Unusual fcc-structured Ag$_{10}$ kernels trapped in Ag$_{70}$ nanoclusters†

Yan-Min Su,†a Zhi Wang,†a Gui-Lin Zhuang,‡a Quan-Qin Zhao,a Xing-Po Wang,a Chen-Ho Tunga and Di Sun‡a

Controlled trapping atom-precise ultrasmall silver nanoparticles into silver nanoclusters is challenging; thus only limited progress has been made in this area. We are therefore inspired to isolate two novel silver nanoclusters, Ag$_{10}@$Ag$_{70}$ (SD/Ag80a and SD/Ag80b; SD = SunDi), where a novel fcc-structured Ag$_{10}$ kernel built from two single-edge opened Ag$_{6}$ octahedra by sharing one edge is trapped. The biocathedral Ag$_{10}$ kernel is locked by a pair of Mo$_7$O$_{26}^{10–}$ anions to form an inner Ag$_{10}@$(Mo$_{7}$O$_{26}$)$_2$ core which is further encapsulated by an outer Ag$_{70}$ shell to form three-shell Ag$_{10}@$(Mo$_{7}$O$_{26}$)$_2@$Ag$_{70}$ nanoclusters. Notably, the biocathedral Ag$_{10}$ kernel has not been observed in silver nanoclusters ever before, thus representing a new embryo state of silver nanoparticles. SD/Ag80a emits in the near infrared (NIR) region ($\lambda_{em} = 730$ nm) at low temperature. This work will deepen our understanding on the atomic-level growth of silver nanoparticles and complicated three-shell self-assembly involving polyoxometalate (POM) and two different silver nanoclusters.

Learning from the solvent-controlled synthesis of multiple-twin decahedral and icosahedral silver nanoparticles with special favourable [111] facets,5 we found that DMF (N,N-dimethylformamide), compared to widely used NaBH$_4$, is a much more mild reductive agent which facilitates the formation of Ag$_{6}$ octahedral kernels during the slow reduction process as seen in Ag$_{34}$ and Ag$_{62}$ nanoclusters.6 Such Ag$_{6}$ octahedra can be seen as the smallest fragment cut from the unit cell of face-centered cubic (fcc) bulk silver metal, whereas other silver nanoclusters smaller than the most common icosahedral Ag$_{53}$ are still not directly observed in any reported silver nanoclusters.7 Thus, the species in the early evolution from discrete Ag atoms to the metallic state are still largely vague and the exploration of a suitable synthesis strategy to trap them is scientifically desired.

With these considerations in mind, we used a DMF-containing mixed solvent system to isolate two novel silver nanoclusters [Ag$_{10}@$(Mo$_{7}$O$_{26}$)$_2@$Ag$_{70}$(MoO$_4$)$_2$(CF$_3$SO$_3$)$_{16}$–(DMF)$_x$; SD/Ag80a; SD = SunDi; CyhS = cyclohexanethiol] and [Ag$_{10}@$(Mo$_{7}$O$_{26}$)$_2@$Ag$_{70}$(MoO$_4$)$_2$[Pr$_3$]$_{16}$–(CF$_3$SO$_3$)$_{16}$–(DMF)$_x$] (SD/Ag80b). Two silver nanoclusters have the same metallic core but different organic coatings. In the innermost of cluster, an unusual fcc-structured Ag$_{10}$ nanocluster constructed from two single-edge opened Ag$_{6}$ octahedra by sharing one edge is locked by a pair of Mo$_7$O$_{26}^{10–}$ anions to form an inner Ag$_{10}@$(Mo$_{7}$O$_{26}$)$_2$ core which acts as a template to support the outer Ag$_{70}$ nanocluster to form a final three-shell Ag$_{10}@$(Mo$_{7}$O$_{26}$)$_2@$Ag$_{70}$ nanocluster. This unprecedented biocathedral Ag$_{10}$ nanocluster can be deemed as a new nanofragment cut from fcc silver metal and represents a possible transient species in the growth of large silver nanoparticles.

Introduction

Ultrasound silver nanoparticles (e.g., few-atom clusters, <1 nm) represent the embryo states of larger silver nanoparticles (typically >2 nm) to some extent, which have defined molecular structures and compositions and thus can deepen the understanding on the size evolution of silver nanoparticles.3 Given this, X-ray single crystal structures become a prerequisite to get atomic-level information including the surface ligands, inorganic–organic interfaces and silver atoms packed in silver nanoparticles.7 While chasing large silver nanoclusters such as Ag$_{54}$, Ag$_{62}$, Ag$_{67}$, Ag$_{74}$, and Ag$_{141}$ and even the largest known Ag$_{374}$,3 chemists almost neglect the significance of the embryo states of silver nanoparticles that however are quite difficult to be captured due to their typical kinetics-controlled growth course.4 Therefore, controlling the reductive transformation from Ag(i) to Ag0 and then trapping the transient Ag aggregates into the thermodynamically stable crystalline product during the self-assembly is an urgent need and thus a major challenge.

*Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People’s Republic of China. E-mail: dsun@sdu.edu.cn
‡College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou, 310023, People’s Republic of China
†Electronic supplementary information (ESI) available: IR, 13C NMR, CV, UV, EDS, PXRD and luminescence decay curve, and details of the data collection and structure refinements, and crystal data. CCDC 1850394 and 1850395 for SD/Ag80a and SD/Ag80b. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8sc03396j
‡These authors contributed equally.
Results and discussion

X-ray structures of SD/Ag80a and SD/Ag80b

SD/Ag80a and SD/Ag80b were synthesized through a facile one-pot solvothermal reaction of silver-thiolate polymeric precursors, CF₃SO₃Ag and molybdates in different DMF-containing mixed solvent systems (Scheme 1). In spite of several attempts, we still couldn’t isolate SD/Ag80a and SD/Ag80b using the same Mo sources. Their samples were collected as brown-yellow and red crystals, respectively, after evaporation of solvents at room temperature for 1–2 weeks. Several synthetic parameters were optimized and are listed in Tables S1 and S2 (ESI)† for details. Details of the synthesis and some basic characterization are shown in the ESI†.

The molecular structures of SD/Ag80a and SD/Ag80b were revealed by single-crystal X-ray diffraction (SCXRD) analysis. They crystallize in monoclinic P2₁/n and triclinic P1 space groups, respectively. In each asymmetric unit only half of the corresponding clusters were resolved. Due to the structural similarities, only that of SD/Ag80a is described in detail here.

The structural diagrams of SD/Ag80b are shown in Fig. S1.† Selected details of the data collection and structure refinements are listed in Table S3.

SD/Ag80a is an elongated spheroid (1.0 × 1.4 × 2.1 nm) that sits on the crystallographic inversion center (i). The Ag₈₀ nanocluster is composed of a Ag₇₀ shell and a Ag₁₀ kernel. The Ag₇₀ shell is capped by 36 CyhS⁻, 16 CF₃SO₃⁻, 2 MoO₄²⁻ and 6 DMF (Fig. 1a and b). All cyclohexyl groups of 36 CyhS⁻ ligands show a unified chair configuration. Two different coordination modes (µ₁ and µ₄) are found in 36 CyhS⁻ ligands capped on the silver trigrams or tetragons (Ag–S distances: 2.389(5)–2.722(5) Å). The 16 CF₃SO₃⁻ anions exhibit three different coordination fashions including µ₁⁻η¹⁻η₂⁻η₄⁻, µ₁⁻η¹⁻η₁⁻η₅⁻, and µ₂⁻η¹⁻η₁⁻η₅⁻. Two MoO₄²⁻ anions (yellow tetrahedra in Fig. 1) adopt a µ₁⁻η¹⁻η₁⁻η₅⁻ mode to bind in the equatorial region of the Ag₇₀ shell. Six DMF molecules as terminal ligands finished the organic ligand coverage on the surface of the Ag₇₀ shell. Three different O donor ligands (CF₃SO₃⁻, MoO₄²⁻, and DMF) interact with Ag atoms with the bonding distances in the ranges of 2.406(15)–2.789(17), 2.251(11)–2.568(11) and 2.390(13)–2.458(14) Å, respectively. The Ag₇₀ shell was further consolidated by the argentophilic interaction* ranging from 2.833(2) to 3.4394(16) Å. The surface of the Ag₇₀ shell consists silver trigrams, tetragons, pentagons and heptagons (Fig. 1c). The silver trigrams, and pentagons are capped by CyhS⁻ or CF₃SO₃⁻, whereas MoO₄²⁻ shapes the large silver heptagons (green rings in Fig. 1c).

There are two crescent-like MoO₂₆¹⁰⁻ anions under the Ag₇₀ shell (Fig. 2a). During the synthesis of SD/Ag80a and SD/Ag80b, although different Mo sources, Na₂MoO₄·2H₂O and [([“Bu₄N]₂Mo₆O₁₉)] in di-MF, were used, respectively, the same MoO₂₆¹⁰⁻ anion was trapped as the template in the final silver nanoclusters. Thus, the novel MoO₂₆¹⁰⁻ anions should be in situ transformed from Na₂MoO₄·2H₂O or [([“Bu₄N]₂Mo₆O₁₉)] in different solvent environments. We used Bond-Valence Sum (BVS) calculations for seven Mo atoms of MoO₂₆¹⁰⁻, which confirmed that all of them are in the +6 oxidation state (Table S3†). The MoO₂₆¹⁰⁻ is constructed from seven edge-shared MoO₆ octahedra. The total 26 O atoms are divided into four kinds based on their binding fashion to Ag atoms, 2 µ₀, 4 µ₁, 16 µ₂, and 4 µ₄. Such highly negative-charged MoO₂₆¹⁰⁻ totally binds 35 silver atoms. Among them, 7 are from the inner Ag₁₀ kernel and the remaining 28 are from the Ag₇₀ shell (Fig. 2b). Notably, this novel molybdate has neither been observed in classic POM chemistry nor in silver nanoclusters. More importantly, this molybdate carries the second highest negative charges¹⁰ which effectively enhanced its template effect by binding more Ag atoms (Table S6†).

