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bRéseau sur le Stockage Électrochimique de
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sity functional theory approach to
electron transfer reactions

Guillaume Jeanmairet, *ab Benjamin Rotenberg, ab Maximilien Levesque, c

Daniel Borgis cd and Mathieu Salanne abd

Beyond the dielectric continuum description initiated by Marcus theory, the standard theoretical approach

to study electron transfer (ET) reactions in solution or at interfaces is to use classical force field or ab initio

molecular dynamics simulations. We present here an alternative method based on liquid-state theory,

namely molecular density functional theory, which is numerically much more efficient than simulations

while still retaining the molecular nature of the solvent. We begin by reformulating molecular ET theory

in a density functional language and show how to compute the various observables characterizing ET

reactions from an ensemble of density functional minimizations. In particular, we define within that

formulation the relevant order parameter of the reaction, the so-called vertical energy gap, and

determine the Marcus free energy curves of both reactant and product states along that coordinate.

Important thermodynamic quantities such as the reaction free energy and the reorganization free

energies follow. We assess the validity of the method by studying the model Cl0 / Cl+ and Cl0 / Cl�

ET reactions in bulk water for which molecular dynamics results are available. The anionic case is found

to violate the standard Marcus theory. Finally, we take advantage of the computational efficiency of the

method to study the influence of a solid–solvent interface on the ET, by investigating the evolution of

the reorganization free energy of the Cl0 / Cl+ reaction when the atom approaches an atomistically

resolved wall.
Electron transfer (ET) reactions play a central role in a wide
range of chemical systems, including energy storage and har-
vesting in electrochemical devices or biological processes such
as aerobic respiration and photosynthesis. This ubiquity can
explain the considerable amount of experimental, theoretical
and simulation studies that have been devoted to this class of
reactions.1 The widely accepted theory of ET reaction in solution
was proposed by Marcus.2–4 It is based on the description of the
solvent by a dielectric continuum. Themacroscopic uctuations
of the solvent are represented by an out-of-equilibrium polari-
zation eld, and the free energy is a functional depending
quadratically on this polarization. It eventually provides
a simple two-state picture, where the free energy of each state
depends quadratically on a reaction coordinate. This famous
two-parabola picture has been used with great success to
interpret experimental results and to make predictions.5
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However, Marcus theory does not take into account the molec-
ular nature of the solvent which can break the linear assump-
tion of solvent response. In such cases, we must resort to
molecular simulation.

The vast majority of simulation studies on ET reaction have
been carried out using Molecular Dynamics (MD). For example,
the pioneering work of Warshel demonstrated that the vertical
energy gap is the appropriate reaction coordinate6 and that the
uctuations of this quantity are Gaussian. Such Gaussian
statistics give rise to the famous parabola picture of Marcus for
the free energy prole. A strict Gaussian behaviour is equivalent
to a linear response of the solvent to the eld generated by the
solute; it also implies that the two free energy parabolas have
the same curvature because the solvent uctuations are iden-
tical for the two states.7,8

This validity of the Gaussian assumption has been veried in
numerous studies since, for ET in solution9,10 or in complex
biological systems,11,12 using either classical or ab initio MD.
However, there is evidence that some systems do not obey the
Marcus assumption i.e. the free energy curves of the two states
cannot be represented by a pair of identical parabolas. There are
several possible origins of such a discrepancy,13 in particular the
fact that reactant and product may have quite different solva-
tion states. This can happen when the ET occurs between
neutral and charged states, as predicted by Kakitani and
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Schematic representation of a solvent controlled ET reaction.
The diabatic free energy curves for state 0 and 1 are represented in
solid black and dashed red, respectively. The reorganization free
energies l0 and l1 for the two states are represented with solid arrows,
the reaction free energy with a dotted arrow.
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Mataga14–16 and observed since in classical17–19 and ab initio20,21

simulations. Several extensions of Marcus theory have been put
forward to take into account the various origins of non-
linearity.21–24

The investigation of ET reactions by MD is quite challenging
since it usually requires the computation of the free energy
curves as a function of an order parameter which remains
a demanding task. Indeed, it necessitates a proper sampling of
the solvent congurations around the barrier. If the activation
energy is high it requires the use of biases such as umbrella
sampling25 coupled with histogram analysis techniques to
reconstruct the unbiased data.26–28 This typically implies to run
simulations on half a dozen ctitious intermediate states to
study a single system.

To compute free energies, there exist alternative techniques
based on statistical theory of liquids, which offer the advantage
of keeping a molecular description of the solvent while avoiding
to sample the instantaneous microscopic degrees of freedom.
Among the different approaches one can mention integral
equation theory either in its molecular29 or multiple sites
formulation (RISM)30,31 and its 3D-RISM version.32,33 Another
method is the classical density functional theory (cDFT) of
liquids34,35 which describes the response of a uid in the pres-
ence of a perturbation by introducing a functional of the uid
density. Minimization of the functional yields the grand
potential at equilibrium uid density. Some of us have previ-
ously introduced the molecular density functional theory
(MDFT)36,37 which is able to provide the solvation free energy
and the solvation structure of any solute embedded in
a molecular solvent described by its inhomogeneous density
eld. The solvent density is a function of space coordinates and
of the orientation; hence the functional must be minimized on
a 6D grid: 3 dimensions for the cartesian coordinates and 3
dimensions for the three Euler angles. This formalism can be
used to solvate any simple or complex solutes.38 We proposed
functionals for several solvents39,40 with particular attention
paid to the case of water.41,42 The most advanced version of the
functional is equivalent to the molecular Ornstein–Zernike
theory supplemented by the hypernetted-chain closure (HNC)43

for the solute–solvent correlations and can be minimized effi-
ciently thanks to the use of rotational invariants in an optimal
frame. The accuracy on the predictions of solvation free ener-
gies is promising as illustrated on the FreeSolv database.44 We
shall take advantage of this accuracy to put forward an efficient
way to compute the free energy curves.

An application of the MDFT formalism to ET reactions in
acetonitrile was proposed some years ago.39 In this article we
extend this approach and apply it to ET in aqueous solutions. In
Section 1, aer recalling some basics of ET theory and giving
a very short description of the MDFT framework, we show how
to compute the key quantities of ET reactions with MDFT. In
particular, we show that the average vertical energy gap is an
appropriate order parameter for the ET reaction. We prove that
for a given set of external potentials the free energy functional is
actually a function of this order parameter. We derive expres-
sions to compute the free energy curves (FEC) and the reorga-
nization free energies.
This journal is © The Royal Society of Chemistry 2019
In Section 2 we rst validate the framework on the simplest
solute in water, i.e. a single neutral or charged chlorine atom
modeled by a Lennard-Jones site, before studying the inuence
of the presence of a solid-solvent interface on the reorganization
free energy; to this purpose we investigate the ET of this solute
as a function of its distance to an atomistically resolved wall.
1 Theory
1.1 Electron transfer reaction

We limit ourselves to the study of ET reactions of solutes which
interact with the solvent through a classical force eld. More-
over, the solutes we consider in this article are rigid entities
composed of a set of Lennard-Jones sites and point charges. An
ET reaction involving two solutes of this type would correspond
to an outer-sphere ET because there are no structural changes of
the solutes. This implies that the ET reaction is completely
controlled by the solvent response, as considered in Marcus'
original paper.3 The physics of the system can be described by
the two crossing free energy curves of the system before (0) and
aer (1) the ET. A schematic view of the two FEC is presented in
Fig. 1 where some of the quantities necessary to describe the
process are shown. The order parameter x describes the solvent
conguration around the solute, thus the abscissa x0 of the
minimum of the FEC W0 corresponds to a solvent in equilib-
rium with state 0. We emphasize that several microscopic
solvent congurations correspond to an identical value of the
order parameter.

