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Although a number of advances have been made in RNA sequencing and structural characterization, the

lack of a method for directly determining the sequence and structure of single RNA molecules has

limited our ability to probe heterogeneity in gene expression at the level of single cells. Here we present

a method for direct nucleotide identification and structural label mapping of single RNA molecules via

Quantum Molecular Sequencing (QMSeq). The method combines non-perturbative quantum tunneling

spectroscopy to probe the molecular orbitals of ribonucleotides, new experimental biophysical

parameters that fingerprint these molecular orbitals, and a machine learning classification algorithm to

distinguish between the ribonucleotides. The algorithm uses tunneling spectroscopy measurements on

an unknown ribonucleotide to determine its chemical identity and the presence of local chemical

modifications. Combining this with structure-dependent chemical labeling presents the possibility of

mapping both the sequence and local structure of individual RNA molecules. By optimizing the base-

calling algorithm, we show a high accuracy for both ribonucleotide discrimination (>99.8%) and chemical

label identification (>98%) with a relatively modest molecular coverage (35 repeat measurements). This

lays the groundwork for simultaneous sequencing and structural mapping of single unknown RNA

molecules, and paves the way for probing the sequence–structure–function relationship within the

transcriptome at an unprecedented level of detail.
Introduction

Ribonucleic acid (RNA) plays a central role in a number of
crucial biological processes, including transcription, trans-
lation, and catalysis. Just as with DNA and proteins, the struc-
ture and chemical properties of each RNA molecule are
primarily dictated by its sequence. Unique to RNA, however, is
its ability to both encode genetic information and carry out
diverse chemical functions within the cell.1 While traditional
sequencing methods target DNA, which is the primary infor-
mation carrier in cells, genomic sequencing does not access
information about gene expression levels, splicing, and other
modications that occur aer transcription. Several methods
currently exist for indirectly sequencing RNA molecules,2 and
they typically rely on reverse transcription into cDNA, which can
ineering, University of Colorado Boulder,

(RASEI), University of Colorado Boulder,

ity of Colorado Boulder, USA

SI) available: Details of the base-calling
described in the text. See DOI:
then be sequenced conventionally. However, these methods
have limited sensitivity, and no method so far is capable of
directly determining the sequence of individual RNAmolecules,
which will be crucial for measuring gene heterogeneity,
detecting rare transcripts, and improving the sensitivity and
accuracy of gene expression proling in single cells.3,4

Going beyond sequencing, the diversity of cellular roles
played by RNA motivates a large-scale effort to achieve a more
comprehensive understanding of the relationship between
sequence, structure, and function in the transcriptome.5 Accu-
rate prediction of three-dimensional RNA structure from the
sequence using computational methods is still not trivial,6 and
typically relies on experimental data to impose constraints on
the large conformational space available to a molecule. Tradi-
tional methods of biomolecular structure determination, such
as X-ray crystallography7 and NMR,8 require considerable
sample preparation, are low-throughput, and are not universally
applicable to all native RNAmolecules. Thus the vast majority of
transcripts remain structurally uncharacterized.5 Alternatively,
methods based on chemical labeling or enzymatic probing can
be used to measure structure-dependent properties such as
solvent accessibility and conformational exibility along the
molecule, and these methods have shown broad applicability
and considerably higher throughput.9 In particular, the SHAPE
This journal is © The Royal Society of Chemistry 2019
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(Selective 20-Hydroxyl Acylation analyzed by Primer Extension)
technique has proven to be an especially versatile and powerful
tool for RNA secondary and tertiary structure elucidation.10,11

The ability of SHAPE to probe local exibility at single-
nucleotide resolution in a parallel and high-throughput
manner has allowed for comprehensive RNA structural
mapping studies, including whole transcriptome12 and viral
genome analysis.13 However, despite its strengths the SHAPE
method still relies on measuring average nucleotide reactivity
within a large ensemble of molecules via reverse transcription
and cDNA analysis, and thus cannot resolve distinct structural
populations that may exist for a particular molecule. To date, no
method has been capable of determining the native structure of
individual RNA molecules.

Here we describe a method that uses scanning tunneling
spectroscopy (STS) measurements to identify individual nucle-
otides and structure-dependent chemical labels of single RNA
molecules. By probing the molecular orbitals of each ribonu-
cleotide via non-perturbative quantum tunneling spectroscopy,
combined with an identication algorithm that uses machine
learning to recognize unique electronic ngerprints for each
base, we have been able to correctly discriminate between the
four RNA bases (A, G, C, U) with a single-base accuracy of
>99.8%. In addition, we have adapted the SHAPE method for
probing the structure of single RNAmolecules by combining the
conformation-dependent acylation of SHAPE with our nano-
electronic ngerprinting approach.