The most interesting feature in SD/Ag80a is the unusual Ag₁₀ kernel underlying the equatorial region of the Ag₇₀ shell which is built from two single-edge opened Ag₁₀ octahedra by sharing one edge (Fig. 2c). The shared edge is the longest Ag···Ag edge (Ag38···Ag38″ = 3.457(1) Å, symmetry code: i=−x+1, −y+1, −z+1) within the Ag₁₀ kernel, which is out of the normal Ag···Ag interaction range. All other eleven Ag···Ag edges are...
We didn’t observe any peaks in 13C NMR corresponding to the oxidation product of 3PrOH, which clearly excluded the possible reductive effect of 3PrOH in this assembly system. These results clearly evidenced the redox reaction between Ag(I) and DMF occurred during the self-assembly process. The emergence of a fcc-structured Ag$_{10}$ nanocluster, on the other hand, answered an important question, which is how the common observed smaller Ag$_6$ kernel grew up to larger structures. Based on the above structural information, we can tentatively assign a new edge-fusion mode to its growth mechanism, although several other growth modes for noble metal nanoparticles have been proposed such as face-fusion, interpenetration, shell-by-shell, layer-by-layer, and tetrahedron-based vertex-sharing growth modes. Based on the formulae and charge neutrality considerations, we can determine that the valence of the Ag$_{10}$ kernel is +6, which means such a kernel carries four free electrons, belonging to a 4e superatom network. We also performed DFT calculations at the B3LYP/SDD theoretical level to study the free electron distributions on the frontier orbitals of the Ag$_{10}$ kernel (see details in the ESI†). According to the results identified experimentally, the inner Ag$_{10}$ kernel features C_5 symmetry with +6 valence and four free electrons. Thus, frontier molecular orbital analysis (Fig. S5†) reveals that four free electrons occupy two A_g-symmetry HOMO-1 and HOMO. HOMO-1 and HOMO exhibit different components. HOMO involves in the 5s orbitals of two ends of Ag$_{10}$, while HOMO-1 concentrates on the 4d orbitals of two ends of Ag$_{10}$. Moreover, HOMO-2 features A_g symmetry with similar components to HOMO-1, and LUMO consists of 5s orbitals in the centre of Ag$_{10}$.

Combining the structural analysis and DMF-involved reductive process, we tentatively proposed a total shell-by-shell formation mechanism for such new silver nanoclusters. Weakly reductive DMF firstly induced the formation of an inner Ag$_{10}$ kernel (1st shell), which exposes highly active [111] facets that are quickly passivated by the formation of Ag–O bonding (Ag–O distances: 2.284(10)–2.433(10) Å; Fig. 2d). As such, the Ag$_{10}$ biotahedron is doubly clamped by a pair of Mo$_7$O$_{26}^{10–}$ anions. The inner Ag$_{10}$ biotahedron (2nd shell) can now be encapsulated by another bioctahedral Ag$_{10}$ kernel (1st shell), which exposes [111] facets that are quickly passivated by the formation of Ag–O bonding with Ag$_6$ octahedra by fusing one Ag–Ag edge. (d) The Ag$_{10}$ biotahedron locked by a pair of Mo$_7$O$_{26}^{10–}$ anions. (e) The Ag$_{10}$ biotahedron (claybank space-filling balls) residing in the Ag$_{70}$ shell.

distributed in the range of 2.659(2)–2.980(1) Å (Fig. S2†) and the average Ag–Ag distance is 2.814 Å, which is 2.5% shorter than the Ag–Ag distance in metallic silver (2.886 Å), indicating strong argentophilic interactions as in bulk silver metal. All exposed trigons of the Ag$_{10}$ biotahedral kernel are [111] facets which are capped by Mo$_7$O$_{26}^{10–}$ anions through Ag–O bonding (Ag–O distances: 2.284(10)–2.433(10) Å; Fig. 2d). As such, the Ag$_{10}$ biotahedron is doubly clamped by a pair of Mo$_7$O$_{26}^{10–}$ anions to form an inner Ag$_{10}@$(Mo$_7$O$_{26}^{10–}$)$_2$ core, which was enwrapped by an outer Ag$_{70}$ shell to form a three-shell Ag$_{10}@$(Mo$_7$O$_{26}^{10–}$)$_2@$Ag$_{70}$ nanocluster. The two polar sites of the Ag$_{10}$ biotahedron are also linked with the outer Ag$_{70}$ shell through argentophilic interactions (Ag–Ag: 2.8523(19)–3.3621(18) Å; Fig. S3†).

