever-
increasing demand in recruiting novel NHC-bound intermedi-
ates for their applications in organic synthesis.* Among these
achievements, the exploration of NHC-bound enolates for new
bond formations has attracted considerable attention from the
synthetic community due to its high chemical reactivity and
remarkable stereo-control. As shown in Fig. 1a, several readily
available starting materials (e.g., enals, aldehydes, ketenes,
carboxylic acids, esters) have proven to be effective reactants for
the in situ generation of azolium enolates, thus resulting in
a large number of distinct reactions and diversified core skele-
tons. In 2006, Bode et al. first reported an elegant example of the
protonation of electron-deficient enals to produce azolium
enolates and the subsequent trapping by N-sulfonyl, o,fB-
unsaturated imines to yield dihydropyridinones.* Rovis et al.
have pioneered in using a-chloroaldehydes as reactants to
prepare azolium enolates for further protonation® or internal
redox reaction.” Meanwhile, Smith et al. also confirmed that o-
aroyloxyaldehydes as precursors could convert to azolium eno-
lates in NHC-catalyzed redox esterification, amination, and
cycloaddition reactions.® Moreover, the Smith et al.” and Ye
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Moreover, this strategy enables not only the highly enantioselective NHC-catalyzed nucleophilic
aromatic substitution, but also a formal Csp?~Csp® bond formation.
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et al.”™ have documented that azolium enolates could be readily
prepared from ketenes for further annulation. Rovis et al., Chi
et al., Scheidt et al., and Ye et al. have utilized aliphatic alde-
hydes,®® activated esters,* carboxylic acids®** and anhydrides®
as suitable reactants to successfully achieve azolium enolates,
respectively. In brief, the synthetic utilities of azolium enolates
have widely extended to various [2 + 2],7*°[2 + 2 + 2],%1°[3 + 2]**
and [4 + 2]**7%8¢%12 cycloadditions. These broad diversities may
be attributed to the special property of absence of polarity
reversal of azolium enolates. Nonetheless, NHC-catalyzed a-
arylation still remains a formidable challenge for synthetic
chemists.

Given the success of in situ generated azolium enolates, we
anticipated that the desirable NHC-catalyzed o-arylation reac-
tion might partially be attributed to the recruiting of suitable
substrates. In 2015, Glorius et al. found that the NHC-bound
enolates could react with aromatic azomethine imines to
generate pyrazolo[5,1-alisoquinolines via a direct dearomatiza-
tion process.*® Inspired by this prominent result, we speculated
that a matching electrophile (e.g., electron-deficient aromatic
compound) may facilitate the initial dearomatization step via
a nucleophilic attack and C-C bond formation, followed by
a rearomatization process, if successfully, to offer the desired a-
arylated molecules (Fig. 1b). We also envisioned that the ther-
modynamics of this intramolecular cycloaddition process
probably helps to drive the nucleophilic dearomatization step.

In the process of recruiting suitable substrates, we particu-
larly focused on the azobenzene scaffolds because it has the
basic required characteristics of being the matching substrate.
First, the azobenzene-type structures can be used as electro-
philes in the critical addition step. Second, the azo group can
assist in accomplishing the tandem dearomatization-rear-
omatization process via intermolecular tautomerization. In fact,
azobenzene derivatives as synthons have been broadly utilized
in metal-catalyzed transformations, as illustrated by rhodium-
catalyzed [3 + 2] cyclization of electron-deficient alkenes with
azobenzenes (Fig. 2a). Until recently, the Tan et al.** reported
an elegant example of chiral phosphoric acid-catalyzed [3 + 2]
cyclization of azonaphthalenes with 2,3-disubstituted indoles
(Fig. 2b). In these successful examples, the azo motif within the
azonaphthalenes not only works as an electron-withdrawing
group to activate the aromatic ring, but also plays a critical
role in triggering the rearomatization process. Meanwhile, the
NHC-bounded homoenolates, azolium enolates or acyl anions
have proven to be effective nucleophiles in catalytic nucleo-
philic dearomatization.**'® Inspired by these achievements,*>"”
we then set out to explore the feasibility of NHC-catalyzed
nucleophilic dearomatization of azonaphthalenes with o-
chloroaldehyde. Unambiguously, the following challenges need
to be overcome in this design: (1) controlling the regioselectivity
as the nucleophilic addition of azobenzene derivatives can
probably occur at either the N=N double bond’#*?*!% or the
aromatic ring. (2) Check the compatibility of reactive azo-
naphthalenes with the nucleophilic NHC-bounded enolate
intermediates in the dearomatization reaction. (3) Identify the
efficient catalytic system for achieving high enantioselectivity.
Herein, we report an unprecedented example of NHC-catalyzed
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Fig. 2 Anticipated cyclization reactions of azobenzene molecules.