Results and discussion
QMSeq method and STS measurements

We successfully identied ribonucleotides in single RNA
molecules using the quantum molecular sequencing (QMSeq)
method, a technique that our group previously developed for
identication of DNA nucleobases.14,15 In this method, the
molecules are adsorbed onto a metal substrate and electroni-
cally probed using STS, which encodes information about the
molecular orbitals of each base in the tunneling spectra. A
molecular identication algorithm based on machine learning
is then applied to both identify each ribonucleotide as well as
discriminate between chemically labeled and unlabeled bases
within the molecule. When combined with structure-dependent
chemical labeling, this represents a method for simultaneous
sequence identication and structural characterization of
individual RNA molecules and will pave the way for mapping
the transcriptome with a level of detail that has been previously
unattainable.

In recent years a number of potential single-molecule
sequencing platforms based on nanoelectronic measurements
have emerged.16 In contrast to nanopore sequencing methods
that rely on electronic measurements of a molecule as it threads
through a pore,17–19 our method rst immobilizes the molecules
onto a at metal substrate, allowing for both STM imaging and
repeated tunneling spectroscopy measurements along the
molecule. While reproducibility in STS measurements of
nucleobases has previously been hindered by poor control over
molecular orientation, leading to high entropy states and
This journal is © The Royal Society of Chemistry 2019
a broadening of measured energy levels,20–22 our method relies
on tailored surface chemistry to immobilize the RNA and limit
conformational freedom on the surface. As illustrated in Fig. 1a,
the surface consists of a self-assembled monolayer of 3-mer-
captopropionic acid (MPA) on an atomically at Au (111)
substrate.23 The presence of divalent metal cations (M2+) in
solution during the adsorption step promotes an attractive
interaction between the terminal carboxylate groups of the
monolayer and the negatively charged phosphate groups of the
RNA molecules, effectively forming a salt bridge between the
nucleic acids and the surface.24 This electrostatic attraction
results in strong immobilization of the RNA on the substrate, as
has been reported previously for DNA on similar carboxylate-
terminated alkanethiol monolayers25 (see STM images in
Fig. 1, S1†). STS measurements on a clean MPA/M2+ monolayer
produce primarily conductive spectra with no apparent
bandgap, for example as shown in Fig. 1b. In contrast, STS
measurements on the same surface aer adsorption of RNA
produce a mixture of conductive spectra, as observed on clean
MPA, and spectra displaying a characteristic bandgap of
�1.5 eV (Fig. 1c), corresponding to the molecular orbitals of the
nucleobases within the adsorbed RNA. This permits unambig-
uous discrimination between spectra acquired over nucleotides
and those acquired over the background. The density of states
can then be plotted by taking the rst derivative of the I–V
spectrum, which allows for identication of the highest occu-
pied and lowest unoccupied molecular orbital (HOMO & LUMO)
energy levels as the rst major peaks in the negative and posi-
tive voltage regions, respectively (Fig. 1c). Themeasured HOMO,
LUMO, and the resulting bandgap, BG ¼ LUMO � HOMO, are
unique biophysical parameters that are expected to differ
slightly for each RNA base due to differences in their molecular
orbitals.14,15,22 However, because of small shis in the energy
levels resulting from different molecular conformations and
substrate interactions, in practice the measured levels are
smeared out and show signicant overlap in their distributions
(Fig. S2†), making it difficult to discriminate between bases
using these three parameters alone.
Additional biophysical parameters as ngerprints

Previous work from our group showed that accuracy in
discriminating between DNA bases with STS could be drastically
improved by introducing an additional six biophysical param-
eters that are derived from transition voltage spectroscopy
(TVS).15 TVS provides a means to characterize charge tunneling
through a metal–molecule–metal junction, which in this case is
formed between the STM tip, the ribonucleotide, the underlying
monolayer, and the gold substrate. TVS analysis is performed by
plotting the I–V data as ln(I/V2) vs. 1/V, also known as a Fowler–
Nordheim (FN) plot.26 Formetal–molecule–metal junctions with
a relatively small tunneling barrier height, there is an inection
point in the FN plot as the charge transport mechanism tran-
sitions from direct tunneling (low-bias) to eld emission (high
bias).27 This transition voltage Vtrans depends on the difference
between the HOMO of the molecule and the Fermi level of the
Chem. Sci., 2019, 10, 1052–1063 | 1053
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Fig. 1 Tunneling spectroscopy measurements of individual RNA molecules (a) illustration of the experimental approach used. RNA molecules
are electrostatically adsorbed onto the MPA/Au substrate, and their nucleobase molecular orbitals are then probed via STS. (b) Measurements
acquired over the background monolayer result in conductive spectra with no apparent bandgap. (c) In contrast, measurements acquired over
ribonucleotides show a characteristic bandgap of�1.5 V, with HOMO and LUMO levels that can be identified from peaks in the plot of dI/dV vs. V.
(d) STM image of the MPA monolayer, with several atomic steps and terraces are visible, as well as the previously observed threefold-symmetric
striped domains.40 (e) High-resolution STM image of a densely packed layer of poly-(dC)100 molecules adsorbed onto a positively charged
monolayer.
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metal, and is related to the tunneling barrier height F via the
following equation:

