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Oxygen storage materials (OSMs), such as pyrochlore type CeO2–ZrO2 (p-CZ), are used as a catalyst

support for three-way catalysts in automotive emission control systems. They have oxygen storage

capacity (OSC), which is the ability to release and store oxygen reversibly by the fluctuation of cation

oxidation states depending on the reducing or oxidizing atmosphere. In this study, we explore high-

capacity OSMs by using materials informatics (MI) combining experiments, first-principles calculations,

and machine learning (ML). To generate training data for the ML model, the OSC values of 60 metal

oxides were measured from the amount of CO2 produced under alternating flow gas between oxidizing

(O2) and reducing (CO) conditions at 973, 773, and 573 K. Descriptors were computed by atomic

properties and first-principles calculations on each oxide. The support vector machine regression model

was trained to predict the OSC at each temperature. The features describing OSC were automatically

selected using grid search to achieve practical cross validation performance. The features related to the

stability of the oxygen atoms in the crystal and the crystal structure itself such as cohesive energy are

highly correlated with OSC. The present model predicts the OSC of 1300 existing oxides. Based on its

high predictive power for OSC and synthesizability, we focused on Cu3Nb2O8. We synthesized this

material and experimentally confirmed that Cu3Nb2O8 showed a higher OSC than conventional OSM p-

CZ. This MI scheme can significantly accelerate the development of new OSMs.
Introduction

Carbon monoxide (CO), hydrocarbons (HC), and nitrogen
oxides (NOx) emitted from gasoline-powered automobiles are
environmentally hazardous substances as they contribute to air
pollution and ozone layer depletion. A three-way catalyst system
can convert these compounds (CO, HC, and NOx) into CO2, H2O,
and N2 simultaneously. It functions effectively if the weight
ratio of air to fuel (air–fuel ratio) in the automobile engine is
near the theoretical stoichiometric air–fuel (A/F) ratio. However,
actual driving conditions, such as acceleration and decelera-
tion, oen make the air-fuel ratio deviate from the ideal stoi-
chiometric value. To control the A/F ratio, an oxygen storage
material (OSM)1,2 is used as a catalyst support for storing and
releasing oxygen. The OSMs incorporate oxygen from an
oxidation atmosphere and supply oxygen in a reducing atmo-
sphere; this property is called the oxygen storage capacity (OSC).
That is, OSC is dened as the amount of oxygen per OSM weight
stored in and released from the OSM on a time scale of seconds
or minutes.3 OSC is represented as the ability of oxidation-state
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change of constituent cation in OSM. It is usually measured
from the consumption of a reducing agent like H2 or CO, or the
amount of CO2 produced under alternating ow gas between
oxidizing(O2) and reducing (CO) conditions.2 OSMs can regulate
the exhaust-gas atmosphere and support the catalysis of the
noble metal to convert the compounds properly. For example,
CeO2 (ref. 4) and CeO2–ZrO2 (ref. 5) are known for being OSMs
currently in use. Because a high OSC broadens the operating
range of A/F ratios,6,7 novel OSMs that show sufficient OSC,
especially at lower temperatures, are desirable for a high
conversion efficiency.

In recent years, materials informatics (MI) has attracted
attention as a method of accelerating the search for new viable
materials from a wider range of materials space. MI uses
materials data, and constructs a predictive model using
machine learning techniques in order to discover new materials
that have not yet gained attention.8,9 A representative search
method in MI is virtual screening based on supervised learning,
as shown in Fig. 1. This method has been used in a variety of
applications, such as in the search for oxide ion conductors,10

organic EL materials,11 cathode materials for lithium-ion
batteries,12 and lithium ion conductors.13,14 While there are
many researches that have reported to able to accelerate mate-
rial developments by MI, there are still scarce reports that
achieved experimental validations. Indeed, according to
a review paper,15 only 26 studies have been reported along with
RSC Adv., 2019, 9, 41811–41816 | 41811

http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra09886k&domain=pdf&date_stamp=2019-12-17
http://orcid.org/0000-0001-9779-6401
http://orcid.org/0000-0001-6364-0695
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra09886k
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA009071


Fig. 1 Schematic diagram of a virtual screening scheme by supervised
learning.
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View Article Online
experimental validations. One of the difficulties is that experi-
mental data in literature are observed in different conditions. In
this study, we utilize a well-dened experiment dataset which
were obtained in a unied condition by the same facility, to
perform the virtual screening method. The aim of this virtual
screening is to discover a novel OSM that indicates a higher OSC
than the current state-of-the-art storage materials. The process
of virtual screening is outlined in Fig. 1 and this paper is
organized along these procedures.
Training data

