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ce liquid chromatography-mass
spectrometry-based metabolomics reveals
Huangqiliuyi decoction attenuates abnormal
metabolism as a novel therapeutic opportunity for
type 2 diabetes†

Jiao Xu,‡ab Zhe-hui Jiang,‡a Xiu-bo Liu,‡b Yan Ma,c Wei Ma*ab and Ling Ma *a

Background: As a typical chronic metabolic disease, type 2 diabetes mellitus causes a heavy health-care

burden to society. In this study, we applied the metabolomics strategy to explore the potential molecular

mechanism of the Huangqiliuyi decoction (HQLYD) for type-2 diabetes (T2D). Ultra-performance liquid

chromatography-mass spectrometry (UPLC-MS) combined with pattern recognition methods was

utilized to select specific metabolites closely associated with HQLYD. Biomarker pathway analysis and

biological network were utilized to uncover the therapeutic effect and action mechanism related to

HQLYD. A total of twenty-five biomarkers were identified in the animal model, in which sixteen

biomarkers are associated with HQLYD treatment for T2D. They attenuated the abnormalities of

metabolic pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine

metabolism, and the citrate cycle. HQLYD also significantly elevated the serum FINS and SOD, GSP-x

level in the liver and kidney, and reduced the serum TC, TG, HDL, LDL, urea, Scr, AST, ALT, FBG, IRS,

MDA, and CAT level. We found that the therapeutic mechanism of HQLYD against T2D affected amino

acid metabolism, glucose metabolism and lipid metabolism. Metabolomics revealed that the Huangqiliuyi

decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes.
1. Introduction

Type 2 diabetes mellitus is a typical chronic metabolic disease,
and it was reported that more than four million people suffered
from it globally in 2014. Based on the latest research of the
Diabetes Atlas from the International Diabetes Federation, this
gure is likely to reach 642 million by 2040, and the amazing
growth rate undoubtedly brings a heavy health-care burden to
society.1 Because of the intricate and incomplete understanding
of the reciprocity between the natural environmental and
inheritance factors, type 2 diabetes mellitus invalids the present
feature of insulin sensitivity decline, impaired b-cell physio-
logical function and hyperinsulinaemia.2–4 In recent years, dia-
betes defense and treatment progress have failed to achieve
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good results, where the main problem is that patients are in the
pathophysiological state of type 2 diabetes mellitus for many
years before the onset of clinical symptoms, and in addition,
patients are easily prone to complications such as nephropathy,
retinopathy and residual foot issues at the time of diagnosis.5,6

In clinic, the available and routine methods such as detecting
BMI, fasting blood glucose and HbA 1c content have limitations
and are imprecise.7–9 Currently, the commonly used drugs in
clinic are sulfonylureas combined with biguanide hypoglycemic
agents and insulin injections; however, their therapeutic effect
is limited and they even result in distinct side effects such as
severe liver dysfunction, kidney dysfunction, severer infections,
and pregnancy contraindication.10,11 Thus, it is imperative to
seek advanced diagnostic methods and effective therapies for
distinguishing high-risk populations, maximizing therapeutic
efficiency and minimizing adverse reactions to remedy the
strained situation of type 2 diabetes mellitus.