Vtrans z
2ħ

ffiffiffiffiffiffi
2F

p

qd
ffiffiffiffi
m

p

where ħ is the reduced Planck constant, q is the elementary
charge, d is the tunneling distance, and m is a convolution of
the effective massm* and the electron rest massme. As there are
distinct transition voltages for the positive bias region (electron
tunneling, Vtrans(e�)) and the negative bias region (hole
tunneling, Vtrans(h+)), this provides two additional measurable
parameters that depend on the identity of the molecule within
the junction. Furthermore, the tunneling barrier height F can
1054 | Chem. Sci., 2019, 10, 1052–1063
be determined from the transition voltage using the following
relation:

F ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3SVtrans

16

r

where S is the measured slope of the high-bias region of the FN
plot.15 The barriers for electron tunneling Fe� and hole
tunneling Fh+ can both be extracted from TVS, and can be
summed to give the total tunneling barrier height Fgap, repre-
senting three additional biophysical parameters. Finally, once
the tunneling barriers are known, the effective mass ratio of
electrons to holes, m*

ratio ¼ m*
e�=m

*
hþ , can be determined from

the following relation:
This journal is © The Royal Society of Chemistry 2019
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m*
ratio ¼

m*
e�

m*
hþ

¼ S2
e�F

3
hþ

S2
hþF

3
e�

Ultimately this results in a set of nine unique biophysical
parameters (HOMO, LUMO, BG, Vtrans(e�), Vtrans(h+), Fe�, Fh+,
Fgap, and m*

ratio) that depend on the molecule within the junc-
tion and can be extracted from each tunneling spectrum.
Comparison of the distributions of the additional six parame-
ters shows that although there is still a signicant overlap
between the four bases, there are also base-dependent shis in
the distributions (Fig. S2†). These differences enable a predic-
tion of the likelihood that a particular STS measurement
belongs to each of the four bases by comparing the values of the
nine parameters from that measurement to the corresponding
distributions of those parameters for each of the bases in
a library. This was previously developed into a DNA base-calling
algorithm,15 and here we extend this approach for RNA base
calling and structural label identication, as described below.

To improve the accuracy in discriminating between different
nucleotides as well as identication of chemical modications,
we sought to incorporate additional biophysical parameters
into our model to characterize higher energy molecular orbitals.
While the previously described parameters relate to interactions
between the tunneling electrons and the frontier molecular
orbitals, there should also be information about higher- and
lower-lying molecular orbitals contained in the tunneling
spectrum. Density functional theory (DFT) calculations show
differences in the higher-lying molecular orbitals that can
potentially be used to help distinguish between the different
nucleobases, and also to characterize modications of the sugar
backbone that may be difficult to identify by probing only the
frontier orbitals (Fig. S3†). In an STS study of short DNA oligo-
nucleotides on a Cu (111) surface, Yoshida et al. observed
differences between the different DNA bases in the tunneling
current behavior at bias voltages just above the bandgap.28 More
specically, they t a straight line to the log of the current vs.
bias voltage, and observed shis in the slope and intercept
values between some of the DNA bases, likely arising from
differences in the energy level spacing for LUMO + 1, LUMO + 2,
etc. We performed a similar analysis on our STS data, as shown
in Fig. 2 for an example spectrum for each of the four bases.
Aer identifying the bandgap from the I–V plot (Fig. 2a), we then
plotted the log of the current as a function of bias voltage for the
region just above the bandgap, performed a linear tting, and
extracted the slope and intercept parameters ae� and be�

(Fig. 2b), such that

ln(I/I0) ¼ ae�V + be�

where I0 ¼ 1.0 nA. When comparing distributions of ae� and be�

values for the different bases (Fig. S2†), we observed that
although there is signicant overlap, there are also small shis
in the average values that are useful in discriminating between
the bases. Thus we included ae� and be� as two additional
parameters in our base-calling algorithm.

Given the signicant overlap in the distributions of all 11
biophysical parameters observed between the different bases, it
This journal is © The Royal Society of Chemistry 2019
is desirable to minimize the smearing of energy levels due to
molecular entropy.29 However, in practice, it is currently not
possible to eliminate this smearing experimentally, leading to
broadening in the measured parameter distributions that is
unavoidable.22 To address this challenge we sought to identify
an independent parameter that could serve as a classier of the
extent of molecular energy level smear in a given measurement.
For this purpose, we introduced a twelh parameter, the
tunneling conductance Gtunnel, which corresponds to the
measured conductance within the bandgap due to tunneling of
charges through the tip–molecule–surface junction. We extrac-
ted the tunneling conductance from STS measurements by
tting a line to the I–V points within the bandgap for each of the
tunneling spectra andmeasuring the slope of the line, as shown
in Fig. 2c. This conductance, while exceedingly small (<100 pS),
is still expected to vary as a result of a number of factors
affecting the nature of the charge conduction pathway,
including different conformations of the molecule and different
molecule/substrate arrangements (e.g. adjacency to an atomic
step edge, vacancy, or other defect).30–33 While a detailed model
of the relationship between Gtunnel and the molecular arrange-
ment is beyond the scope of this paper, in a simplied picture
the tunneling conductance may reect the extent of orbital
overlap between the tip, molecule, and surface, with larger
overlap leading to larger Gtunnel values (Fig. 2d). When
comparing STS measurements on all four RNA bases, we
observed a large variation in the tunneling conductance values,
with most measurements falling within the range of 1–10 pS
(Fig. S2†). This presents the opportunity to use Gtunnel not just as
a twelh biophysical parameter, but also as a metric for
screening out measurements in which the nucleotide molecular
orbitals were strongly perturbed by an unfavorable tip–mole-
cule–substrate geometry. If the tunneling conductance does
indeed serve as an indicator of the degree of perturbation of the
molecular orbitals, then the incorporation of Gtunnel into the
base-calling algorithm is expected to help reduce the errors that
result from broadening and overlap of the other 11 parameters
between the different ribonucleotides.
Nucleobase identication algorithm