To prepare the training data for supervised learning, we
measured not only known OSMs in the literature but also a wide
range of oxides, and then synthesized 60 binary and ternary
oxides using the solid phase reaction method or sol–gel
method. All the metal oxides loaded with 1 wt% of Pd via
impregnation. Since the dissociation of molecules is acceler-
ated with the Pd support, it is expected to help an oxide material
achieve its ideal OSC.16 The OSC was evaluated using a xed-bed
ow reactor. To burn off impurities on the surface, each oxide
(2.0 g) loaded in the reactor was pretreated under a mixed gas
stream of 5% oxygen and 95% nitrogen at a rate of 10 Lmin�1 at
300 �C for 5 min. The OSC was measured at 300 �C (573 K),
500 �C (773 K) and 700 �C (973 K). A cycle of 1% O2/N2 for 2 min
and 2% CO/N2 for 2 min was repeated 6 times at each temper-
ature at a ow rate of 10 L min�1. These experimental condi-
tions were determined considering the uctuation of the
practical A/F ratio and previous papers.17,18 The amounts of CO2

emitted in circulating CO are averaged over the second to h
cycles. The averaged value is divided by the weight of the
sample, which is OSC [mmol-O g�1]. Generally speaking, OSC is
classied into two categories: total OSC and dynamic OSC.2,4

The total OSC, which is in the equilibrium state, is the overall
amount of stored oxygen not only on surface but also in bulk,
while dynamic OSC is associated with the rate of oxygen release
from OSMs and the mobility of oxygen. Under the above cycling
conditions, we conrmed that OSC of conventional uorite
CeO2–ZrO2 reached equilibrium. Although it cannot promise
for all the OSMs, it is considered that they have almost reached
near equilibrium at worst. The measured OSC are summarized
in Fig. 2 and Table S1 of ESI.† In particular, at 573 K, there were
41812 | RSC Adv., 2019, 9, 41811–41816
many materials which indicated OSC's below the measurement
limit. The number of entries in the training data which could be
used for the model training was 53 at 573 K, 60 at 773 K, and 57
at 973 K.

Features

Next, the features that link OSC are dened. The reactions for
storage and release of oxygen in the oxide can be expressed by
the following chemical reaction formula.

MOx�d + d/2O2 4 MOx (1)

The enthalpy difference between the le and right states in
eqn (1) corresponds to the formation energy of the oxygen
defect. Therefore, the oxygen-defect formation energy is
appropriate for an explanatory variable that accurately describes
the characteristics of OSC. This quantity should be determined
by the rst-principles calculation of a large supercell made of
repeatedly-connected unit cells to describe the isolated defects.
This results in a high calculation cost. To accelerate the evalu-
ation, Deml et al.19 performed the rst-principles calculations
on 45 oxide materials and used them as the training data for
a linear regression model of the oxygen-defect formation
energy, achieving an error range of 0.2 eV. Their model used
three explanatory variables, which are: (i) heat of formation of
the oxide, (ii) oxygen p-band center with the center of the band
gap as the origin, and (iii) the average value of the electroneg-
ativity of the elements that constitute the polyhedron in the
crystal structure. The features (i) and (ii) can be obtained by the
rst-principles calculation on a small unit cell, and (iii) can be
easily obtained if the constituent elements and the crystal
structure are known. Therefore, if the oxygen-defect formation
energy can be predicted using (i) to (iii), the calculation cost is
dramatically reduced in comparison to the direct calculation
which uses the supercell.

It would be the best to be able to obtain the explanatory
variables in a simple way. On the basis of the above insights, we
examined the following seven explanatory variables of OSC:

E_coh: cohesive energy computed by Vienna Ab initio Simu-
lation Package (VASP) code20 [eV]

band gap: Band gap (Eg) [eV]
p band center: oxygen p-band center [eV] (with the top of the

valence band as the origin)
pband2: (p band center) � (band gap)/2 [eV] (with center of

the band gap (Eg/2) as the origin)
delta chi: average value of the difference in electronegativity
weight/O: molecular weight per oxygen
average r: average distance between oxygen and the cation [�A]
Here we consider two cases of the denition of energy origins

for the oxygen p-band center: the top of the valence band, and
the middle of the band gap. Note that the E_coh, band features
(band gap and p-band center or pband2), and delta chi corre-
spond to the features of (i) to (iii) described above. Additionally,
we added weight/O and average r as the features relating to the
diversity of constituent elements and crystal structure.

