RSC Advances

CORRECTION

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2019, 9, 3503

Correction: ¹⁹F multiple-quantum coherence NMR spectroscopy for probing protein-ligand interactions

Anna Zawadzka-Kazimierczuk, **D*** Mate Somlyay, ** Hanspeter Kaehlig, **D** George lakobson, **D** Petr Beier **D** and Robert Konrat**

DOI: 10.1039/c9ra90004g

www.rsc.org/advances

Correction for ¹⁹F multiple-quantum coherence NMR spectroscopy for probing protein–ligand interactions' by Anna Zawadzka-Kazimierczuk *et al.*, *RSC Adv.*, 2018, **8**, 40687–40692.

In the original manuscript, Fig. 1 contained an error, for which two pulsed field gradients in the NMR pulse sequences depicted should not be present. The correct figure and caption are as follows.

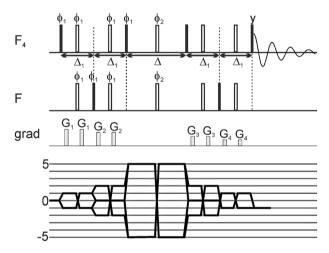


Fig. 1 Scheme of the 5Q pulse sequence for T_2 measurements of the SF₅ system, together with coherence transfer pathway. All pulses were selective shaped pulses. The pulses acting on one type of fluorine nuclei (F or F₄ group) were sinc-shaped; their length was set to 250 μ s and offset was set on the frequency of the group. The pulses applied simultaneously on F and F₄ groups were cosine-modulated sinc-shaped pulses; their length was 250 μ s and offset was set in the middle between the two frequencies. The Δ_1 delay was set to 6.28 ms and the relaxation delay Δ was incremented. The pulse phases were set to x, unless shown explicitly. On the phase ϕ_1 a 10-step phase cycle was performed to select the coherence of ± 5 order during the multiple-quantum period. Additionally, on the phase ϕ_2 a 4-step phase cycle was performed.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter Campus 5, A-1030 Vienna, Austria

Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland

^cInstitute of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria

^dInstitute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague, Czech Republic. E-mail: anzaw@chem.uw.edu.pl; Robert. Konrat@univie.ac.at