As a rst step in developing a tunneling spectroscopy RNA base-
calling algorithm, we created a spectral library consisting of
several hundred individual STS measurements of each of the
four unmodied ribonucleotides. To do this, we deposited poly-
(rN)7 RNA homopolymers (N ¼ A, G, C, or U) onto an MPA/Au
substrate at high surface-coverage, and collected a large
number (>10 000) of STS measurements on each sample. The
STS measurements were collected pointwise on grids across the
surface, and as a result, the majority of the measurements were
not directly over an RNA nucleobase. Thus we found it necessary
to exclude spectra that did not display a sufficiently large
bandgap (BG < 0.5 eV), which were assumed to be measure-
ments over the background monolayer.15 In addition, spectra
that showed primarily insulating behavior (BG > 3 eV) were
assumed to be from multi-layered molecules or surface
contaminants, and were also excluded. Finally, spectra that did
Chem. Sci., 2019, 10, 1052–1063 | 1055
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Fig. 2 Extracting additional biophysical parameters from the tunneling spectra. (a) Selected tunneling spectra for each of the four ribonucle-
otides. Inset shows a zoomed-in view of the region just above the bandgap. (b) A plot of ln(I/I0) vs. V for the same spectra shown in (a). The open
symbols are experimental data, and the solid lines represent linear fits to the data, with the values of the slope parameter ae� shown. (c) Examples
of two STS measurements on the same poly-rA7 sample that show a very similar bandgap but an order of magnitude difference in the tunneling
conductance Gtunnel. Inset shows a zoomed-in view of the bandgap region, along with a linear fit to the current inside the bandgap (dotted lines).
(d) Proposed qualitative model of the effect of tip–molecule orbital overlap on the tunneling conductance. The monolayer has been omitted for
clarity.
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not show a clearly identiable transition voltage in the FN plot
were considered to be ionic impurities exhibiting Frenkel–Poole
conduction,34 and were also ltered out. The remaining spectra
were analyzed in order to extract the twelve biophysical
parameters outlined above, which were added to the library.

We then implemented a machine learning algorithm based
on a modied näıve Bayes classier in order to predict which of
the four bases a randomly selected ‘unknown’ STS measure-
ment belongs to (see ESI† for details of the algorithm).15 Briey,
the probability p that an unknown measurement belongs to the
kth class Ck (corresponding to rA, rG, rC, or rU) is estimated
using the following equation:

pðCkjx1;.; xnÞ ¼ 1

Z
pðCkÞ

Yn
i¼1

pðxijCkÞ

where xi represents the measured value for the ith biophysical
parameter (from 1–12), and Z is a normalization factor. The
parameter-specic probabilities p(xi|Ck) are determined from
the kernel density estimate of the observed distribution of
1056 | Chem. Sci., 2019, 10, 1052–1063
parameter i for class Ck. Aer calculating a probability for each
of the four classes (bases), the class with the highest probability
is chosen, producing a base call. While making base calls from
single measurements has some important advantages, in
practice, it is desirable to improve both the accuracy and the
condence by incorporating multiple measurements (or reads)
on the same sample into a single base call. This is in analogy to
sequence coverage (or depth) in traditional sequencing
methods, and is made possible here by the fact that the mole-
cules are immobilized on a surface and can be repeatedly
measured by STS.