Mounting evidence suggests that drug combinations con-
taining multiple drugs targets are more conducive to the treat-
ment of chronic diseases. As long ago as 400 years ago,
a combinative therapeutic method called ‘prescription’, which
takes advantage of medicinal herbs by interactive relationship
in the therapy of diabetes mellitus, was recorded in the General
Questions and Answers from Huang Di's Inner Classie. As an
This journal is © The Royal Society of Chemistry 2019
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indispensable factor of the modern medical setup in compar-
ison with Western medicine, traditional Chinese medicine
(TCM) prescriptions consist of some particular herbs contain-
ing multiple active ingredients and multiple disease targets are
characterized with accessibility, hypotoxicity, prominent effi-
cacy and fewer serious side effects in resisting various types of
diseases by synergistic effects in organisms.12,13 The Huangqi-
liuyi decoction (HQLYD) is a formula consisting of a boiled
water solution of Astragalus and Glycyrrhiza with a proportion of
6 : 1, which has been applied for the treatment of verruca acu-
minata, prostatitis, and diabetes mellitus in clinical practice,
especially for type 2 diabetes mellitus-related diseases. Accord-
ing to the chemical ingredient analysis, the main medicinal
substances of Astragalus membranaceus are Astragalus poly-
saccharides, Astragalus saponins, avonoids, amino acids and
trace elements.14 Many studies found that it markedly perfects
insulin sensitivity by adjusting PKB/GLUT4 signaling in skeletal
muscle and declines the expression of PTP1B medicated by
removing ER stress-induced ATF6 activation in model
animals.15,16 In addition, astragaloside IV has the ability to
weaken lipolysis and heighten insulin resistance through the
hepatic glucose-regulating enzyme pathway.17 Licorice contains
a large amount of avonoids, such as isoavones, dihydro-
avones, avonols, chalcones, and dihydrochalcone.18 These
compounds exhibit activity for restoring tyrosine phosphoryla-
tion of insulin receptors and insulin receptor substrates,
improving insulin signaling and enhancing glucose tolerance
and insulin sensitivity.19,20 These facts indicate that HQLYD has
excellent therapeutic effects on type 2 diabetes mellitus;
however, the therapeutic mechanism of HQLYD on type 2 dia-
betes mellitus is still not fully understood.

Metabolomics focuses on small endogenous metabolites
with amolecular weight less than 1 kDa in biouids and tissues,
and aims to explore multi-parametric metabolic reactions to
pathological provocative or medicinal therapy, which supplies
an integral metabolic proling analysis of biological
systems.21,22 It aims to screen potential biomarkers that are
highly sensitive to disorder and contribute to changes. There
are two major analytical techniques, including nuclear
magnetic resonance (NMR) and mass spectrometry (MS), widely
applied inmeasurement at a rapidly increasing rate. Comparing
the MS and NMR technology platforms, the sample detection
requirement of MS is low, it has high sensitivity and a wide
linear range, and metabolites with a large difference in
concentration can also achieve good detection results.23,24 The
metabolome as the nal outcome during the biological process
contains the total set of metabolites in a living organism.
Compared with the large number of genes or mRNA, it has
signicant capacity to select biomarkers and seek disrupted
pathways of HQLYD in protecting against type 2 diabetes mel-
litus by detecting metabolome changes.25 In this research,
a comprehensive strategy based on serum metabolomics was
applied to perform an overall determination of the mechanism
of HQLYD in treating type 2 diabetes mellitus. The differenti-
ated biomarkers identied in a rat model induced by the dietary
model of high sugar and high fat were further conrmed by
a targeted quantitative analysis. Pathway analysis and relational
This journal is © The Royal Society of Chemistry 2019
network construction were conducted to disclose the corre-
sponding pathways associated with HQLYD treatment and to
aid in evaluating unknown treatments, which may increase the
comprehension of the therapeutic mechanism of HQLYD and
support the expansion of emerging drugs.
2. Materials and methods
2.1 Materials

Liquid chromatography-grade methanol, acetonitrile and for-
mic acid were purchased from Merck (Darmstadt, Germany).
Standard leucine enkephalin (purity$ 99%) was obtained from
the National Institute for the Control of Pharmaceutical and
Biological Products (Beijing, China). Citric acid and sodium
citrate were obtained from Sinopharm Chemical Reagent Co.
Ltd (Beijing, China). Streptozotocin (STZ) was obtained from the
National Institute for the Control of Biological and Pharma-
ceutical Products of China. 0.9% sodium chloride injection and
pentobarbital sodium were obtained from Sanling Pharma-
ceutical Co., Ltd (Jiangsu, China). The fasting blood glucose
(FBG), total cholesterol (TC), triglyceride (TG), high-density
lipoprotein cholesterol (HDL) and low-density lipoprotein
cholesterol (LDL) kits were obtained from Shanghai Source Leaf
Biological Technology Co. Ltd (Shanghai, China). The iodine
[125I] insulin radioimmunoassay kit was obtained from MREDA
Technology Inc. (Palo Alto, CA, USA). The superoxide dismutase
(SOD), malonic dialdehyde (MDA), glutathione peroxidase (GSP-
x), and catalase (CAT) kits were obtained from Weifang SanWei
Biotechnology Institute (Beijing, China). The serum creatinine
(Scr), aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), and urea (Urea) kits were obtained from Pierce
(Rockford IL USA). Astragalus root slices and licorice slices were
purchased from Tongrentang Drug Store (Beijing, China).
2.2 Preparation of Huangqiliuyi decoction and other
solutions