To obtain these features, rst-principles calculations were
performed using VASP20 with PAW pseudo-potentials,21 which is
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Measured OSC value of the Pd-loaded metal oxides used as the training data.

Fig. 3 Results of leave-one-out cross validation by SVM regression
model at 973 K.
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based on the density functional theory. The Perdew–Burke–
Ernzerhof (PBE)22 generalized-gradient-approximation func-
tional was applied in the exchange and correlation energy
terms. The cutoff energy of the plane-wave basis is 500 eV, with
the k-point grid of the Brillouin zone divided into 0.01–0.02�A�1.
In the structural optimization, the atomic congurations were
relaxed so that the force acting on each atom was 0.01 eV�A�1 or
less. All the calculations were performed taking into consider-
ation spin polarization.

Machine learning model

For the regression model of OSC, we standardized the training
dataset as mentioned in S2 of ESI† and used a support vector
machine (SVM)23,24 which was implemented using the machine
learning library scikit-learn.25 Since the number of detectably
large OSC values depends on the measurement temperatures,
an optimal model was constructed for each temperature. In
each model, the explanatory variables were automatically
selected by grid search so as to achieve the highest accuracy, as
well as hyper-parameters of SVM. To evaluate the prediction
accuracy, we used the leave-one-out cross validation (LOOCV).
At 973 K for instance, the grid search selects the features weight/
O, E_coh, and pband2 as the appropriate explanatory variables.
The SVM model was optimized with the Gaussian kernel by
penalty term coefficient C ¼ 1000, kernel parameter g ¼ 0.03,
and width of insensitive loss function 3 ¼ 0.0001. Fig. 3 shows
the results of LOOCV. The mean absolute error (MAE) and the
root mean square error (RMSE) were 0.35 and 0.47, respectively.
The results at 773 K and 573 K can be found in S3 of ESI.† To
further validate this ML approach, the binary-classication task
This journal is © The Royal Society of Chemistry 2019
whether the OSC was more than a threshold value (we set it 900
mmol-O g�1 at 973 K) or not was also conducted as described in
S4 of ESI.† Our model can screen the most likely high-capacity
OSMs with more than 80% probability.

In addition to the SVM, we investigated the prediction
accuracies using other machine learning (ML) algorithms;
Gaussian Process Regression (GPR),26 Kernel Ridge Regression
(KRR),27 Linear Ridge Regression (LRR),28 and Neural Network
(NN).29–32 These algorithms were also implemented using the
machine learning library scikit-learn.25 Table S5 in ESI† shows
RSC Adv., 2019, 9, 41811–41816 | 41813
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Fig. 4 Scatter plot of OSC at 573, 773, and 973 K. O is the predicted
value for the material registered in the electronic structure calculation
DB, * is the predicted value of Cu3Nb2O8 and B represents the
measured values of the training dataset.
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the prediction accuracy of LOOCV for various ML algorithms at
each temperature. It is found that the prediction accuracy of
SVM model is the best at each temperature. The radial basis
function is used as the kernel in SVM, GPR, and KRR models.
There is almost no difference in the prediction results of these
three models. On the other hand, the prediction accuracy of
LRR was worse. The poor prediction accuracy in NN model is
due to the small training dataset. In general, the NN model
requires a highly diverse training dataset with sufficient repre-
sentative examples for proper prediction.33 In this study, the
non-linear prediction model SVM seems to be appropriate.

Pairwise scatterplots for the OSC data at 973 K and seven
explanatory variables are shown in Fig. S3 of ESI.† Here we
discuss the details of the selected explanatory variables.
Although the oxygen defect formation energy is considered to
correlate with the OSC as mentioned in previous section, it is
interesting that the “E_coh” and “p band center” have correlation
with not only the oxygen defect formation energy but also the
measured OSC. The correlation coefficients between the
common logarithm of OSC (log10(OSC[mmol-O g�1]@973 K))
and these variables (weight/O, E_coh, and pband2) were �0.19,
0.45, and �0.10, respectively. Since OSC is standardized per
oxide weight, it is reasonable that the weight/O feature is
selected as the explanatory variable. The E_coh corresponds to
the energy difference between the crystalline state and the iso-
lated atoms. Therefore, the higher the E_coh, the more unstable
the OSMwill be. This result indicates that unstable OSMs would
be preferable towards improving the OSC. The feature pband2 is
expressed by the oxygen p-band center and the band gap. The
lower the oxygen p-band center, the more stable the oxygen
states in the crystal. Since the correlation of OSC with this
variable is negative, it indicates that oxygen should be stable
within the crystal for higher OSC values. This result can be
explained by the fact that moderate stability oxides are likely to
release and store the oxygen molecules in reducing and oxida-
tion atmospheres, respectively.
Fig. 5 Predicted and measured values of OSC for Cu3Nb2O8 and
pyrochlore-type CZ (the current material). Measured OSC is the mean
value of two experimental results and error bars indicate the standard
deviation.
Screening from database and experimental validation