The results from applying our base-calling algorithm to the
ribonucleotide library are shown in Fig. 3. As a rst pass, we
performed classication with HOMO and LUMO as the only
parameters. This resulted in poor recall for all four bases
(Fig. 3a), with a low overall base-calling accuracy even at high
coverage (<40% at 35X coverage). This is not surprising, given
the signicant overlap observed between the bases for both the
HOMO and LUMO distributions. Next, we repeated the
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Recall and accuracy results from the RNA base-calling algorithm. (a) Correct recall vs. coverage for base calling with HOMO and LUMO as
the only parameters used by the algorithm. (b) Correct recall vs. coverage for base calling with all 12 biophysical parameters. (c) Correct recall vs.
coverage for base calling with optimized subsets of the parameters along with probability weighting coefficients. (d) Overall base-calling
accuracy at selected coverage values with the algorithm using only HOMO and LUMO, using all 12 parameters, or using optimal parameter
subsets (additional details in the ESI†).
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classication using all 12 biophysical parameters, which resul-
ted in signicantly improved recall for all four bases (Fig. 3b).
Although adenine still showed relatively low recall, using 12
parameters increased the overall accuracy to 82% at 35X
coverage. This improvement is due to the improved ability of
the classication algorithm to distinguish between the bases
when using a larger set of parameters, and is consistent with
what was found previously with DNA.15 The previous study also
found that accuracy could be further improved by narrowing
down to an optimal parameter subset for each base that
includes only some of the biophysical parameters.15 In this case,
we modied the algorithm to test different parameter subsets
along with probability weighting coefficients, which were then
numerically optimized to give the best accuracy when applied to
training and testing data sets. Using the optimized parameter
subsets along with the weighting coefficients, the recall shows
signicant improvement at all coverages (Fig. 3c), with overall
accuracy increasing to 93% at 35X coverage. While it may seem
counterintuitive that discarding some of the parameters would
increase the accuracy, this can be explained by the fact that
some parameters are more useful than others for identifying
specic bases, owing to better separation and less overlap with
the other bases in their distributions. To explore this further, we
tested the base-calling algorithm using only single parameters,
as well as systematically removing or replacing individual
This journal is © The Royal Society of Chemistry 2019
parameters from optimized parameter subsets, and observed
a large variation in the relative importance of the different
parameters as dened by the relative change in base-calling
accuracy when removing or replacing a given parameter
(Fig. S4†). The use of weighting coefficients and numerical
optimization then allows for the determination of the optimal
parameter sets without any prior assumptions about the
importance of each parameter. Shown in Fig. 3d is a compar-
ison of the overall accuracies at selected coverages when per-
forming base calling with HOMO and LUMO only, with all 12
parameters, and with optimal parameter sets. In order to avoid
overtraining the classication algorithm, the libraries consist-
ing of several hundred measurements per nucleobase were
randomly split into fourths for 4-fold cross-validation of results
(see ESI and Fig. S5 for further details†).
Non-perturbative tunneling spectroscopy

In implementing the base-calling algorithm described above,
the tunneling conductance Gtunnel was simply included as
a twelh biophysical parameter. Going one step further, we
sought to use Gtunnel as a metric for screening out measure-
ments that were signicantly perturbed by the tip and substrate
in a way that hinders accurate base calling. To test whether
Gtunnel can serve as a classier for the extent of molecular smear
Chem. Sci., 2019, 10, 1052–1063 | 1057
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in a given measurement, we next modied the algorithm to
include a tunneling conductance screening step prior to any
base calling. In this step, only measurements that fall within
a specied range of Gtunnel values are passed to the base-calling
algorithm. We hypothesized that STS measurements showing
a low tunneling conductance would lead to better discrimina-
tion between ribonucleotides, given that such measurements
presumably correspond to a lower degree of perturbation by the
tip and substrate. In order to compare how the modied algo-
rithm performs in the context of sequence identication, we
generated a random ‘unknown’ sequence of bases, then pulled
measurements from the library for each unknown ribonucleo-
tide in the sequence and fed them into the base-calling algo-
rithm to produce a predicted sequence. The predicted sequence
was then compared to the actual sequence of the randomly
produced unknown in order to generate a sequence trace plot
and corresponding confusion matrix. Shown in Fig. 4a are the
resulting confusion matrix and an example section of a trace
plot from implementing the algorithm, using the optimal
parameter sets but without any conductance screening, at 35X
coverage (see Fig. S6–S8† for full trace plots). Note that although
the accuracy is high, there are still several calls made with low
condence along with a number of errors in the predicted
sequence (as marked by an ‘X’). To test the effect of the
proposed conductance screening on base-calling accuracy, we
next modied the algorithm to use only measurements for
which Gtunnel was less than a threshold value of 2 pS (Fig. 4b).
The results are striking—when applied to the same unknown
sequence, the modied algorithm shows a dramatic increase in
both accuracy and condence. At 35X coverage, the overall
accuracy increased from 93% without screening to over 99.8%
with low-conductance screening. This is consistent with the
hypothesis that the low-conductance measurements corre-
spond to less perturbation by the tip and substrate, and are
therefore more useful for base calling. As a further test of our
hypothesis we reversed the selection criteria, using only high-
conductance measurements for which Gtunnel was greater than
the threshold value of 2 pS. While this may still aid somewhat in
base calling by narrowing to a subset of spectra with similar
Gtunnel values, the molecular smear is expected to be larger for
these high-conductance measurements, which likely leads to
greater overlap and more incorrect calls. Indeed, when applied
to the same unknown sequence, the high-conductance
screening algorithm shows signicantly worse performance
(Fig. 4c), with a drop in overall accuracy to 72% at 35X coverage.
Interestingly, the high-conductance screening led to making
base calls with both higher condence and more frequent
mistakes than the same algorithm with no screening. In other
words, when using only high-conductance measurements the
algorithm seems to be confusing the bases more easily. Taken
together, these results support the idea that tunneling
conductance can serve as an important metric for character-
izing the extent of energy level smear in STSmeasurements, and
thus can reduce the error rate in molecular identication from
tunneling spectra. Combining this approach with improve-
ments in surface engineering to minimize heterogeneity and
reduce conformational entropy should further increase the
1058 | Chem. Sci., 2019, 10, 1052–1063
ability to distinguish between similar molecular species via
their electronic ngerprints. Fig. 5 shows a schematic diagram
depicting an overview of the base-calling algorithm that we have
presented here.
Structural label mapping