a-arylation of azonaphthalenes with a-chloroaldehydes. It
should be mentioned that this process contains a formal Csp’-
Csp® bond formation and starts from an organocatalytic
nucleophilic aromatic substitution (Fig. 2c).

To validate the feasibility of the hypothesis, our initial
reaction development was conducted with a-chloroaldehyde
(1a) and azonaphthalene (2a) in the presence of 20 mol% NHC
precatalysts and DIPEA in THF at room temperature (Table 1).
Only a trace amount or a moderate yield of 3a was achieved
using NHC precatalyst A or B (entries 1 and 2). Gratifyingly, the
N-Ph-substituted chiral triazolium catalyst (C2) afforded 3a in
73% yield with 90% ee (Table 1, entry 4). Further investigation
indicated that the N-2,4,6-(Me);CeH,- or N-2,6-(Et),CeHs-
substituted chiral triazolium catalyst C1 or C3 gave excellent
enantioselectivities, but tolerated moderate yields (entries 3 and
5). Further fine-tuning of other parameters (e.g., base, solvent,
and catalyst loading, see ESIt for more details) revealed that the
optimal condition is a combination of room temperature,
10 mol% C1, 200 mol% DIPEA, and 1.0 mL of ‘BuOMe (Table 1,
entry 19).

After establishing the optimal reaction conditions, we
examined the substrate scope with respect to various a-chlor-
oaldehydes 1 (Fig. 3). The reaction was applicable to a-chlor-
oaldehyde derivatives with either aromatic rings or alkyl chains.
The electronic natures or substituted patterns on the aromatic

This journal is © The Royal Society of Chemistry 2019
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Table 1 Optimization®

Q o o0
Ph O —ome
\/U\ N=N cat. (20 mol %) Ph '}‘J\OMe
H + _— NH
| O Base (200 mol %)
c O Solvent, RT
la 2a 3a
cat. 0
Me SNg© NN e S TNeNG
N | BF, Bn' N e @ Ar
Bn =N, ® Mes 4
® Mes
A B C1: Ar = Mes
C2: Ar=Ph
€3: Ar =2,6-(Et),CgH3
Entry Cat. Solvent Base Yield” (%) ee’ (%)

1 A THF DIPEA 8 —
2 B THF DIPEA 58 88
3 C1 THF DIPEA 76 99
4 C2 THF DIPEA 73 90
5 C3 THF DIPEA 71 99
6 C1 THF DBU Trace —
7 Cc1 THF Cs,CO; 22 24
8 C1 DCM DIPEA 77 97
9 C1 ‘BuOMe DIPEA 90 99
10 C1 CH;CN DIPEA 71 82
114 C1 ‘BuOMe DIPEA 89 99
12° c1 ‘BuOMe DIPEA 61 99

% Reaction conditions: a-chloroaldehyde 1a (0.20 mmol, 2.0 equiv.),
azonaphthalene 2a (0.10 mmol, 1.0 equiv.), cat. (0.02 mmol), base
(0.20 mmol), solvent (1.0 mL), 10 h, room temperature. ? Yields of
isolated products after column chromatography.  The ee values were
determined by HPLC using a chiral stationary phase. ¢ C1 (10 mol%),
16 h. ¢ C1 (5 mol%), 24 h.