Aer soaking for 2 h, Astragalus root slices (600 g) and licorice
slices (100 g) were boiled one time in 2 L distilled water, and
then the decoction liquid was immediately ltered. The residual
medicinal slices were put in 2 L distilled water again and boiled
for 0.5 h. The ltrate obtained by boiling twice was combined
and then concentrated to 1 g mL�1 crude drug density. The
decoction was transferred to a brown bottle, sealed and stored
at 4 �C in a refrigerator until use. Citric acid-sodium citrate
buffer was prepared as follows: citric acid (2.1 g) and sodium
citrate (2.94 g) were each dissolved in 100 mL distilled water to
obtain 21 mg mL�1 citric acid and 29.4 mg mL�1 sodium citrate
solutions. A mixture containing 28 mL citric acid solution and
22 mL sodium citrate solution was diluted to 100 mL using
distilled water and the pH was adjusted to 4.5. Streptozotocin
solution (STZ) was obtained by dissolving 30 mg of STZ in 1 mL
of citric acid-sodium citrate buffer, which was subsequently
ltered to remove impurities.
RSC Adv., 2019, 9, 39858–39870 | 39859
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2.3 Animals model establishment

50 Sprague-Dawley (SD) male rats weighing 200 � 20 g and six
weeks of age were purchased from the Drug Safety Evaluation
Hub of Tianjin University of Traditional Chinese Medicine.
Animal care and experiments were carried out according to the
Guide for the Care and Use of Laboratory Animals (US National
Research Council, 1996) and were approved by the Animal
Experimental Ethics Committee of Heilongjiang University of
Traditional Chinese Medicine. All SD rats were supported in
a chamber with 12 h light/dark cycles at 22–24 �C and 45–55%
humidity.

Aer seven days acclimatization, 12 rats were given a normal
diet randomly as the control group and the rest of the rats were
given the high-sugar and high-fat diet for 21 days. Aer fasting
for 12 h, the rats in the control group were intraperitoneally
injected with citric acid-sodium citrate buffer (pH¼ 4.5) and the
rats with the special diet were intraperitoneally injected with an
equal dose of STZ (40 mg kg�1) dissolved in citric acid-sodium
citrate buffer (pH ¼ 4.5). At three days aer the last drug
administration, rats with blood glucose $16.7 mmol L�1 were
considered as diabetic rats, and a total of 32 successful model
rats were obtained. Twenty-four diabetes rats were randomly
divided into two groups, including the model group and
HQLTD group. On the 7th day aer modeling, the animals in
the HQLTD group were given 12.60 g kg�1 HQLTD once daily,
other rats in the control and model group were administered
with the identical bulk of saline solution in gavage way. The
intragastric dose was altered considering body weight and
successively treated for one month.
2.4 Biochemical index detection

