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triazole-peptidomimetics: potent
and stable blockers of a human acetylcholine
receptor†‡
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The potency and selectivity of conotoxin peptides for neuropathic receptors has made them attractive lead

compounds in the development of new therapeutics. Specifically, a-conotoxin GI has been shown to be an

unparalleled antagonist of the nicotinic acetylcholine receptor (nAChR). However, as with other peptidic

leads, poor protease resistance and the redox instability of the conotoxin scaffold limit bioactivity. To

counter this, we have employed the underutilised 1,5-disubstituted 1,2,3-triazole to act as a structural

surrogate of the native disulfide bonds. Using an efficient, on-resin ruthenium azide-alkyne cycloaddition

(RuAAC), each disulfide bond was replaced in turn and the biological activities quantified. One of the

mimetic isomers exhibited a comparable activity to the native toxin, while the other showed no

biological effect. The active mimetic isomer 11 was an order of magnitude more stable in plasma than

the native GI. The NMR solution structure of the mimetic overlays extremely well with the structure for

the native GI demonstrating that the triazole bridge is an exceptional surrogate for the disulfide bridge.

Development of this potent and stable mimetic of GI leads us to believe that this strategy will yield many

other new conotoxin-inspired probes and therapeutics.
Introduction

The conotoxin peptides have attracted a substantial amount of
interest over recent years due to their properties as selective
chemical probes that target ion channels and receptors.1 Con-
otoxin peptides are also potential therapeutic leads,2 and
several have found clinical applications in the treatment of
neuropathic pain, hypertension and type 2 diabetes.3 a-Con-
otoxin GI (GI) was originally isolated from the venom of the sh-
hunting cone snail Conus geographus.4,5 This venom has been
reported to have caused several human fatalities,6–8 and can
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pose a risk to human health.9 a-GI is a 13-residue peptide that
acts as a competitive antagonist for the muscle-type nicotinic
acetylcholine receptor (nAChR) with excellent selectivity for a/d
receptor subunit binding over a/g. GI is therefore used exten-
sively as a pharmacological tool for receptor characterisation.10

Neuromuscular blocking agents mainly antagonise nAChRs
at the skeletal neuromuscular junction.11 nAChRs, however, are
also found in the autonomic nervous system and the action of
muscle relaxants on these synapses are responsible for their
major negative side-effects. Administration of GI, however, has
no observed effect on blood pressure, heart rate, vagal stimu-
lation or ganglionic transmission.12 Furthermore, GI's neuro-
muscular blocking effect is both fast and reversible through the
administration of acetylcholinesterase inhibitors (AChEI).12

These data illustrate that GI's activity is very specic for recep-
tors within the neuromuscular junction and is competitively
reversible. Therefore, GI has great potential as a lead compound
for the development of a new class of muscle relaxant. However,
as with other peptides, conotoxins suffer from a number of
unfavourable physicochemical properties that have thus far
limited their potential as therapeutics. These include poor
protease stability in some instances (resulting in short half-lives
in plasma), immunogenicity and redox reactivity leading to
disulde scrambling and subsequent loss of activity.13 The
general eld of peptidomimetics has arisen to address such
issues with peptides and provide bioavailable compounds for
Chem. Sci., 2019, 10, 1671–1676 | 1671
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Scheme 1 Oxidative folding of a-conotoxin GI produces a complex
mixture of isomers with different biological activities. The potential for
dynamic interconversion between these different states highlights the
need for easily prepared, redox stable analogues.
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drug discovery. Such mimetics generally incorporate structural
surrogates of problematic chemical functionalities that over-
come unfavourable physicochemical properties, yet maintain
binding affinity for the target receptor.14

Most conotoxins, including all a-conotoxins, incorporate
a disulde bond network that constrains the polypeptide into
a bioactive conformation. This functionality presents a major
synthetic challenge to produce the specic, bioactive disulde
isomer. Disulde bond reduction by glutathione and then
protease-mediated degradation generally leads to poor blood
plasma stability.15 Analogues of MrIA conotoxin have been
prepared incorporating a 1,4-disubstituted 1,2,3-triazole that
retained biological activity.16 However, we have shown previ-
ously that a 1,5-disubstituted 1,2,3-triazole bridge more effec-
tively mimics the orientation and geometry of a disulde
bond.17 The incorporation of the 1,5-disubstituted functionality
can be easily achieved on solid support using commercially
available amino acid building blocks.