ring appeared to have limited effects on reaction results,
affording the corresponding dihydrocinnolines in yields of 73—
88% and ee values between 94 and 99% (3a-3i). When the
aldehydes containing alkyl R-substituents located at the o-
carbon were used, the corresponding dihydrocinnoline deriva-
tives were also afforded with good yields and excellent enantio-
controls (3j-31). Notably, when a-chloroaldehydes bore func-
tional alkyl subunits (e.g., alkene, chlorine, ether) at the side
chain, good yields with excellent enantioselectivities were also
regularly  observed  (3m-3r).  Pleasingly, 2-chloro-2-
phenylacetaldehyde also delivered the corresponding product
(3s) in a moderate yield, albeit with a relatively low ee value.
Further investigation on the synthetic feasibility of azo-
naphthalenes (2) was performed with a-chloroaldehyde (1a), as
shown in Fig. 4. The results indicated that this reaction toler-
ated a diverse array of azonaphthalenes, and afforded the
dihydrocinnolines (4) in good to high yields (76-93%) and with
high levels of enantio-controls (93-99% ee). When R’ substitu-
ents were alkyl oxide groups (4a-4d), amino group (4e) or
sulfonyl group (4f), the products were obtained in high yields
with excellent enantioselectivities. Specifically, the electronic
nature or the substitution pattern of the aromatic rings showed
limited effects on the reactivity (4g-4l). When an anthracene
moiety replaced the naphthalene ring in azonaphthalenes, 76%
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Fig. 3 Scope of a-chloroaldehydes. “Reaction conditions: 1 (0.20
mmol), 2a (0.10 mmol), cat. C1 (10 mol%), DIPEA (0.20 mmol), ‘BuOMe
(1.0 mL), 12-16 h, room temperature.

yield and 95% ee were still achieved (4m). The absolute
configuration of 3r was determined by single-crystal X-ray
diffraction analysis,"” and those of other products were
assigned by analogy.

Furthermore, to demonstrate the practicality of this catalytic
transformation, a gram-scale synthesis of 3a was conducted
under the optimal condition. There was almost no change in
the reaction yield and enantioselectivity (Fig. 5, eqn (1), 90%,
97% ee), implying that the catalytic tandem reaction of

Chem. Sci,, 2019, 10, 2501-2506 | 2503
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Fig. 5 Scale-up synthesis and further transformation.

azonaphthalenes with a-chloroaldehydes can be scaled up.
Moreover, the mediated cleavage of 3a mediated by RANEY®-Ni
led to the formation of a-substituted chiral amide (5) in 65%
yield with the same ee value (Fig. 5, eqn (2)).

As illustrated in Scheme 1, a postulated mechanism is
described. Initial addition of catalyst C1 to a-chloroaldehyde 1
followed by 1,2-H migration generates NHC-bounded enolate I.
Nucleophilic addition of enolate I to azonaphthalene (2) results
in a formal tandem reaction of dearomatization>'® and

2504 | Chem. Sci, 2019, 10, 2501-2506
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rearomatization along with C-H cleavage and N-H formation to
give the thermodynamically stable intermediate III. Finally,
intramolecular N-acylation of III leads to the final product 3 or 4
and the NHC catalyst C1 is released for the next catalytic cycle.
Surely, a concerted [4 + 2] annulation mechanism cannot be
completely ruled out in this case.

In summary, a novel NHC-catalyzed tandem
dearomatization/rearomatization reaction of azonaphthalenes
with a-chloroaldehydes has been developed.* This protocol
allows for the rapid assembly of the dihydrocinnolinone scaf-
folds in good to high yields with high to excellent enantiose-
lectivities. Further investigations on the construction of other
relevant frameworks as well as a detailed mechanistic study are
currently underway in our laboratory.
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