Values of the order parameter differing from x0 correspond
to solvent congurations that are not in equilibrium with state
0. The more the solvent conguration differs from equilibrium,
the more the free energy increases. The difference between the
minima of the 2 FEC corresponds to the free energy difference
between the two states, each surrounded by a solvent in equi-
librium with these states, i.e. the reaction free energy, DW. Two
others key quantities appear in Fig. 1: the reorganization free
energies l0 (resp. l1) which represent the cost in free energy to
solvate state 0 (resp. 1) in a solvent in equilibrium with the other
Chem. Sci., 2019, 10, 2130–2143 | 2131
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state. The difference in free energy between the transition state
(the crossing point) and state 0 controls the kinetics of the 0 /

1 reaction.
We emphasize that in the Marcus picture, the solvent is

treated as a continuum which responds linearly to the electric
eld generated by the solute. This implies that the FEC of the 2
states are identical parabolas. As a consequence, there is
a unique reorganization free energy parameter l ¼ l0 ¼ l1. The
objective of the present paper is to show how to compute the
various quantities appearing in Fig. 1, within MDFT. This could
be a way to test the validity of Marcus assumption when the
molecular nature of the solvent is taken into account, while
taking advantage of the numerical efficiency of MDFT
compared to MD.
1.2 Molecular density functional theory

We briey recall the fundamentals of MDFT which belong to the
more general class of cDFT. Based on the Hohenberg–Kohn
ansatz,45 Mermin introduced the framework of density func-
tional theory (DFT) at nite temperature for the inhomoge-
neous electron gas.34 Later, Evans rewrote the theory for
a classical system, setting the foundations of cDFT which
describes the response of a uid to an external perturbation.35

MDFT is designed to study solvation problems. The uid
perturbed by the presence of one or several solutes is described
by its density eld. In the following we will always consider
liquids, referred to as the solvent. It is advantageous to dene
a new functional F, as the difference between the grand
potential functional of the solvent in the presence of the solute
Q and that of the homogeneous solvent,

F[r] ¼ Q[r] � QH. (1)

With this denition, the functional at its minimum is equal
to the solvation free energy. Because both the solute and the
solvent are in most cases molecules with several atomic sites,
their interactions depend on both the position of the centres of
mass (CM) and orientations. Hence, the solvent density will be
denoted by r(r,U) where r is the position in cartesian coordi-
nates and U the orientation described by three Euler angles
(q,f,j). The density minimizing the functional is the full equi-
librium solvent density around the solute which may be inte-
grated to recover the usual radial distribution functions.

The usual strategy to have a workable expression of this
functional is to split it into the sum of ideal, excess and external
contributions,

F[r] ¼ Fid[r] + Fext[r] + Fexact
exc [r]. (2)

In eqn (2) the ideal term corresponds to the entropy of the
non-interacting uid, which reads

Fid½r� ¼ kBT

ð ð�
rðr;UÞln

�
rðr;UÞ
rH

�
� rðr;UÞ þ rH

�
drdU; (3)

where kB is the Boltzmann constant, T the temperature in Kelvin

and rH ¼
nH
8p2 with nH the density of the homogeneous solvent.
2132 | Chem. Sci., 2019, 10, 2130–2143
The second term in eqn (2) account for the perturbation by the
solute. The solute acts on the solvent via an ”external” potential
Vext, typically the sum of a Lennard-Jones term and of an elec-
trostatic term. In the usual case of pair-wise additive interac-
tion, Vext reads

Vextðr;UÞ ¼
X

i¼solvent site

X
j¼solute site

vij
���rþ riU � rj

��� (4)

where vij is the pair potential between site i of solvent and site j
of the solute and riU denotes the position of site i when the
solvent molecule has the orientation U. The expression of the
external functional is:

Fext½r� ¼
ð ð

rðr;UÞVextðr;UÞdrdU: (5)

Finally, the last term corresponds to the solvent–solvent
interactions. An exact expression for this term is available46 but
in practice it is rewritten as the sum of two terms

Fexact
exc [r] ¼ Fexc[r] + Fb[r], (6)

where Fexc is an approximation of the excess functional. This
denes the correction or ”bridge” functional Fb as the difference
between the exact functional and this approximation. To date,
the most advanced expression of Fexc for water is that recently
used by Ding and coworkers which corresponds to the hyper-
netted chain approximation.43

bFexc½r� ¼ � 1

2

ð ð ð ð
Drðr1;U1Þ

� cðkr1 � r2k;U1;U2ÞDrðr2;U2Þdr1dU1dr2dU2

(7)

where b ¼ (kBT)
�1 and c(kr1 � r2k,U1,U2) is the bulk direct

correlation function while Dr ¼ r � rH. c depends on the
distance between 2 solvent molecules and on their relative
orientation dened by six Euler angles instead of 4 in the case of
acetonitrile.39 The calculation of the functional of eqn (7) in this
general case is still feasible thanks to the efficient FFT algo-
rithm47 to handle the spatial convolution and to the use of
rotational invariants to handle the angular one.48–50

We have previously developed several approximations for the
bridge term Fb51–53 but we shall neglect it in this paper and refer
to this functional formulation as the HNC functional. While the
numerical problem involved in MD is the sampling of phase
space, MDFT involves an optimization which is numerically
more efficient. Consequently, to compute solvation free ener-
gies of a spherical solute in water, MDFT requires z10 cpu
minutes with our lab-developed program while it requiresz100
cpu hours to compute the same quantity with commercially
available MD codes.
1.3 ET reaction in the MDFT framework

1.3.1 Theory. From a MDFT perspective, the two states
0 and 1 of the ET reaction correspond to two functionals F0 and
F1 differing only by their external potentials V0 and V1 in eqn (5).
If we denote by r0 and r1 the equilibrium solvent densities of
This journal is © The Royal Society of Chemistry 2019
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states 0 and 1, obtained by minimization of F0 and F1, the
reaction free energy can be expressed as

DW ¼ F1[r1] � F0[r0] + DE0. (8)

The rst two terms represent the solvent contribution to the
free energy while DE0 is the difference in energy between the 2
solutes in vacuum. In this paper we restrict the study to rigid
classical solutes with no intramolecular potentials, so that last
term vanishes.

In his original work, Marcus estimated the free energy cost to
solvate a solute within a solvent where polarization is not in
equilibrium with the electric eld generated by the solute. In
the MDFT framework the density eld contains all the struc-
tural equilibrium information of the solvent, including its
polarization. We can consider MDFT as a more general eld
theory than that used by Marcus. Nevertheless, the density eld
itself remains a complicated object. To facilitate our under-
standing it is useful to dene a solvent reaction coordinate i.e.
a scalar quantity which is uniquely dened by the density eld.
By introducing a class of intermediate potentials interpolating
between state 0 and state 1, we show that the average vertical
energy gap is an appropriate order parameter. We then derive
an expression for the free energies of states 0 and 1 as functions
of the average vertical energy gap.

States 0 and 1 are characterized by the following
Hamiltonian

Hh ¼ K + U + Vh. (9)

where h ¼ 0 or 1, K is the kinetic energy and U is the potential
energy. For each state, the equilibrium probability distribution
in the Grand Canonical ensemble is

fh(X
N,pN) ¼ Xh

�1exp[�b(Hh(X
N,pN) � mN)], (10)

where m is the chemical potential of the solvent and (XN,pN) is
a point in phase space X denotes the couple (r,U) describing the
CM and orientation of a solvent molecule withmomentum p.Xh

is the corresponding grand partition function:

Xh ¼ Tr[exp(�b(Hh � mN))], (11)

where Tr denotes the classical trace

Trh
XN
N¼0

1

h3NN!