All the rats from each group were anesthetized by pentobarbital
sodium, blood was collected in Eppendorf tubes from the aorta
abdominalis at the end of the treatment period and then
immediately centrifuged at 4000 rpm for 10 min at 4 �C. The
obtained biomedical samples for biochemical index detection
and metabolomics analysis were stored at �80 �C until use.
Meanwhile, the kidney and liver tissues of the rats were
collected and quickly frozen in liquid nitrogen gas before the kit
tests. The serum levels of TC, TG, HDL, LDL, Scr, AST, ALT, and
urea were assessed using the appropriate kit according to the
manufacturer's protocols and a TBA-30FR fully automatic
biochemical analyzer (Toshiba, Tokyo, Japan). The serum FBG
was detected every week using a Roche blood glucose meter
equipped with blood glucose test paper, where the tail tip was
cut to 5 to 10 mm for blood collection. The content of fasting
insulin (FINS) was determined using a radioimmunoanalyzer,
and the resistance index (IRS) was calculated as follows: (fasting
insulin � fasting glucose)/22.5. The thawed kidney and liver
tissues were homogenated in ice physiological saline at a ratio
of 1 : 9 to monitor the activity of SOD, MDA, GSP-x, and CAT
using ELISA kits.
39860 | RSC Adv., 2019, 9, 39858–39870
2.5 Metabolomic study

On the eve of UPLC-MS analysis, the serum samples were
thawed on ice at 4 �C. 200 mL of each serum sample from each
group was deproteinized with 700 mL of methanol, and then
centrifuged at 4000 rpm, 4 �C for 15 min. The supernatant
liquor was hollowed via nitrogen gas and dissolved again in 120
mL of methanol. The quality control (QC) sample ensured the
reliability of the data during the whole analysis process, which
was mixed 20 mL of solution from each serum sample and
injected three times at the beginning of the instrument opera-
tion, then every six samples were tested.

A UPLC system (Waters Corp., Milford, MA/USA) coupled to
a Micromass Q-TOF Micro™ system (Waters Corporation, Mil-
fold, MA, USA) was employed for metabolomic analysis of the
serum samples. A 100 nm� 2.1 mm ACQUITY UPLC HSS T3 1.8
mm analytical column was utilized to detach metabolites, and
the column and sample manager temperatures were set at 40 �C
and 4 �C, respectively, and the ow rate was maintained at 0.3
mL min�1. Aer the screening, the optimal mobile phase was
made up of 0.15% formic acid in acetonitrile (A) and 0.15%
formic acid in water (B). The linear gradient was set as follows:
0–1 min, 1–10% A; 1–3 min, 10–45% A; 3–7 min, 45–73% A; 7–
9.5 min, 73–99% A; 9.5–11.5 min, maintain 99%A; 11.5–12 min,
and linear decrease from 99% to 1% A. Zevo G1 QTOFMS high-
denition spectrometry (Waters Corp., Manchester, UK) was
conducted for the comprehensive detection of changes in bio-
logical information, which possesses positive and negative
electrostatic ionization modes. The detailed parameters are as
follows: In ESI+ mode, capillary voltage: 3200 V, sample cone
voltage: 35 V, and source temperature: 100 �C were set; in ESI�

mode, capillary voltage: 2800 kV, sample cone voltage: 40 V, and
source temperature: 110 �C were employed; and lock mass
calibration of leucine enkephalin at m/z 556.2771 and 554.2615
was used to ensure stable and precise scanning, respectively.
2.6 Data processing

Raw spectral data of UPLC-MS was gained from MarkerLynx
Applications Manager Version 4.1 (Waters), which contains
main parameters such as retention time (Rt), mass range, mass
tolerance, intensity threshold, retention time tolerance and
noise liquidation level. Then, the ion strength of the investi-
gated peaks with relevant Rt and mass data was tabulated. Each
peak ion intensity for all samples was further picked and
renormalised to the summation of the peak intensities in that
sample. The processed data eliminated peaks with a loss value
of over 60% sample and then imported into the SIMCA-P
12.0.1+ (Umetrics, Umea, Sweden) soware for multivariate
data analyses, including unsupervised component analysis
(principal component analysis PCA) and supervised component
analysis (partial least-squared discriminant analysis OPLS-DA).
OPLS-DA is a supervised analysis model for better distinguish-
ing different groups, in which the separation quality of a model
is appraised by Q2 and R2Y. Q2 is an assessment of how ne the
model forecasts Y and R2Y represents how ne the model ts
the Y gures. Variable importance in the projection (VIP) was
performed to explore latent biomarkers in accordance with the
This journal is © The Royal Society of Chemistry 2019
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sill VIP > 1. Ions which met the condition of VIP > 1 and P < 0.05
in the t-test were screened for the discriminative analysis of
endogenous biomarkers using the Human Metabolome Data-
base (HMDB) and other databases, such as METLIN. The
chemical structure of potential biomarkers was determined by
corresponding fragment ion information adapted with the
probable cleavage patterns of the gained precursor ions and
fragment ions based on databases such as HMDB and Mass-
Fragment manager (Waters Corp., Milford, USA). Pathway
Fig. 1 Therapeutic effect of HQLYD on type 2 diabetes mellitus was d
metabolism, oxidative stress response, liver and kidney function compar
model groups. #p < 0.05; ##p < 0.01.