In this work we have addressed this synthetic challenge by
applying a 1,5-triazole bridge as a disulde bond surrogate to GI
to produce the stable and highly potent analogue 11. We report
the bioactivity of this and related molecules against a human
nAChR, expressed in HEK cells, for the rst time. Structural
determination of GI peptidomimetic 11 using NMR spectros-
copy was used to determine the accuracy of the triazole bridge
as a surrogate of the disulde bridge and whether the structure
of the pharmacophore is retained. Plasma stability was deter-
mined for the active GI mimetic 11 which, together with the
structural requirements for bioactivity of the a-conotoxin GI will
underpin future drug development.
Results and discussion
Synthesis of 1,5-disubstituted triazole mimetic a-GI
conotoxins

The native linear GI peptide was initially synthesised and oxidised
under thermodynamic conditions providing three different
disulde isomers as a crudemixture (see ESI‡). The linear peptide
is expected to fold into the thermodynamically most stable
‘globular’ isomer 1 [Cys2–Cys7, Cys3–Cys13] (Scheme 1).
However, there are two other possible folding arrangements – the
‘ribbon’ fold 2 [Cys2–Cys13, Cys3–Cy7] and the ‘bead’ fold 3
[Cys2–Cys3, Cys7–Cy13] (1–3, Scheme 1). Previous literature has
proposed that the major product from the oxidation of linear a-
conotoxins is not necessarily the most active, thus all three
isomers were isolated for biological comparison.18 To conrm
which of these three peptides had the ‘globular’ fold we syn-
thesised an authentic standard according to an adapted orthog-
onal protection strategy (Section S2 in the ESI‡).19

Peptidomimetics incorporating a 1,5-disubstituted 1,2,3-tri-
azole bridge in place of either the Cys2–Cys7 or the Cys3–Cys13
disulde bonds were synthesized by microwave-assisted Fmoc
solid phase peptide synthesis (SPPS) on Rink Amide resin
using commercially available building blocks Fmoc-L-prop-
argylglycine (Fmoc-Pra-OH) and Fmoc-L-azido-homoalanine
(Fmoc-Aha-OH) (Scheme 2).
1672 | Chem. Sci., 2019, 10, 1671–1676
Aer incorporation of the non-natural amino acids, the linear
N-terminally Fmoc protected peptides (4 and 5) were cyclised on-
resin using a Ruthenium-catalysed Azide-Alkyne Cycloaddition
(RuAAC). This strategy has been shown to produce specically
1,5-disubstituted 1,2,3-triazole functionalities.20 As the azide
functionality exhibits a strong IR absorption at 2100 cm�1, while
the triazole does not, the cyclisation could be followed on-resin
without a cleavage step.21 Subsequent HPLC analysis conrmed
complete conversion of the linear species to the cyclised products
6 and 7. The removal of the terminal Fmoc, cleavage from the
solid support and global side-chain deprotection afforded
triazole-containing peptides 8 and 9. Final oxidation using cata-
lytic iodine produced the cyclised, disulde containing a-GI
mimetics 10 and 11. Two linear, non-cyclised peptides, 12 and 13,
were also synthesised to act as control substrates.

In order to conrm the 1,5-disubstitution pattern of the
1,2,3-triazoles, we acquired non-proton decoupled 1H–13C
HSQC spectra of 10 and 11. Creary et al. previously demon-
strated a signicant difference in non-substituted carbon shis
between 1,4- vs. 1,5-disubstituted 1,2,3-triazoles.22 The C5 signal
was shown to occur at a chemical shi of d � 120 ppm in a 1,4-
triazole, while a 1,5-triazole exhibits a C4 shi of d � 133 ppm.
As expected the non-substituted carbon shis for both isomers
(10 and 11) were above 133 ppm, indicative of both being the
desired 1,5-triazole product (Fig. S4‡).