ð
dX1.dXN

ð
dp1.dpN (12)

and h is the Planck constant. We now introduce a class of
external potentials dened as linear combinations of V0 and V1

Vh ¼ V0 + h(V1 � V0) with h ˛ [0,1]. (13)

This denes the corresponding set of Hamiltonians (eqn (9)),
probability distributions (eqn (10)) and grand partition func-
tions (eqn (11)) for any value of h. Since for physically relevant
cases V0 and V1 differ by more than a constant, any value of h
denes a unique potential Vh (up to an irrelevant constant).
Because of this uniqueness of the potential, a unique
This journal is © The Royal Society of Chemistry 2019
equilibrium solvent density rh is associated with any value of h.
This is a consequence of the cDFT principle35 which implies
a one-to-one mapping between external potential, equilibrium
distribution and equilibrium solvent density.†

We dene the average vertical energy gap, related to an
equilibrium density rh by

hDEih ¼
ð ð

rhðr;UÞ½V1ðr;UÞ � V0ðr;UÞ�drdU: (14)

This quantity represents the energy difference between
states 1 and 0 solvated in the solvent of density rh. We prove in
Appendix A that, for the family of potentials in eqn (13), hDEih is
an adequate order parameter since it uniquely denes rh. Thus,
the free energy of any state is a function of hDEih. For instance,
for state 0 it reduces to

F0(hDEih) h F0[rh]. (15)

Note that the average free energy gap dened in eqn (14)
differs from the microscopic version, DE, used in MD;

DE({R}) ¼ E1({R}) � E0({R}), (16)

with {R} denoting the whole set of coordinates of solvent
molecules, but they are actually related by

hDE({R})ih ¼ hDEih, (17)

where on the le hand side h..ih denotes the thermodynamic
average on the potential energy surface h. hDEih is also
frequently reported in MD studies of ET since it is another
measure of the validity of Marcus theory which predicts that it
varies linearly with the coupling parameter. Our approach is
closer to Marcus' original work54 where he mentioned that the
“equivalent equilibrium distribution would be obtained in
a corresponding equilibrium system in which the charges on
the two central ions” are linear combinations of the original
ones.

We can now express the reorganization free energies dis-
played in Fig. 1 as

l0 ¼ F0(hDEi1) � F0(hDEi0) ¼ F0[r1] � F0[r0] ¼ DW � hDEi1,
(18)

l1 ¼ F1(hDEi0) � F1(hDEi1) ¼ F1[r0] � F1[r1] ¼ �DW + hDEi2.
(19)

Borgis and coworkers have reported a similar relation to
compute the reorganization free energies using MDFT.39 Under
the assumption that Marcus theory is valid - hence that the two
reorganizations free energies are equal, i.e. l ¼ l0 ¼ l1, eqn (18)
and (19) reduce to:

l ¼ l0 þ l1

2
¼ ðF0½r1� � F1½r1�Þ � ðF0½r0� � F1½r0�Þ

2

¼ 1

2

ð ð
½V1ðr;UÞ � V0ðr;UÞ�½r0ðr;UÞ � r1ðr;UÞ�drdU (20)
Chem. Sci., 2019, 10, 2130–2143 | 2133
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Fig. 2 Pairs of free energy curves of (a) Cl0/Cl� and (b) Cl0/Cl+ as
a function of the average vertical energy gap. The black solid line and
the dashed red line correspond to the MDFT results for the atom and
the ions, respectively. Those results are compared to Hartnig's work19

reported as a function of the absolute vertical energy gap. The black
circles correspond to the atom and the red squares to the ions.
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which is equivalent to the linear response formula

l ¼ 1
2
ðhDEi0 � hDEi1Þ oen used in molecular simulations. We

also note that, as for the usual variable DE in MD, the exact
relation introduced by Warshel is satised:

F1(hDEih) ¼ F0(hDEih) + hDEih. (21)

This is a corollary of eqn (34) with h ¼ 1. In the next
subsection we explain how the average vertical energy gap,
reorganization free energies and free energy curves are
computed using MDFT.

1.3.2 Computational details. To study a given system, we
shall minimize functionals corresponding to different external
potentials Vh according to eqn (13). We consider only cases for
which the Lennard-Jones sites of the solute remain unchanged
between state 0 and state 1, so that the energy gap reduces to the
difference in the electrostatic potential energy of the solute in
the eld generated by the solvent molecules. This can be
computed using the electrostatic potential generated by states
0 and 1, while the vertical energy gap can be computed using
eqn (14).

As shown above, the free energies corresponding to these
values of the energy gaps are

FA(hDEih) ¼ FA[rh] (22)

with A ¼ 0,1. To construct the FEC as in Fig. 1 we rst minimize
the functional of eqn (2) for several values of h to obtain rh, next
compute the value of the average vertical energy gap, and nally
evaluate F0 and F1 for the different rh.

An alternative route to compute the FEC was previously
proposed by Hirata et al.55,56 using another implicit solvent
method, RISM.We show in Appendix C that the thermodynamic
cycle they propose is equivalent to the present scheme, although
not expressed in a free energy density functional language. Now
that we have shown how MDFT can be used to investigate ET
reactions, the following section is dedicated to assess the val-
idity of this approach on simple and complex solutes.

2 Applications
2.1 ET between Cl0, Cl+ and Cl� ions

In this article we focus on the difficult case of aqueous solva-
tion, but calculation for simpler solvents such as acetonitrile or
CO2 are expected to give results of comparable quality. We apply
the necessary correction due to periodic boundary conditions to
charged solutes57,58 and an additional correction accounting for
the overestimation of the pressure within HNC53 to both neutral
and charged solutes.

To allow comparisons, we chose a system which has been
extensively studied using MD by Hartnig et al.19 This model of
chlorine consists of one Lennard-Jones site, with s ¼ 4.404 Å
and 3 ¼ 0.4190 kJ mol�1, and a charge equal to �1, 0 or 1
elementary charges e. To compute the FEC of the atom and the 2
ions with a good accuracy we ran MDFT calculations with
a solute charge varying in steps of 0.1 elementary charges. We
used a 40 � 40 � 40 Å3 box with 1203 spatial grid points and
2134 | Chem. Sci., 2019, 10, 2130–2143
196 possible orientations per spatial point. The solvent is
SPC/E water for which the exact direct correlation function
projected on a basis of rotational invariants was obtained by
Belloni et al. using a hybrid Monte Carlo plus integral equation
approach.59–61 All simulations are carried out at 298.15 K.

The FEC are shown in Fig. 2 which compares the MDFT
results (solid lines) to the MD results19 (symbols). The repre-
sentation adopted here differs from that used by Hartnig and
Koper, since we report the FEC as a function of the vertical
energy gap and do not apply an arbitrary vertical shi of the
curves. The methodology used to plot the MD data in this
representation is described in Appendix D. This representation
is better suited to highlight some features of the ET. For
instance, we note that both pairs of FEC cross when the average
free energy gap is equal to 0, as expected.