We applied this regression model to the database (DB) of
electronic-structure calculations of the 1300 oxides, in order to
screen for high-capacity OSMs. Entries of this in-house DB were
selected from the oxides which contained 100 or fewer atoms in
their unit cell as registered in the inorganic crystal structure
database (ICSD),34 owing to computational-cost restrictions.
The scatter plot of the predicted OSC at each temperature is
shown in Fig. 4. Among the candidate oxides, we focused on
Cu3Nb2O8 because its predicted OSC was ranked relatively high
at all temperatures and was comparatively easier to be synthe-
sized. Whereas many of the OSMs reported so far contain scarce
lanthanides (rare-earth elements) in CeO2–ZrO2 for example,
Cu3Nb2O8 may offer an advantage because it is not composed of
any lanthanides.

The synthesis procedure is described in ESI.† X-ray diffrac-
tion (XRD) conrmed that a single phase was obtained. Fig. 5
shows the measurement results of the OSC along with those of
a current high-performance OSM, pyrochlore-type CeO2–ZrO2
41814 | RSC Adv., 2019, 9, 41811–41816
(p-CZ), for comparison. The present Cu3Nb2O8 showed a higher
capacity than the baseline p-CZ at all temperatures. Further-
more, at 773 K, the predicted and measured values were in good
agreement. On the other hand, the difference between the
predicted and measured values of p-CZ is large, likely because
the training dataset at 573 K includes only one pyrochlore-type
crystal structure. The regression accuracy may improve with
augmentation of the training dataset. Another reason seems
that the regression model cannot learn the chemical insight of
the redox of cations. For example, when the oxidation state of
Ce in p-CZ changes from Ce4+ to Ce3+ during oxygen release, the
theoretical maximum of OSC is 1693 [mmol-O g�1], while the
prediction value at 573 K is higher than the theoretical
maximum. Building the model considering the physical and
chemical insights is one of the challenging problems in MI.
This journal is © The Royal Society of Chemistry 2019
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In addition, the rate of oxygen release/storage (OSC-r) was
simply estimated from the transient response curve as shown in
Fig. S4 of ESI.† The OSC-r for Cu3Nb2O8 and p-CZ were 2.38 �
10�5 mol min�1 and 1.60 � 10�5 mol min�1, respectively.
Surprisingly, Cu3Nb2O8 has better performance than p-CZ from
the view point of rate, though the OSC-r is not predicted in our
ML model directly. Regarding the OSC-r estimated from Fig. S4
of ESI,† the OSC-r of p-CZ is increasing monotonically as the
temperature increases from 573 K to 973 K. On the other hand,
the OSC-r of Cu3Nb2O8 at 773 K is highest among three
temperatures. This performance of Cu3Nb2O8 is considered to
be related to the possibility of phase separation and thermal
stability. Nonetheless, the industrial use of an OSM requires
other performance metrics such as thermal stability and easy
synthesis by mass production, which are not considered in this
virtual screening.
Fig. 6 (a) Scatter plot of the selected three explanatory variables,
weight/O, E_coh, and pband2 for the training data and Cu3Nb2O8. (b)
Multidimensional scaling plot of the SOAP distance between the
training dataset and Cu3Nb2O8 based on the similarity of crystal
structure.