The capability of directly sequencing individual RNA molecules
represents a new and powerful tool for single-cell tran-
scriptomics. Going beyond sequencing, the possibility of
probing the three-dimensional structure of RNA is arguably
even more valuable, given the importance of RNA structure to
its biological function. Since the QMSeq method described
above relies on measurable differences in charge tunneling
through molecular orbitals to discriminate between the bases,
we hypothesized that we could use the same approach to detect
shis in the molecular orbital energy levels resulting from the
site-specic and structure-dependent addition of chemical
labels to the RNA molecules. Of the various chemical-labeling
methods, SHAPE has proven to be both versatile and robust,
allowing for parallel and high-throughput analysis of local
exibility at single-nucleotide resolution.35 Thus we chose to
adapt the SHAPE methodology for probing the structure of
single RNA molecules. A schematic illustration of our proposed
nanoelectronic method of RNA structural mapping is shown in
Fig. 6a. As with SHAPE, the rst step is to fold the RNA into its
native structure, followed by selective acylation with N-methyl-
isatoic anhydride (NMIA, Fig. 6b), a nucleophile that reacts with
the ribose 20-hydroxyl group of RNA in regions that exhibit
sufficient conformational exibility (i.e., are not constrained by
base-pairing or secondary structure).10 NMIA treatment thus
leads to selective labeling in unstructured, exible regions of
the molecule. In traditional SHAPE, this is followed by reverse
transcription of the labeled RNA into cDNA (primer extension),
during which the transcription is terminated at labeled sites,
leading to a collection of truncated transcripts that can be
analyzed by gel electrophoresis to generate a structural map of
the molecule. The SHAPE method has since been extended for
probing distinct structural subpopulations within an ensemble
of RNA,36 but due to the requirement of enzymatic amplica-
tion, it is still unable to directly detect the positions of all
labeled regions within individual RNA molecules. In contrast,
rather than relying on amplication, our method uses STS to
directly identify the labeled nucleotides within each RNA
molecule by detecting systematic shis in the measured
biophysical parameters that result from the modication of the
sugar to form a 20-O-adduct. Importantly, this opens up the
possibility of creating full structural maps of individual RNA
molecules.

Our proposed method of structurally mapping single RNA
molecules relies on discrimination between labeled and unla-
beled ribonucleotides via STS. To this end, we sought to detect
and characterize changes in the charge tunneling properties of
the four nucleobases resulting from modication of the adja-
cent ribose sugar. To do this, we collected a second spectral
library consisting of STS measurements on short RNA homo-
polymers that had been fully labeled with NMIA. We used short
This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Perturbation analysis and improved RNA base calling at 35X coverage. Confusionmatrices (left) and selected sequencing trace plots (right)
from applying the base-calling algorithm to identify a randomly generated ‘unknown’ sequence from STS measurements. The trace plots show
the predicted sequence at the top, with an ‘X’ indicating incorrect base calls. The middle shows base-calling confidence at each position, with
final probability values for each of the four bases shown at the bottom. (a) Results at 35X coverage from applying the algorithm without any
conductance screening. (b) Results at 35X coverage from using a low-conductance screening filter, where only STSmeasurements with Gtunnel#

2 pS were included. (c) Results at 35X coverage from using a high-conductance screening filter, where only STSmeasurements with Gtunnel > 2 pS
were included.
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molecules (7 nt), a high-temperature denaturation step (95 �C),
and a large excess concentration of NMIA during labeling to
ensure saturation of the unstructured molecules with the label.
Selected examples of the results of our QMSeq measurements
on labeled RNA are shown in Fig. 6c, d (full results in Fig. S9–
S12†). Compared to the unlabeled RNA, the NMIA-labeled
molecules display subtle shis in several of the measured
parameter distributions for all four bases, particularly for the
electron-tunneling parameters Vtrans(e�) and Fe�. This conrms
that the ribose 20-O-adduct does inuence the molecular
orbitals of the nucleobases to a measurable degree. To adapt
our base-calling algorithm for distinguishing between labeled
and unlabeled nucleotides, we reduced the number of classes in
the algorithm from four (rA, rG, rC, rU) to two (rN � NMIA),
This journal is © The Royal Society of Chemistry 2019
taking advantage of the fact that in structure studies the
sequence is oen known already, or else can be determined
beforehand using the sequencing method described above. We
then used the new library to re-optimize the parameter set for
each base to give the best discrimination between labeled and
unlabeled nucleotides.