The agreement between MD and MDFT is satisfactory, the
main difference being a shi of the MDFT curves towards
negative values of hDEih for the cation. The most interesting
observation from Fig. 2 is the consistency between the curvature
obtained by MD and by MDFT. In particular, Cl0 and Cl+ exhibit
a similar curvature while that of Cl� is larger, indicating that the
neutral to anion ET does not follow theMarcus picture while the
neutral to cation ET does. To be more quantitative, we
This journal is © The Royal Society of Chemistry 2019
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Table 2 Reorganization free energies computed by MDFT via eqn (18)
and (19) for both ET reactions

Species Cl0/Cl� (kJ mol�1) Cl0/Cl+ (kJ mol�1)

Cl0 297 214
Cl� 264 N/A
Cl+ N/A 218
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computed the reorganization free energy associated with the
three species, based on the curvature by tting the data within
90 kJ mol�1 from the minimum with the following expression

FA½DE� ¼ 1

4l
ðDE � DEminÞ2; (23)

a strategy that was adopted by Hartnig et al. This assumes that
the curve can be tted by a parabola. The expression linking the
curvature and the parabola parameter in eqn (23) is derived
using Marcus theory.

The reorganization free energies obtained viaMDFT and MD
are compared in Table 1. For the MD data, we report the values
of the free energies given in the original work, in addition to the
one we have recomputed to keep the tting procedure consis-
tent between the two approaches. MDFT overestimates the
reorganization free energies compared to MD. However,
comparing the values of the reorganization free energies
between species leads to conclusions similar to those con-
cerning the curvature of the FEC. The neutral atom and the
cation have a similar reorganization free energy, while the anion
has a much larger one.

The simple picture emerging from the comparison of
curvatures is however misleading. Table 1 suggests that a single
reorganization free energy can be associated with each solute,
but this does not hold for several reasons: (i) it assumes that the
FEC of a solute is a parabola (ii) it neglects the other solutes
involved in the ET. We should refer to the reorganization free
energy for a given 0 / 1 ET reaction as dened in Fig. 1,
because the meaningful physical quantity is a free energy, not
the curvature of a tting curve. To illustrate this point, we report
in Table 2 the reorganization free energies computed using eqn
(18) and (19). These free energies for the Cl0 / Cl+ reaction are
almost identical to those reported in Table 1. This is consistent
with the Marcus picture: if the two FEC are identical parabolas,
there is a unique l parameter dening the curvature and the two
free energy differences. However, in the Cl0 / Cl� ET reaction
the reorganization free energy of state 0 is much larger than in
the other ET reaction. This is a consequence of the larger
curvature of the second state. The reorganization free energy of
Cl� is signicantly reduced compared to those listed in Table 1,
another consequence of the smaller curvature of state 0.

This difference between the reorganization free energies is
a further indication that the 0/ �1 ET does not follow Marcus
theory.

Another way to check if the ET reaction follows the Marcus
picture is to consider the evolution of the average vertical energy
gap hDEih with the parameter h. As mentioned earlier, such
Table 1 Reorganization free energies computed via eqn (23) using
data below 90 kJ mol�1 from Fig. 2. For MD, we recomputed the
reorganization free energy using points extracted from Fig. 4 of ref. 19.
In parenthesis we report the original data of that publication

Species lMDFT (kJ mol�1) lMD (kJ mol�1)

Cl0 233 153 (132)
Cl� 297 263 (252)
Cl+ 216 165 (177)

This journal is © The Royal Society of Chemistry 2019
a curve is linear in Marcus theory. The evolution of the average
vertical energy gap with h is presented in Fig. 3. For the neutral
to positive charge transfer, the vertical energy gap does vary
linearly with the coupling parameter h. In contrast, for the
neutral to anion ET a non-linear variation is observed indicating
a deviation from Marcus theory.

Thus, the curvatures of the FEC, the values of the reorgani-
zation free energies and the variation of hDEih with respect to h

consistently indicate a different behavior for the two ET reac-
tions. This has already been noticed by Hartnig et al., who
rationalized this observation by arguing that while the distance
between the solute and the oxygen of the rst solvation layer
remains similar for all oxidation numbers, the hydrogen is
much closer to the solute in the case of the anion. This causes
a “shrinking” of the rst solvation shell in the case of Cl� which
differs considerably from the solvation shell of the neutral and
positive solutes. Such a difference in the solvation shells of the
two species cannot be properly captured by linear response
assumed in Marcus theory.

Since MDFT gives access to the solvent density, we can also
investigate the solvation structure. We compute the solvent
charge density

rcðrÞ ¼
ð ð

r
�
r
0
;U

�
s
�
r� r

0
;U

�
dr0dU; (24)

where s(r,U) is the charge distribution at point r of a single
solvent molecule located at the origin, with the orientation U
Fig. 3 Average value of the vertical energy gap versus the coupling
parameter h. The Cl0/ Cl� ET reaction is shown in solid black, the Cl0

/Cl+ in dashed red. The dotted curve is a linear fit to the first values of
vertical energy gap in the case of the ET reaction involving the anion, it
is shown as a guide to the eye.
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sðr;UÞ ¼
X
i

qidðr� riUÞ (25)

where the sum runs over the solvent sites, d is the Dirac
distribution, riU is the position of site i and qi its charge. The
spherically averaged one-dimensional solvent charge densities
are reported in Fig. 4 for the 3 oxidation numbers as a function
of the distance to the solute. For all solutes, we observe a zone of
zero charge density for small values of r, i.e. close to the solute,
corresponding to the absence of water molecules. Then, alter-
nating regions of positive and negative charge point to a pref-
erential orientation of the solvent in the solvation shells.
Finally, zero charge density is reached far from the solute at
large r when a bulk behavior without preferential orientation is
recovered.

If we rst consider the neutral and positive solutes, we
observe in Fig. 4 that the preferential orientation of water in the
rst solvation shell reverses between the neutral solute and the
cation. Around the cation, the water molecules in the rst
solvation shell have their oxygen pointing toward the solute. For
the neutral species the hydrogen of water molecules are the
closest to the solute. However the positions of the rst extrema
are similar, 5.9 Å for Cl0, 6.3 Å for Cl+. This indicates that the
two solvation shells essentially differ by the orientation of the
water molecules. On the contrary, solvent molecules are much
closer to the anion, where the rst maximum originating from
hydrogen is located at 4.3 Å. There is a shrinking of the rst
solvation shell for the anion, in agreement with Hartnig et al.19

It is conrmed by the comparison of the partial molar volume
computed thanks to the equilibrium densities, namely 60 Å3 for
Cl0 and Cl+ and 6 Å3 for Cl�. This difference in the solvation
shell explains why Marcus theory fails to describe this ET
reaction.

2.2 Solid/solvent interface

We now turn to the study of the inuence of a solid/solvent
interface on the ET reaction. There are only few such studies
available due to the computational cost of MD which is to date
Fig. 4 Spherically averaged solvent charge density as a function of the
distance to the solute. The curve corresponding to the neutral solute is
in solid black, the one of the cation is in dashed red and the one of the
anion in dotted blue.

2136 | Chem. Sci., 2019, 10, 2130–2143
the only simulation tool used in this context. It is worth
mentioning the investigations by Remsing et al.62 who used MD
and by Li et al.18 based on coarse grained MD. In the former,
ions are highly conned between two MnO2 sheets and
connement is kept constant throughout the study. In the ESI
of Li's paper, the authors report the evolution of the reorgani-
zation free energy when the ion moves towards graphite sheets.
They used umbrella sampling to constrain the position of the
redox active site in the direction z perpendicular to the surface
but no constraint was applied on the lateral coordinates. The
dependence of the reorganization free-energy on the distance
between solute and electrode was subsequently obtained
through binning in the z-direction. In this set-up the position of
the solute is not frozen but may uctuate around value of z
under consideration, taking all possible values in x and y. The
reported reorganization free energy is hence a statistical
average.