Biological evaluation of native a-GI and triazole mimetics

Previous conotoxin-derived drug leads have failed in clinical
trials due to a lack of efficacy.23,24 This was due in part to the
biological assessment of the compounds using rat rather than
human receptors. We chose to assess the biological activity of
these peptides and peptidomimetics using human cells
expressing human nAChR receptors. Peptides 1–3 and pepti-
domimetics 10–13 were incubated with human muscle-type
nAChRs and their activity determined in vitro by assessing
antagonism of the nAChR mediated increase of [Ca2+] in CN21
cells (Fig. 1).
This journal is © The Royal Society of Chemistry 2019
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Scheme 2 (A) Synthesis of the two 1,5-triazole mimetic isomers 10
and 11. (B) The two linear, non-cyclised control peptides, 12 and 13,
were produced via deprotection, cleavage from the solid support and
iodine oxidation of intermediates 4 and 5. TFA ¼ trifluoroacetic acid,
TIS ¼ triisopropylsilane, EDT ¼ 1,2-ethanedithiol.

Table 1 The calculated IC50 values from nAChR inhibition assay for
peptides and peptidomimetics. Maximum inhibition at 10 mM is shown
to quantify compounds which did not reach complete antagonism

Peptide/mimetic IC50 (nM) (95% CI)
Max inhibition
at 10 mM (% �SEM)

1 (Globular GI) 9.8 (7.4 to 12.8) 100.0
Commercial GI 8.8 (6.6 to 11.6) 100.0
2 or 3 (Ribbon/Bead GI) 857 (548 to 1344) 100.0
2 or 3 (Ribbon/Bead GI) 969 (713 to 1317) 100.0
10 N.D. 1.5 � 9.7
11 8.2 (6.4 to 10.5) 100.0
12 a140 (33.4 to 587) 56.2 � 7.9
13 a203 (84.4 to 487) 43.9 � 5.6

a Calculated from partial IC50 curve. IC50 ¼ half maximal inhibitory
concentration. N.D. ¼ not determined.
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The CN21 nAChR line was derived from the TE671 human
rhabdomyosarcoma cell line by stable transfection with the
adult 3 subunit of nAChR. This cell line expresses both the
Fig. 1 The calcium response of CN21 cells pre-incubated with different co
� standard error of the mean (SEM) of 4–6 experiments, performed in qua
slope curve, were fitted for all compounds with the exception of 10, which
of the synthesised native ‘globular’GI, a commercially sourcedGI (Smartox)
potency of the two mimetics 10 and 11 to the native conotoxin 1. (C) Ana

This journal is © The Royal Society of Chemistry 2019
human foetal and adult muscle nAChR25 and is a well validated
platform in which to assess the activity of nAChR antagonists.26

Addition of the native ‘globular’ a-conotoxin compound 1 to
the CN21 cells produced a concentration-dependent decrease in
the ACh-induced response, indicative of inhibition at the
nAChR (Fig. 1A). This effect was duplicated using commercially
sourced GI peptide. The ‘ribbon’ GI 2 and ‘bead’ GI 3 were also
biologically active, although approximately 100-fold less potent
than the ‘globular’ isomer, with IC50 values in the high nM
range (Table 1). In an in vivo mouse toxicity assay the bead and
ribbon GI isomers have also been reported to be an order of
magnitude less potent than the globular GI isomer.27 As the
synthesised compounds corresponding to ribbon and bead
(2 and 3, respectively) were equipotent, the denitive structures
of the two isolated peptides were not determined.

Mimetic 11, which had the [Cys3–Cys13] disulde exchanged
for a triazole bridge, had comparable biological activity to the
native ‘globular’ GI toxin 1. Both 1 and 11 exhibited a concen-
tration-dependent inhibition of the ACh-mediated response
that reached complete inhibition at higher concentrations, with
IC50 values in the low nM range (9.8 nM and 8.2 nM, respec-
tively) (Fig. 1B and Table 1). Both linear uncyclised control
peptides 12 and 13 exhibited activity at muscle-type nAChRs,
ncentrations of conotoxins andmimetics. Data are displayed as themean
druplicate. Constrained sigmoidal dose–response curves, with a variable
did not show any antagonism. (A) Data showing the effect on CN21 cells
, as well as 2 and 3; the ‘ribbon’ and ‘bead’ isomers. (B) Comparison of the
lysis of the linear, non-cyclised control peptides 12 and 13.