This journal is © The Royal Society of Chemistry 2019
The selected explanatory variables and crystallographic
features of Cu3Nb2O8 were compared to the training data in
Fig. 6. The color of each point in Fig. 6 represents the measured
value of OSC[mmol-O g�1] at 973 K. The 3-dimentional scatter
plot in the features space (Fig. 6(a)) indicates that Cu3Nb2O8 is
the most similar to Ca2Fe2O5 among training datasets. The
second-most similar materials are g-Fe2O3 and ZnMn2O4 which
are classied in spinel-type structure. This result indicates that
the Cu3Nb2O8 is similar to the spinel-type OSMs in terms of not
only crystal structure (to be mentioned later) but also the
material features space. In addition, we applied the Smooth
Overlap of Atomic Positions (SOAP) kernel,35,36 which describes
the similarities of the local structures surrounding oxygen
atoms. The structural similarity between the 60 oxides
belonging to the training dataset and Cu3Nb2O8 was calculated
as a form of SOAP distance matrix. Parameters of the SOAP
kernel, the cutoff radius and width of Gaussian distribution of
atoms, were set at 5�A and 0.5�A, respectively. To distinguish the
elemental species in the SOAP measure, we include the elec-
tronegativity in the width of Gaussian function at 1, as in the ref.
36. Fig. 6(b) shows a reduced two-dimensional map of the SOAP
distance matrix projected using the metric multi-dimensional
scaling method37 implemented in the scikit-learn library. The
training dataset can be classied in terms of their crystal
structures: e.g. uorite (such as CeO2), delafossite, and spinel
types. Cations around the oxygen ion in spinel oxides form edge
and vertex sharing tetrahedral sites. The discovered Cu3Nb2O8,
which is not denoted by the spinel, has a similar structure but
consists of the tetrahedral and triangular sites. This similarity is
detected in the SOAP distances. This result suggests that
utilizing MI highlights hidden OSMs that are structurally
similar to the known materials, but difficult for humans to
recognize only with the names of the structure types. There may
still exist prospective hidden OSMs whose crystal structures
have received little attention so far.
Conclusions

In conclusion, we have demonstrated a data-driven material
search using the experimental OSC data prepared under highly
controlled uniform conditions. This MI scheme can signi-
cantly accelerate the identication and development of new
OSMs. Indeed, by screening the existing oxides, we discovered
a novel high-capacity OSM, Cu3Nb2O8.

The oxygen storage and release reaction mechanism of the
proposed material Cu3Nb2O8 is currently under investigation.
In particular, the oxidation state change of Cu accompanying
the generation of oxygen defects is important for the industrial
use. Detailed reaction mechanisms, phase separation, and
thermal stability of Cu3Nb2O8 will be reported in the future.

Furthermore, experimental validation of high OSC candi-
dates other than Cu3Nb2O8 is also underway. Augmentation the
training data with these validated ones makes virtual screening
process a closed-loop. This is expected to improve the accuracy
of the prediction model and further advance the material
discovery.
RSC Adv., 2019, 9, 41811–41816 | 41815

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra09886k


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
D

ec
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

0/
20

/2
02

5 
1:

20
:1

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Conflicts of interest

There are no conicts to declare.

Acknowledgements

The authors would like to thank Dr N. Nagata, T. Hayashi, and
Dr H. Hirata for fruitful discussions. We also thank H. Yama-
shita for assistance with the building machine learning model.

Notes and references

1 H. Gandhi, G. Graham and R. W. McCabe, J. Catal., 2003,
216, 433–442.

2 P. Li, X. Chen, Y. Li and J. W. Schwank, Catal. Today, 2019,
327, 90–115.

3 Y. Sakamoto, Y. Kizaki and T. Motohiro, R&D Review of Toyta
CRDL, 2002, 37, 14–19.

4 H. Yao and Y. Y. Yao, J. Catal., 1984, 86, 254–265.
5 A. Suda, T. Kandori, N. Terao, Y. Ukyo, H. Sobukawa and
M. Sugiura, J. Mater. Sci. Lett., 1998, 17, 89–90.

6 A. Trovarelli, F. Zamar, J. Llorca, C. d. Leitenburg, G. Dolcetti
and J. T. Kiss, J. Catal., 1997, 169, 490–502.

7 Z. Zhang, Y. Fan, Y. Xin, Q. Li, R. Li, J. A. Anderson and
Z. Zhang, Environ. Sci. Technol., 2015, 49, 7989–7995.

8 R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-
Kanakkithodi and C. Kim, npj Comput. Mater., 2017, 3, 54.

9 G. H. Gu, J. Noh, I. Kim and Y. Jung, J. Mater. Chem. A, 2019,
7, 17096–17117.

10 S. Kajita, N. Ohba, A. Suzumura, S. Tajima and R. Asahi, NPG
Asia Mater., 2019, Submitted.
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