The computational efficiency of MDFT allows a systematic
study of the evolution of the reorganization free energy when
the solute carrying the charge approaches an atomistically
resolved wall. Because the solute is kept xed in the MDFT
calculation it is not necessary to resort to biasing techniques to
constrain its position and no uctuations blur the reorganiza-
tion free energies. We consider the Cl0 / Cl+ ET with the
parameters introduced in Section 2.1 and study the inuence of
the proximity of a wall made up of 400 atoms arranged as the
(100) surface of a fcc crystal. The size of the wall is 40 � 40 Å2

and the distance between neighbouring atoms is 2 Å. Each atom
is modeled by a Lennard-Jones site with parameters s ¼ 3.37 Å
and 3 ¼ 0.23 kJ mol�1 similar to that used to model graphite
atoms in previous studies.63 To study separately the effect of the
solvent on the ET we remove direct interactions between the
solute and the wall. We used a 40 � 40 � 40 Å3 cubic box with 3
grid points per Å and 196 discrete orientations per grid point.

We move the solute along the z axis perpendicular to the
surface as illustrated in Fig. 5, with 175 calculations from z ¼
2.5 Å to z ¼ 20 Å in steps of dz ¼ 0.1 Å. The reorganization free
energies of the Cl0 / Cl+ ET computed using eqn (18) are dis-
played in panel a) of Fig. 6 in solid black for the charged solute
and in dashed red for the neutral solute. The two curves are
similar and differ by less than 3 kJ mol�1. This is a small
difference consistent with the result of Li et al.18 who reported
that the ET of an iron atom dissolved in an ionic liquid next to
a polarizable planar electrode follows Marcus' scenario.

We observe a decrease in the reorganization free energy as
the solute approaches the plane. We can rationalize this
observation by realizing that the wall truncates the solvation
shell around the solute. This effect is illustrated in Fig. 7 which
shows slices of the density prole around the neutral (le
column) and charged (right column) solutes for different values
of z. As the solute approaches the wall, there are fewer solvent
molecules to rearrange when passing from one equilibrium
solvation state to the other. This reduces the cost of the reor-
ganization and explains the decrease of the free energy curves
for small z. In the limit of total connement the reorganization
free energy would vanish. The upper panel of Fig. 6 shows that
reorganization free energy of the charged solute exhibits
This journal is © The Royal Society of Chemistry 2019
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Fig. 5 Snapshot of system under consideration: the flat wall is shown
in grey, the solute in blue. The solute is moved along the z direction
perpendicular to the wall.

Fig. 6 (a) Variation of the reorganization free energy for the Cl0 / Cl+

ET with the distance between the solute and the wall. The curve
corresponding to the neutral state is displayed in dashed red, the one
for the charged solute in solid black. The difference between l1 and l0
is shown in the inset. (b) Zoomon the two components F1[r0] and F1[r1]
of l1 for the Cl0 / Cl+ ET, the two quantities have been normalized by
their bulk value to assist visualization. (c) Same as plot (a) for the Cl0 /
Cl� ET.
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a maximum around 5.5 Å. We rationalize this effect by
decomposing l1 into its components F1[r1] and F1[r0] in the
lower panel of Fig. 6. While F1[r0] exhibits a marked maximum
around 5 Å, F1[r1] has a maximum around 3.4 Å which is atter.
Their difference consequently gives rise to the oscillatory
behavior of l1 around 5.5 Å.

The rst solvation shell of the neutral solute at 5.5 Å is in
contact with the rst uid layer adsorbed on the wall. When the
solute gets closer, the solvation shell is reduced. This reduces
the unfavorable electrostatic term. It also decreases the cavity
term which measures the cost of expelling the solvent from the
region around the solute. This explains the maximum of F1[r0].
Considering the density for the charged solute, the “contact”
between the solvation shell of the solute and the uid layer
adsorbed on the wall is also found around 5.5 Å. However, for
the cation the truncation of the solvation shell decreases both
the favorable electrostatic term and the unfavorable cavity term.
This could explain why F1[r1] is rather at compared to F0[r1]
and why the position of the maximum is shied to the le. For z
> 10 Å, the reorganization free energies reach a plateau corre-
sponding to the bulk value of Table 2.

The inset of panel (a) shows the difference between l1 and l0

for the for the Cl0 / Cl+ ET, it presents a maximum at 5.5 Å, i.e.
This journal is © The Royal Society of Chemistry 2019
where the reorganization free energies also have a maximum.
The difference never exceeds 6 kJ mol�1, so that Marcus'
hypothesis is satised at all distances. This is clearly not the
case for the Cl0 / Cl� ET. Indeed, far from the wall l0 and l1

differ by 34 kJ mol�1 as reported in Table 2. However when the
solute approaches the wall, this difference is reduced, indi-
cating a decrease of the deviation the from linear response
approximation. Again, this can be rationalized by the truncation
of the solvation shell.
Chem. Sci., 2019, 10, 2130–2143 | 2137
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Fig. 7 Slices of the solvent density for various values of the distance z
from the wall. The neutral solute data are shown is in the left-hand
column, while the cation data are shown in the right-hand column.

Fig. 8 (a) Free energy Cl0 (full curve) and Cl+ (dashed curve) for
various values of z. The black curves correspond to z ¼ 3.0 Å, the red
curves to z ¼ 5.5 Å and the blue curves to z¼ 6.7 Å. Panel (b) is a zoom
around hDEih ¼ 0.0 kJ mol�1, represented by a dotted lined. The (c)
and (d) panels show zooms around the minimum of the atom and
cation free energies respectively.
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To illustrate the numerical efficiency of the method, we also
computed the FEC for various positions: z ¼ 3.0 Å is in the
region where the reorganization free energy decreases, z ¼ 5.5 Å
2138 | Chem. Sci., 2019, 10, 2130–2143 This journal is © The Royal Society of Chemistry 2019
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Fig. 10 Schematic representation of the thermodynamic cycle used
to recover eqn (40). 0 corresponds to the state under consideration,
while h corresponds to a fictitious solute which interacts with the
solvent via an external potential Vh. The solvation states in equilibrium
with states 0 and h are respectively denoted by S0 and Sh. To compute
the FEC we need to compute DFS0/Sh

0 , the free energy cost to modify
the solvent configuration around state 0 from S0 to Sh.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 1
0:

17
:1

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and z ¼ 6.7 Å correspond to the rst maximum and subsequent
local minimum in Fig. 6. The FEC for the atom and cation are
presented in Fig. 8. Each pair of curves cross at a point of
vanishing vertical energy gap, as expected. When the solute gets
close to the wall the minimum of the cation FEC is shied
towards positive values, which is consistent with the above-
mentioned truncation of the solvation shell. Finally, the
parabolas corresponding to z ¼ 3.0 Å are wider than those for
higher values of z, which is consistent with the smaller value of l
close to the wall reported in Fig. 6.

One of the advantages of MDFT is the possibility to split the
free energy into entropic, solute–solvent and solvent–solvent
contributions according to eqn (2):

l0 ¼ ðFid½r1� � Fid½r0�Þ þ ðFexc½r1� � Fexc½r0�Þ

þ
ð
V0ðr;UÞðr1 � r0Þðr;UÞdrdU (26)

l1 ¼ ðFid½r0� � Fid½r1�Þ þ ðFexc½r0� � Fexc½r1�Þ

þ
ð
V1ðr;UÞðr0 � r1Þðr;UÞdrdU (27)
Fig. 9 Reorganization free energies and their different contributions
for Cl(0) (a) and Cl+ (b) as a function of the distance from the wall
computed as computed within MDFT. The reorganization free energy
is in black, the ideal term is in green, the excess term in blue and the
external term in red.