Although the single Ag$_6$ octahedron has been observed in several inorganic compounds and a few silver nanoclusters, its dimer, Ag$_{10}$ biotahedron, has never been observed before in silver nanoclusters. Such a Ag$_{10}$ biotahedron can be seen as a bigger nanofragment than a Ag$_6$ octahedron. An important driven force for its formation should be the suitable reducibility of DMF. The oxidation product of DMF in the assembly process is Me$_2$NCOOH which can be recognized from the 13C NMR (nuclear magnetic resonance) of HCl digested reaction mother solution (Fig. S4†). In the chemical shift scale corresponding to aldehydes and carboxylates ($\delta = 150–200$ ppm), two peaks appeared at $\delta = 164.64$ and 162.92 ppm, which are assigned to the carbon resonances of DMF and Me$_2$NCOOH, respectively.

The optical properties of SD/Ag$_{80}$a

The UV/Vis spectrum of SD/Ag$_{80}$a was measured in the solid state using diffuse reflectance mode. As shown in Fig. 3, SD/Ag$_{80}$a showed an absorption maximum at 344 nm and a shoulder peak in the visible region (\sim490 nm), which should be ascribed to ligand-based absorption and the charge transfer...
transition from the S 3p to Ag 5s orbitals, respectively. Similar assignments were also made in a hypothetical silver sulfide monomer and molecular [Ag6S13(SBu)3]16+ cluster. Based on the Kubelka–Munk function (Fig. S6†), the band gap of SD/Ag80a was estimated to be ~1.06 eV, which indicates that SD/Ag80a is a potential narrow-band-gap semiconductor. In comparison, the optical energy gap of the precursor (CyhSAg)$_n$ is ~2.09 eV.

The luminescence properties of SD/Ag80a were studied in the solid state. As shown in the insets of Fig. 4, we can observe that SD/Ag80a isn’t emissive under the UV light irradiation ($\lambda_{ex} = 365$ nm) at room temperature; however, it emits red luminescence at 77 K. The varied-temperature emission spectra of SD/Ag80a in the solid state were recorded from 293 to 83 K with 30 K as an interval, showing luminescence thermochromic behavior. When gradually cooled to 83 K, the intensity of emission shows an 18-fold enhancement, which should be assigned to the low-temperature induced increase of radiative decay. The emission maximum was blue-shifted from 754 to 730 nm ($\lambda_{ex} = 469$ nm) in the temperature range of 173–83 K (Fig. 4), which may be related to the enhanced molecular rigidity at lower temperature.† This near-infrared (NIR) emission should be assigned to ligand-to-metal-charge-transfer (LMCT) transition from S 3p to Ag 5s orbitals. The emission lifetime of SD/Ag80a, falling on the microsecond scale at 83 K (Fig. S7†), suggests the triplet phosphorescence origin.

Conclusions

In conclusion, we developed a DMF-controlled strategy to successfully capture an atom-precise ultrasmall Ag10 kernel into a gigantic silver nanocluster. The DMF with mild reductive ability plays a key role in the formation of such a novel cluster-in-cluster silver nanocluster. The fcc-structured Ag10 kernel is built from two single-edge opened Ag6 octahedra by sharing one edge and further locked by a pair of Mo7O26− anions to form an inner Ag10@(Mo7O26)2 core which is finally encapsulated by an outer Ag70 shell to form three-shell Ag10@(Mo7O26)2@Ag70 nanoclusters. Notably, both the biotetrahedral Ag10 kernel and crescent-like Mo7O26− have not been observed in silver nanocluster and POM chemistry ever before, respectively. The biotetrahedral Ag10 core can be deemed as a brand-new embryo state of silver nanoparticles; moreover, it also provides a new edge-fusion growth route for silver nanoparticles from the smallest Ag6 nanofragment of metallic silver. We hope that this work can popularize the new controllable synthetic method to expand the scope of silver nanoclusters with higher complexity.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21822107, 21571115, and 21671172), the Natural Science Foundation of Shandong Province (No. JQ201803 and ZR2017MB061), the Qilu Youth Scholar Funding of Shandong University and the Fundamental Research Funds of Shandong University (104.205.2.5).

References