Chem. Sci., 2019, 10, 1671–1676 | 1673
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but complete inhibition was not achieved in the concentration
range tested (Fig. 1C). However in the mimetic 10, with the
triazole functionality moved to the [Cys2–Cys7] position, no
inhibition was observed (Fig. 1B).

Analysing the peptides/peptidomimetics at a xed concen-
tration (10 mM) allows their normalised percentage inhibition
values to be compared. Native globular GI 1 and peptidomi-
metic 11 exhibited 100% inhibition, while linear controls 12
and 13 displayed 56 and 44% inhibition, respectively, suggest-
ing they are only partial antagonists of the nAChR. Increasing
the concentration to either 30 mM (n ¼ 2) or 100 mM (n ¼ 1) of
peptide did not further decrease the uorescence response
(data not shown).

These data show that the disulde [Cys3–Cys13] in GI is
amenable to modication to a 1,5-triazole mimetic while
retaining comparable activity to the native toxin 1. However,
substitution of the other disulde position [Cys2–Cys7] abol-
ishes any activity towards nAChRs. Furthermore, the need for
the scaffold to contain two restraints (either two disuldes, 1–3,
or a mixed system, 11) is evident by the poor activity of the linear
control peptides. Since 11 is both a peptidomimetic and retains
analogous activity to the native toxin it has the potential to be
developed as a bioavailable drug lead.
Serum plasma stability of native a-GI and triazole mimetics

Blood plasma stability of conotoxin-derived peptidomimetics is
an important consideration in drug discovery efforts. Folded
conotoxins possess a relatively rigid peptide backbone that
limits their ability to adopt the extended conformations
required for protease degradation. However, the disulde bond
network is susceptible to reduction and/or scrambling leading
to inactivity.16

The blood plasma stability of native ‘globular’ GI toxin 1 was
thus compared to the most active 1,5-triazole bridged peptido-
mimetic 11 at pH 7.4 (Fig. 2). These data demonstrate that the
incorporation of the triazole bond in place of the native
Fig. 2 Stability comparison of native ‘globular’ GI 1 compared to the
1,5-triazole mimetic 11 in rat plasma. Points are the mean of three
independent experiments �SEM. Calculated half-lives are 1
t1
2
¼ 29:3 h; 11 t1

2
¼ 215 h:

1674 | Chem. Sci., 2019, 10, 1671–1676
disulde signicantly improves its plasma half-life by �10 fold
c.f. the native 1. The inhibition of both proteolytic degradation
and disulde scrambling greatly increases the applicability of
mimetic 11 as a stable, bioavailable drug lead. However, the
stability assay used rat plasma, not human plasma, and some
minor differences in the stability of the conotoxins in the two
types of plasma is plausible.
Conformational analysis by NMR spectroscopy

Currently there are >12 000 structures in the Protein Data Bank
derived from NMR restraints, constituting�8% of the database.
However, these structures are almost wholly comprised of
natural amino acid moieties, with only a select few containing
non-canonical sidechains.28 The need to computationally
describe a non-natural amino acid is a signicant roadblock in
the development of accurate peptidomimetic structures.
Therefore, to better understand the structural effect of using
a 1,2,3-triazole as a disulde surrogate, we produced modied
CNS topology/parameter les to allow the description of a 1,5-
disubstituted triazole. Using these descriptors, we then deter-
mined the NMR solution structure of the most potent GI
mimetic 11 so as to provide a physical basis to rationalise the
disulde discrimination identied previously.

1H,1H NOESY data were collected at four mixing times (80,
120, 200, 300 ms) together with 1H,1H TOCSY, DQF-COSY and
1H,13C HSQC spectra.29 The peaks assigned using CCPN anal-
ysis and the structure computed using ARIA2.3/CNS1.2 (output
statistics can be found in Table S2‡).30,31 From 100 calculated
structures, the 20 lowest energy structures were rened in
explicit solvent and the structure closest to the mean selected as
the representative structure (Fig. 3A and S6‡). To assess the
structural similarity between mimetic 11 and the native glob-
ular form 1, the two were superimposed using their backbone
heavy atoms for alignment and the RMSD between them
quantied (Fig. 3B).