The plots of correct recall vs. coverage for each of the four
bases are shown in Fig. 6e. For label identication with only two
classes the error rate is lower, with the overall accuracy reaching
85% aer just 5X coverage, and exceeding 98% at 35X coverage,
without using any conductance screening. This demonstrates
that structure-dependent RNA modications can also be iden-
tied via STS with high accuracy. Going further, we tested
whether our algorithm could successfully discriminate between
Chem. Sci., 2019, 10, 1052–1063 | 1059
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Fig. 5 Schematic flow diagram depicting the modified QMSeq base-calling algorithm. First, a number of tunneling spectra are acquired over the
molecule of interest. Next, the spectra pass through a conductance screening filter, which passes on only measurements for which Gtunnel falls
within the specified range. Next, the full set of biophysical parameters are extracted from the spectra, which are then fed into a machine learning
classification algorithm along with values from a spectral library. The resulting probabilities are then used to make a base call. Coverage is
increased by feeding in additional spectra from the same molecule to improve the accuracy.
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labeled and unlabeled nucleotides without any prior knowledge
of the identity of the nucleobase, as would be necessary for
simultaneous sequencing and structural mapping of molecules
Fig. 6 Nanoelectronic identification of structure-dependent chemical
used. An RNA molecule is first folded into its native structure, then un
adsorbed onto the MPA/Au substrate and measured with STS. (b) Chem
acylation by NMIA. (c, d) Selected examples of kernel density plots for the
and after (dashed line) NMIA labeling. (Full results shown in Fig. S9–S12†).
the four RNA bases. (f) Confusion matrix for discrimination between NM
identity of each nucleobase.

1060 | Chem. Sci., 2019, 10, 1052–1063
with an unknown sequence. In this case, we combined the data
from all four nucleobases and broadly divided the data into two
classes: labeled (+NMIA) and unlabeled (�NMIA). This data was
labels in RNA. (a) Schematic illustration of the experimental approach
dergoes a structure-dependent chemical labeling step before being
ical structure of an adenine ribonucleotide before and after selective
Vtrans(e�) and Fe� parameters for poly-rA7 RNA, both before (solid line)
(e) Plot of the accuracy vs. coverage for NMIA identification for each of
IA-labeled and unlabeled nucleotides without prior knowledge of the

This journal is © The Royal Society of Chemistry 2019
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then classied using the label identication algorithm without
using any information about the nucleotide identity. The results
shown in Fig. 6f demonstrate that even without knowledge of
the RNA nucleobase sequence, we are still capable of identifying
NMIA-labeled nucleotides with an accuracy of over 98% at 35X
coverage. Thus each nucleotide position can be measured with
STS and rst classied as labeled or unlabeled, followed by
sequence identication for unlabeled bases, simultaneously
yielding a partial sequence and full structural label map (see
Fig. 6a, inset). This structural map can then be aligned to the
complete sequence of the molecule, which is either already
known or can be determined by sequencing the unlabeled RNA
molecules. These steps combined then fully characterize the
sequence and structural labelling of single RNA molecules.
Ultimately this structural labeling study serves as a demonstra-
tion of the ability to combine our proposed tunneling spec-
troscopy method with machine learning using biophysical
parameters as molecular ngerprints in order to identify
chemically labeled nucleotides for RNA structure
determination.

Conclusion

We have presented a powerful new method for directly identi-
fying individual ribonucleotides and local structural labels in
single RNA molecules. Using the QMSeq technique, we have
demonstrated the ability to discriminate between the four
ribonucleotides within individual RNA molecules with an
overall accuracy of >99.8% at relatively modest coverage (35X).
Furthermore, we have shown that by probing the electronic
states of the ribonucleotides we can identify the presence of
chemical modications of the sugar moiety. This will enable
structural characterization of single RNA molecules using
a combination of structure-dependent chemical labeling and
tunneling spectroscopy measurements, in analogy with the
widely successful SHAPE method.10 Importantly, this presents
the possibility of simultaneous sequencing and structural
mapping of individual RNA molecules, which will be an
unprecedented tool in understanding the sequence–structure–
function relationship for this centrally important biomolecule.
We recognize that there are additional challenges when trans-
lating this method into a full sequencing approach, including
the difficulty of correlating the extracted nucleotide information
with the position of each measurement along an unknown
molecule in order to derive the true sequence.37 One promising
solution is to carry out simultaneous STM imaging and STS
mapping of the region containing the molecule, allowing the
spectral grid to be mapped onto a high-resolution image of each
segment of the molecule. Another challenge pertains to the
speed of the proposed sequencing approach. Using a small
voltage window (�1 V) and a fast sweep rate (�200 V s�1) allows
for single-nucleotide measurement times of �0.5 s (30 sweeps
per measurement), with an estimated sequencing speed of
�8 min kb�1 when using a single tip. However this speed could
be dramatically improved by using an array of tips scanning
a much larger area in parallel.38 We also expect this approach to
be more broadly applicable to other biologically relevant
This journal is © The Royal Society of Chemistry 2019
chemical alterations of nucleotides, including epigenetic
modications and oxidative damage. We anticipate that our
new single-molecule characterization platform could help to
address some of the more challenging problems in tran-
scriptomics, including deconvoluting cellular heterogeneity,
mapping developmental trajectories, and understanding the
role of stochasticity in transcriptional mechanics.39
Experimental methods
RNA handling