This journal is © The Royal Society of Chemistry 2019
Fig. 9 shows the various contributions to the reorganization
free energy for the neutral and the charged solutes. To our
knowledge, this is the rst time that such a decomposition of
the reorganization free energy is reported.

A rst conclusion emerging from eqn (3), (6), (26) and (27) is
that the ideal and excess contributions are exactly opposite for
the neutral and the charged solutes. For both solutes, the ideal
term due to the entropic contribution remains quite small and
hardly varies with the distance from the electrode.

For the neutral solute the external contribution is small due
to the absence of electrostatic interactions and more than 80%
of the reorganization free energy is due to the excess term, i.e.
the solvent–solvent contribution. In contrast, for the charged
solute the main contribution is due to the electrostatic inter-
action between the solute and the solvent, which is roughly
twice in absolute value than the solvent–solvent term. Even if we
already know from the previous subsection that the Cl0 / Cl+

transfer does satisfy the linear response approximation, i.e. l0¼
l1, it is fascinating to observe the compensation of the three
contributing terms resulting in this equality. When the solutes
approaches the wall, the linear response approximation gets
even better as evidenced in Fig. 6 where the curves of l0 and l1

converge. This study also illustrates the interest of MDFT not
only to compute the relevant free energies, but also to under-
stand the various contributions to the free energy.
3 Conclusion

Marcus theory plays a crucial role in the study of ET reactions.
This explains why its validity has been investigated extensively
using molecular dynamics simulation. However, MD remains
computationally very demanding, and has so far been essen-
tially limited to simple systems. Molecular density functional
theory has been proposed as an alternative to study solvation
because it is computationally much faster, while retaining
a molecular description of the solvent. In the present paper, we
develop tools to use MDFT to study electron transfer reactions
in water using MDFT. We have rst derived how to compute the
relevant reaction coordinate: the average vertical energy gap. We
Chem. Sci., 2019, 10, 2130–2143 | 2139

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc04512g


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 1
0:

17
:1

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
have also shown how to compute the free energy curves and the
reorganization free energies.

We examined the validity of the approach by studying
simple solutes, namely the ET reactions between Cl0, Cl� and
Cl+ modeled by a single Lennard Jones site and a point charge.
We found a good agreement between the results obtained by
MDFT and corresponding MD simulations. We conrmed the
effect reported by Hartnig et al., that the ET between neutral
and positive solutes is well described by Marcus theory, but
not in the case of the transfer between the neutral atom and
the anion.

We nally illustrated the potentiality of the method by
tackling a more challenging system. We investigated the effect
of the presence of a solid/solvent interface on the reorganiza-
tion free energy, using a model system composed of an atom-
istically resolved neutral wall which is approached by the solute
along the axis perpendicular to the wall. We computed the
reorganization free energy for both neutral and charged states
and found that they exhibit similar features. The reorganization
free energy remains constant when the solute is far from the
wall. As it approaches the wall, it exhibits oscillations before
decreasing. We rationalized this behavior by considering the
evolution of the solvation shell: close to the wall, there is less
solvent to reorganize in the rst solvation shell, thereby
reducing the free energy cost.

This work is a rst step towards the study of ET reaction in
water and at electrode/water interfaces based on MDFT. The
solvent effect sometimes called outer-sphere contribution is
not the only mechanism playing a role in the ET reaction. The
rearrangement of the electron cloud of the solute entering the
so-called inner-sphere contribution may also play an impor-
tant role. This effect is well taken into account in QM/MM
calculation. There are mainly two approaches to deal with
the MM part in such calculations. The rst one is to use MD,
which takes into account the molecular nature of the solvent,
but remains computationally costly. The second one is to use
PCM-like models in which the solvent is described as
a dielectric continuum. This approach neglects the molecular
nature of solvent. As a consequence, it always assumes the
validity of the linear response approximation and cannot
properly describe systems violating Marcus theory. The
strength of this method is its numerical efficiency: calcula-
tions are almost instantaneous. MDFT is thus a promising
alternative to those two approaches to account for solvation in
QM calculations: even if it is computationally more
demanding than PCM its computational cost remains negli-
gible compared to the cost of the QM calculation while its
accuracy is comparable to MD. To that end, we are currently
working on coupling MDFT with electronic structure calcula-
tions such as electronic density functional theory. We also
wish to develop a framework allowing for the description of
the polarizability of the wall to describe electrodes at xed
electrode potential and study electrochemical reactions. These
two objective are currently under investigation, in a attempt to
develop a computationally efficient MDFT toolbox to tackle ET
reactions.
2140 | Chem. Sci., 2019, 10, 2130–2143
A Proof that there is a one-to-one
mapping between rh and hDEih
A straightforward consequence of eqn (14) is that the average
vertical energy gap is uniquely dened by the density eld.
Following Mermin and Evans,34,35 we proceed by reductio ad
absurdum to show that the average vertical energy gap uniquely
determines the external potential and thus the density. Let us
assume there exist two potentials Vh and Vh0 with h s h0 giving
rise to the same gap i.e. hDEih0 ¼ hDEih. From the expression of
the probability distribution in eqn (10) and as stated in
Appendix 1 of Evans's article,35 Vh s Vh0 implies fh s fh0. From
the variational principle of the grand potential we have

Qh ¼Tr
	
fh
�
Hh � mN þ kBT ln fh

�

\Tr

h
fh0
�
Hh � mN þ kBT ln fh0

�i

\Qh
0 þ �

h� h
0� ð ð

rh0 ðr;UÞ½V1ðr;UÞ � V0ðr;UÞ�drdU:

(28)

By inverting the primed and unprimed quantities we get

Qh
0\Qh þ

�
h
0 � h

� ð ð
rhðr;UÞ½V1ðr;UÞ � V0ðr;UÞ�drdU: (29)

If we now sum eqn (28) and (29) we arrive at

Qh
0 þQh\Qh

0 þQh þ
�
h� h

0� ð ð	
rh0 ðr;UÞ � rhðr;UÞ



� ½V1ðr;UÞ � V0ðr;UÞ�drdU: (30)

The integral on the r.h.s of eqn (30) vanishes as a conse-
quence of eqn (14) and the assumption that hDEih0 ¼ hDEih
leading to a contradiction. Consequently, for this family of
external potential Vh there is a unique hDEih which corresponds
to a given probability distribution fh. We hence have a one to
one mapping between all the following quantities

h 4 Vh 4 fh 4 rh 4 hDEih (31)

where 4 denotes a one-to-one mapping. The bijections
between the three quantities V, f and r are always true in the
cDFT formalism35while the one involving h and Vh is true within
the class of potentials we have chosen.

Because there is a bijection between hDEih and a probability
distribution, then the free energy of any state uniquely depends
on hDEih. To express the free energy as a function of hDEih, it is
sufficient to take advantage of the one to one mapping between
rh and hDEih, to obtain the expression of eqn (15).