Comparing the solution structure of mimetic 11 with the
NMR and crystal structures of native GI 1 reveals that the
structures are very similar.32,33 The triazole bridge appears to act
as a very good structural surrogate for the Cys3–Cys13 disulde
bridge when comparing the orientation and spacing of the two
Ca–Cb bonds. The a-subunit binding face of GI 1 incorporates
residues Cys2, Asn4, Pro5, Ala6 and Cys7 in a previously
proposed model for binding of GI to the mammalian nAChR.32

Mimetic 11 has a highly constrained b-turn (i, i + 3 CO to HN H-
bond (2.5 Å) and Ca–Ca distance of 5.7 Å) in this region and
adopts a very similar structure (0.442 Å backbone RMSD) to the
native GI conformation. This indicates that the conformation of
the b-turn pharmacophore is retained in mimetic 11 resulting
in similar bioactivity. It is apparent from the NMR structure that
the second loop (residues Gly8-Ser12) of mimetic 11 adopts
a slightly different conformation to the native globular GI 1.
This may enable the mimic 11 to bind to other nAChR subtypes,
as has previously been observed with dicarba a-conotoxin Vc1.1
analogues.34

An explanation for the lack of efficacy of disulde isomer 10
is not immediately obvious if the triazole linkage is a faithful
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Solution structure of peptide mimetic 11 determined by NMR
spectroscopy. (A) Representative structure of the calculated NMR
ensemble. (B) Superposition of the native ‘globular’ GI 1 (PDB: 1NOT)
(pink) with the mimetic structure 11 (green) exhibits an excellent
backbone RMSD of 0.442 Å. (C) Disulfide and triazole bridge overlay
with Ca–Cb overlay RMSD of 0.256 Å. (D) Residues 2–7 of mimetic 11
form a b-turn with an intramolecular hydrogen-bond (i, i + 3) and Ca–
Ca distance < 7 Å.
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surrogate of a disulde bridge. However, as noted above, while
the 1,5-disubstituted triazole linkage mimics the disulde
bridge well, it also introduces additional steric bulk. Replace-
ment of the [Cys2–Cys7] disulde with the triazole linkage is
likely to mimic the disulde bridge, but would also introduce
severe steric clash within this highly constrained turn and
appears to abolish its activity. In addition, the NMR spectra of
compound 10 are characterised by the presence of multiple
resonances for many of its chemical groups and spectra recor-
ded over a wide range of temperatures suggest that 10
exchanges between multiple conformations at a rate that is
intermediate to slow on the NMR timescale.
Conclusions

The a-conotoxins, particularly the skeletal nAChR specic GI,
present an opportunity to create a safe, selective and reversible
muscle relaxant for use in anaesthesia. However, in their native
form, peptides are unlikely to become lead drug compounds
due to their unfavourable physicochemical properties.

We therefore used a peptidomimetic triazole disulde bridge
surrogate to replace each disulde bridge in turn within GI.
This produced a mimetic with an order of magnitude increase
in blood plasma stability, whilst retaining full biological
activity. Crucially, [Cys3–Cys13] is amenable to this type of
modication, whereas replacement of [Cys2–Cys7] eliminates
This journal is © The Royal Society of Chemistry 2019
antagonist activity towards the nAChR. Unlike previous studies
performed in rodent assays, our studies were performed in
human CN21 cells expressing human AChRs, making them far
more applicable towards drug development in humans.

Aer developing bespoke force eld descriptions of the tri-
azole mimetic that allowed us to determine the solution struc-
ture by NMR spectroscopy, we discovered signicant
similarities in conformation between the mimetic and the
peptidic bioactive toxin. It is evident that in peptidomimetic 11
the conformation of the b-turn pharmacophore of the native
peptide 1 is preserved. This supports the hypothesis that the
pharmacophore of the GI toxin is located within the rst half of
the peptide as a b-turn. This possibly explains the contrasting
activities of mimetics 10 and 11, as a triazole linkage [aa2–aa7]
may well interfere with binding to the nAChR.

Given the effectiveness of the strategy described in this
article, ease of synthesis and that the required reagents are
commercially available, we believe this approach is broadly
applicable to other peptides containing disulde bonds that
have the potential for development as novel probes and
therapeutics.
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