Precautions were taken to minimize enzymatic degradation of
the RNA. All solutions coming into contact with RNA were
prepared with ultrapure deionized (DI) water (Barnstead Ther-
molyne NANOpure Diamond purication system, water resis-
tivity > 18 MU cm). Prior to handling RNA, the workbench,
gloves, pipets and other surfaces were cleaned with
RNaseZAP™ RNase inhibitor solution (Ambion, Inc, USA). RNA
solutions were stored long-term at �80 �C and short-term at
�20 �C in small aliquots, and were thawed on ice immediately
before use.
NMIA labeling of RNA

RNA labeling was carried out following a procedure adapted
from the originally published SHAPE protocol.11 RNA (50 pmol)
was diluted in 40 mL of 0.5X TAE buffer (1X TAE ¼ 40 mM Tris
acetate, 1 mM ethylenediaminetetraacetic acid, pH � 8.3) in
a 200 mL PCR tube. The RNA solution was heated to 95 �C for
2 min to fully denature any secondary structure, then immedi-
ately placed on ice. Next 5 mL of 10X TAE buffer was added,
followed by 5 mL of 10X NMIA solution (100 mM in DMSO,
freshly prepared), to give nal concentrations of 1 mM RNA,
10 mM NMIA, and 1.4X TAE. The solution was heated to 37 �C
for 45 min (or roughly ve NMIA hydrolysis half-lives), then
cooled to 4 �C and immediately puried using a QIAquick
Nucleotide Removal Kit (QIAGEN, Germany).
Substrate preparation

Measurements were carried out on the (111) facet of a single-
crystal Au substrate. The substrate was cleaned by rinsing and
brief sonication in acetone and methanol and rinsing with
ultrapure DI water (resistivity > 18 MU cm), followed by
immersion in hot nitric acid for 10–15 min. Then, it was rinsed
thoroughly with ultrapure water, blown dry, and briey
annealed under a hydrogen ame. Aer cooling under a stream
of nitrogen gas, the substrate was immersed into a freshly
prepared ethanolic solution of 3-mercaptopropionic acid (MPA,
1 mM) containing 3% v/v acetic acid. The container was back-
lled with N2 gas, sealed with Paralm, and kept in the dark at
room temperature to minimize thiol oxidation. Aer overnight
monolayer assembly (typically 16–20 h), the sample was
removed from the solution, briey sonicated in ethanol (10 s),
rinsed with ethanol, and blown dry.
Chem. Sci., 2019, 10, 1052–1063 | 1061
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RNA adsorption

The MPA/Au substrate was exposed to an aqueous solution
containing the RNA oligonucleotides (1.0–100 nM) along with
5 mM Ni(II) acetate for an adsorption time tads of 1–5 min. The
solution was then removed and the sample was blown dry and
immediately transferred to the STM vacuum chamber. The
initial high surface-coverage experiments on unmodied RNA
used 100 nM RNA and tads ¼ 5 min, while the low surface-
coverage experiments on RNA � NMIA used 1.0 nM RNA and
tads ¼ 1 min.
STM

Imaging and spectroscopy were carried out on an R9model STM
(RHK Technologies, USA), operating in constant current mode
under ultra-high vacuum (UHV, �8 � 10�10 Torr) at room
temperature (�294 K). STM probes were made in-house by
carefully cutting a short length of platinum-iridium wire to
mechanically form a sharp tip. Tip sharpness was veried by
imaging the characteristic herringbone reconstruction on
a clean Au (111) substrate (see Fig. S1a†). Imaging was per-
formed at a bias of �500 mV with a current setpoint of 100–200
pA. The high-resolution image in Fig. 1e was obtained at low
temperature (12 K) using a bias of 1.5 V with a current setpoint
of 200 pA.
Tunneling spectroscopy

STS measurements were collected pointwise on 64 � 64 or 128
� 128 grids across different areas of the sample, with a grid
point spacing of at least 1.25 nm. During the measurement, the
STM tip was moved sequentially to each grid point under
constant-current feedback. Then aer a stabilization delay of
200 ms, the feedback was switched off and the bias voltage was
swept from �3.0 V to + 3.0 V at a rate of 120 V s�1 while
monitoring the current. Each I/V spectrum consists of 301 data
points with a resolution of 20 mV.
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