It is worth noticing that we can actually dene F0(hDEih) as
the Legendre transform of Qh with respect to h, as hDEih is the
conjugate variable of h:

dQh

dh
¼ dð�kBT ln XhÞ

dh
¼ Tr

	ðV1 � V0Þe�bðH0þhðV1�V0Þ�mNÞ



Tr½e�bðH0þhðV1�V0Þ�mNÞ�
¼ hV1 � V0ih ¼ hDEih: (32)
This journal is © The Royal Society of Chemistry 2019
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Moreover,

d2
Qh

dh2
¼ �bTr

	ðV1 � V0Þ2e�bðH0þhðV1�V0Þ�mNÞ



Tr½e�bðH0þhðV1�V0Þ�mNÞ�

þ b
Tr

	ðV1 � V0Þe�bðH0þhðV1�V0Þ�mNÞ

2

Tr½e�bðH0þhðV1�V0Þ�mNÞ�2

¼ �b
�D
ðV1 � V0Þ2

E
h
�
�
hV1 � V0ih

�2
�
: (33)

Therefore the second derivative of Qh is negative, so that Qh

is convex and its Legendre transform exists. We can hence
dene the Legendre transform of Fh by

F*
h

�hDEih� ¼ Fh

	
rh

� hhDEih

¼ Fh

	
rh

�

ð ð
rhðr;UÞðVhðr;UÞ � V0ðr;UÞÞdrdU

¼ Fid

	
rh

þ Fexc

	
rh

þ

ð ð
rhðr;UÞV0ðr;UÞdrdU

¼ F0

	
rh



(34)

where we split Fh into the sum of its three components as in eqn
(2) and use the expression of Vh in eqn (13). While the linear
parametrization of the external potential is the only one allow-
ing to dene F0(hDEih) as a Legendre transform, any parame-
trization leads to the same expression for F0(hDEih) and to the
same FEC as demonstrated in Appendix B.
B Two different parameterizations of
Vh lead to the same F(hDEih)
Let us consider the general parametrization for the interpo-
lating potential,

Vs
h ¼ V0 + s(h)(V1 � V0) (35)

where s is a strictly increasing continuous function with s(0) ¼
0 and s(1) ¼ 1. We rst show that any parametrization veries
the properties demonstrated in Appendix A. For any function s,
let g,d ˛ [0,1] such as hDEisg ¼ hDEisd. Using an argument iden-
tical to eqn (28) we obtain

QsðgÞ\QsðdÞ þ ½sðgÞ � sðdÞ�
ð ð

rsgðr;UÞ½V1ðr;UÞ � V0ðr;UÞ�drdU:

(36)

Again the d and g indexes can be interchanged to show a one-
to-one mapping between a value of the coupling parameter, the
external potential, the equilibrium probability distribution and
the equilibrium density. However this mapping now depends
on the chosen parametrization s,

h 

! 

s Vh
s 

! 

s f sh 

! 

s rsh 

! 

s hDEish: (37)

The mapping between hDEish and rsh leads to:
This journal is © The Royal Society of Chemistry 2019
F0(hDEish) ¼ F0[r
s
h]. (38)

This relation does not depend on the choice of the param-
etrization s, but the values of hDEish and F0[r

s
h] do. We now show

that any parametrization yields the same FEC.
Let us consider a strictly increasing continuous function

with s(0) ¼ 0 and s(1) ¼ 1. The intermediate value theorem
guarantees that s takes all the value between 0 and 1, once only.
This is true for all s and in particular for the identity function
corresponding to the linear parametrization. This last property
implies that for all s(h) ˛ [0,1], there exists a unique a ˛ [0,1]
such that

s(h) ¼ a

V s
h ¼ Va

Since the potential uniquely denes the functional this implies
the same equality between all the properties in eqn (37), i.e.

f sh ¼ fa

r s
h ¼ ra

hDEish ¼ hDEia

F0[hDEish] ¼ F0[hDEia]

This completes the proof that any parametrization of the
intermediate potential leads to the same FEC.
C Thermodynamic cycle proposed by
Chong and Hirata

Chong and Hirata proposed the thermodynamic cycle displayed
in Fig. 10 where 0 and h are solutes corresponding to external
potentials V0 and Vh in eqn (13).55 The objective is to nd the
free energy cost to modify the equilibrium solvent conguration
around 0 into a solvent conguration which would be in equi-
librium with h, a quantity denoted by DFS0/Sh

0 . Starting from
0 in vacuum, it is transformed into h spending a workWu

h . Then,
h is solvated in its equilibrium solvent conguration Sh. This
step corresponds to the solvation free energy DFh. The ctitious
solute is transformed into 0 while the solvent conguration is
frozen within Sh. The free energy cost of this step DFSh

h/0 can be
split into the sum of two terms. The rst one is the reversible
work to transform the solute in vacuum: it is the opposite of
Wu

h . The second term is the work Wv
h to transform the solute

against the eld created by the solvent conguration Sh which
can be expressed using our previous notation as:

Wv
h ¼ hV0 � Vhih. (39)

The nal quantity required to close the cycle is the free
energy cost to solvate 0 into its equilibrium solvent
Chem. Sci., 2019, 10, 2130–2143 | 2141
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conguration. This corresponds to the solvation free energy of
state 0, DF0. By closing the cycle, Chong and Hirata obtain the
following formula:

DF
S0/Sh
0 ¼ DFh � DF0 þ

�
V0 � Vh

�
h
: (40)

If we replace the solvation free energy by the functional of the
present work, eqn (40) becomes

DF
S0/Sh
0 ¼ Fh

	
rh

� F0½r0� þ

�
V0 � Vh

�
h
¼ Fh

	
rh



�F0½r0� þ
ð ð

rhðr;UÞðV0ðr;UÞ

�Vhðr;UÞÞdrdU ¼ F0

	
rh

� F0½r0� (41)

which is equivalent to our previous nding.
D Modification of Hartnig and Koper's
data to plot Fig. 2

In their paper, Hartnig and Koper represented their free energy
curves as functions of a generalized order parameter dened as
the electrostatic interaction energy between a negative point
charge at the site of the solute and the solvent molecules.19

Because they only considered solutes with a single Lennard-
Jones site which is kept unchanged during the ET the vertical
energy gap is equal to their order parameter for an anion and to
its opposite for a cation.

They do not mention the use of any nite size effect correc-
tions while we use that proposed by Hünenberger et al.57,58

which applies to our case but also to MD simulations with
Ewald electrostatics.57 To convert their order parameter in
vertical energy gap we thus (i) multiply it by�1 in the case of the
cation, (ii) apply the above mentioned electrostatic corrections
with the box length parameter of L ¼ 24.83 Å reported in their
paper.

Finally, Hartnig and Koper shied all the FEC such that the
minimum of each curve is equal to 0. As a consequence their
curves do not cross for hDEih ¼ 0, as should be the case by
denition. Because they did not report the values of the solva-
tion free energy, or equivalently the values of the shi applied to
each curve, we decided to freely shi vertically the curves cor-
responding to the atom in order to have the minimum of the
curves agree with the value predicted by MDFT. The MD curve
for the ion has been subsequently shied vertically to fulll the
zero gap condition.
Conflicts of interest

There are no conicts to declare.
Acknowledgements

The authors acknowledge Luc Belloni for his precious inputs to
MDFT. The authors are also grateful to Jean-Pierre Hansen for
his careful reading of the manuscript. B. R. acknowledges
nancial support from the French Agence Nationale de la
2142 | Chem. Sci., 2019, 10, 2130–2143
Recherche (ANR) under Grant No. ANR-15-CE09-0013 and from
the Ville de Paris (Emergences, project Blue Energy). This
project has received funding from the European Research
Council (ERC) under the European Union's Horizon 2020
research and innovation programme (grant agreement no.
771294). This work was supported by the Energy oriented Centre
of Excellence (EoCoE), Grant Agreement No. 676629, funded
within the Horizon 2020 framework of the European Union.
Notes and references
† Note that this is true for any Vh ¼ V0 + s(h) (V1 � V0), as long as s is a strictly
increasing continuous function with s(0) ¼ 0 and s(1) ¼ 1.

