

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)
Cite this: *RSC Adv.*, 2019, **9**, 37739

DOI: 10.1039/c9ra90086a

www.rsc.org/advances

Correction: The protective effect of propofol on ionizing radiation-induced hematopoietic system damage in mice

 Xiaoliang Han,^{a*} Fengtao Sun,^a Ying Zhang,^a Jinyan Wang,^b Qingguo Liu,^b Ping Gao^a and Shubo Zhang^a

 Correction for 'The protective effect of propofol on ionizing radiation-induced hematopoietic system damage in mice' by Xiaoliang Han *et al.*, *RSC Adv.*, 2019, **9**, 36366–36373.

Fig. 5 as published was actually the same as Fig. 7; the corrected version of the figure (with associated legend) is shown below.

Fig. 5 Propofol inhibits IR-induced cell death and apoptosis. Propofol at concentrations of 25 μ M, 50 μ M, 100 μ M, 200 μ M, and 400 μ M was added to the culture medium 30 min before Lineage⁻ cells were exposed to 4 Gy, and then cell death, apoptosis and cell cycle analyses were performed. (A) The percentage of live cells; (B) the percentage of proliferative (S/G₂/M phase) cells; (C) the percentage of apoptotic cells; (D) representative flow scatter plots of cell apoptosis. Data are presented as means \pm SEM ($n = 5$), # $p < 0.05$ vs. control, ** $p < 0.05$ vs. 4 Gy.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aAffiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, 063000, China. E-mail: mayastarfx2008@163.com

^bTangshan Gongren Hospital, Tangshan, Hebei, 063000, China