1 R. A. Marcus, J. Electroanal. Chem., 1997, 438, 251–259.
2 R. A. Marcus, J. Chem. Phys., 1956, 24, 979–989.
3 R. A. Marcus, J. Chem. Phys., 1956, 24, 966–978.
4 R. A. Marcus, J. Phys. Chem., 1990, 94, 1050–1055.
5 J. R. Miller, L. T. Calcaterra and G. L. Closs, J. Am. Chem. Soc.,
1984, 106, 3047–3049.

6 J. K. Hwang and A. Warshel, J. Am. Chem. Soc., 1987, 109,
715–720.

7 M. Tachiya, J. Phys. Chem., 1989, 93, 7050–7052.
8 M. Tachiya, J. Phys. Chem., 1993, 97, 5911–5916.
9 R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein
and R. W. Impey, J. Chem. Phys., 1988, 89, 3248–3257.

10 J. Blumberger and M. Sprik, Theor. Chem. Acc., 2006, 115,
113–126.

11 T. Simonson, Proc. Natl. Acad. Sci., 2002, 99, 6544–6549.
12 F. Sterpone, M. Ceccarelli and M. Marchi, J. Phys. Chem. B,

2003, 107, 11208–11215.
13 A. d. l. Lande, F. Cailliez and D. R. Salahub, in Simulating

Enzyme Reactivity, 2016, pp. 89–149.
14 T. Kakitani and N. Mataga, J. Phys. Chem., 1985, 89, 8–10.
15 T. Kakitani and N. Mataga, J. Phys. Chem., 1986, 90, 993–995.
16 T. Kakitani and N. Mataga, J. Phys. Chem., 1987, 91, 6277–

6285.
17 E. A. Carter and J. T. Hynes, J. Phys. Chem., 1989, 93, 2184–

2187.
18 Z. Li, G. Jeanmairet, T. Méndez-Morales, M. Burbano,

M. Haefele and M. Salanne, J. Phys. Chem. Lett., 2017,
1925–1931.

19 C. Hartnig and M. T. M. Koper, J. Chem. Phys., 2001, 115,
8540–8546.

20 J. Blumberger, Phys. Chem. Chem. Phys., 2008, 10, 5651–5667.
21 R. Vuilleumier, K. A. Tay, G. Jeanmairet, D. Borgis and

A. Boutin, J. Am. Chem. Soc., 2012, 134, 2067–2074.
22 D. V. Matyushov and G. A. Voth, J. Chem. Phys., 2000, 113,

5413–5424.
23 D. W. Small, D. V. Matyushov and G. A. Voth, J. Am. Chem.

Soc., 2003, 125, 7470–7478.
24 G. Jeanmairet, D. Borgis, A. Boutin and R. Vuilleumier, in

CHAPTER 18: Extension of Marcus Rate Theory to Electron
Transfer Reactions with Large Solvation Changes, 2013.

25 G. M. Torrie and J. P. Valleau, J. Comput. Phys., 1977, 23, 187–
199.
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc04512g


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 1
0:

17
:1

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
26 A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett., 1989,
63, 1195–1198.

27 M. R. Shirts and J. D. Chodera, J. Chem. Phys., 2008, 129,
124105.

28 Z. Tan, E. Gallicchio, M. Lapelosa and R. M. Levy, J. Chem.
Phys., 2012, 136, 144102.

29 P. H. Fries and G. N. Patey, J. Chem. Phys., 1985, 82, 429–440.
30 D. Chandler and H. C. Andersen, J. Chem. Phys., 1972, 57,

1930–1937.
31 F. Hirata and P. J. Rossky, Chem. Phys. Lett., 1981, 83, 329–

334.
32 A. Kovalenko and F. Hirata, Chem. Phys. Lett., 1998, 290, 237–

244.
33 T. Imai, A. Kovalenko and F. Hirata, Mol. Simul., 2006, 32,

817–824.
34 N. D. Mermin, Phys. Rev., 1965, 137, A1441–A1443.
35 R. Evans, Adv. Phys., 1979, 28, 143.
36 R. Ramirez, R. Gebauer, M. Mareschal and D. Borgis, Phys.

Rev. E, 2002, 66, 031206.
37 R. Ramirez and D. Borgis, J. Phys. Chem. B, 2005, 109, 6754–

6763.
38 M. Levesque, V. Marry, B. Rotenberg, G. Jeanmairet,

R. Vuilleumier and D. Borgis, J. Chem. Phys., 2012, 137,
224107.

39 D. Borgis, L. Gendre and R. Ramirez, J. Phys. Chem. B, 2012,
116, 2504–2512.

40 R. Ramirez, M. Mareschal and D. Borgis, Chem. Phys., 2005,
319, 261–272.

41 G. Jeanmairet, M. Levesque, R. Vuilleumier and D. Borgis, J.
Phys. Chem. Lett., 2013, 4, 619–624.

42 G. Jeanmairet, N. Levy, M. Levesque and D. Borgis, J. Phys.:
Condens. Matter, 2016, 28, 244005.
This journal is © The Royal Society of Chemistry 2019
43 L. Ding, M. Levesque, D. Borgis and L. Belloni, J. Chem. Phys.,
2017, 147, 094107.

44 S. Luukkonen, L. Belloni, D. Borgis and M. Levesque, 2018,
arXiv:1806.03118 [physics].

45 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864.
46 J.-P. Hansen and I. McDonald, Theory of Simple Liquids,

Academic Press, 3rd edn, 2006.
47 M. Frigo and S. Johnson, Proc. IEEE, 2005, 93, 216–231.
48 L. Blum and A. J. Torruella, J. Chem. Phys., 1972, 56, 303–310.
49 L. Blum, J. Chem. Phys., 1972, 57, 1862–1869.
50 L. Blum, J. Chem. Phys., 1973, 58, 3295.
51 M. Levesque, R. Vuilleumier and D. Borgis, J. Chem. Phys.,

2012, 137, 034115.
52 G. Jeanmairet, M. Levesque and D. Borgis, J. Chem. Phys.,

2013, 139, 154101.
53 G. Jeanmairet, M. Levesque, V. Sergiievskyi and D. Borgis, J.

Chem. Phys., 2015, 142, 154112.
54 R. A. Marcus, Discuss. Faraday Soc., 1960, 29, 21–31.
55 S.-H. Chong and F. Hirata, Mol. Simul., 1996, 16, 3–17.
56 H. Sato, Y. Kobori, S. Tero-Kubota and F. Hirata, J. Chem.

Phys., 2003, 119, 2753–2760.
57 M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys.,

2006, 124, 124106.
58 M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys.,

2006, 124, 224501.
59 J. Puibasset and L. Belloni, J. Chem. Phys., 2012, 136, 154503.
60 L. Belloni and I. Chikina, Mol. Phys., 2014, 112, 1246–1256.
61 L. Belloni, J. Chem. Phys., 2017, 147, 164121.
62 R. C. Remsing, I. G. McKendry, D. R. Strongin, M. L. Klein

and M. J. Zdilla, J. Phys. Chem. Lett., 2015, 6, 4804–4808.
63 M. W. Cole and J. R. Klein, Surf. Sci., 1983, 124, 547–554.
Chem. Sci., 2019, 10, 2130–2143 | 2143

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc04512g

	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions

	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions

	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions
	A molecular density functional theory approach to electron transfer reactions