This journal is © The Royal Society of Chemistry 2019
analysis was carried out using the Metabolomics Pathway
Analysis (MetPA) database and KEGG pathway database.

Experimental data is expressed as mean � standard devia-
tion (SD). Statistical analysis was performed using the SPSS
soware v19.0 (IBM Corp., Chicago, IL, USA) for the Student's t-
test for contradistinction between two groups and one-way
analysis of variance (ANOVA), where p values < 0.05 were
premeditated statistically signicant and p values < 0.01 were
premeditated signicantly signicance.
isplayed in clinical biochemistry indexes of glucose metabolism, lipid
ed with the control groups. *p < 0.05; **p < 0.01; compared with the

RSC Adv., 2019, 9, 39858–39870 | 39861
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3. Results
3.1 Biochemical index analysis

The animal model was established by the dietary model of high-
sugar and high-fat. The animal model of type 2 diabetes mellitus
was made successfully and examined for biochemical indicators
of oxidative stress response, liver and kidney function, lipid
metabolism and glucose metabolism measurement. Compared
with the control group, the level of MDA in the liver and the level
of MDA and CAT in the kidney prominently increased with p
values of more than 0.01 (Fig. 1A–D). The level of SOD and GSP-x
in the liver and kidney prominently decreased with p values of
more than 0.01. The serum level of TG, LDL, Scr, AST and ALT
Fig. 2 Principal component analysis score plots of the model rats with
type 2 diabetes mellitus after HQLYD treatment in the positive and
negative modes.

Fig. 3 Multivariate analysis from metabolites in type 2 diabetes mellitus
control and model groups in positive ion mode. (B) Loading plot of OPLS
groups in positive ion mode. (C) S-plot of OPLS-DA model of serum m
mode. (D) VIP-plot of OPLS-DA model of serum metabolites for cluster

39862 | RSC Adv., 2019, 9, 39858–39870
prominently increased with p values of more than 0.01, and the
level of TC, HDL and urea in the model rats is increased with p
values of more than 0.01(Fig. 1E and F). With time, the serum
level of FBG was always elevated in the model group beyond the
normal range in comparison with that of the control group. The
animals with type 2 diabetes mellitus presented a lower content
of FINS and higher content IRS (Fig. 1G and H). The distinct
content changes between the control and the type 2 diabetes
mellitus rats demonstrate that biological alteration occurred in
the model group. Aer HQLYD treatment for four weeks, the
metabolic status of the model rats signicantly improved in the
content SOD, MDA, GSP-x and CAT in the liver, and serum FBG,
TC, TG, HDL, Scr, ALT, FINS and IRS. Subsequently, potential
biomarker discovery by metabolite analysis in serum metab-
olomics was carried out to determine the mechanism of type 2
diabetes mellitus and HQLYD therapeutic action.
3.2 Biomarker selection and identication

The metabolic characteristics of serum samples among the
control, model and HQLYD group are displayed in Fig. 2A and
B. The unsupervised PCA method suggests the tendency
difference that every symbol embraces when they possess
higher a resemblance of metabolomic compositions and have
distinct metabolome in antagonistic circumstances. Prelimi-
nary separation between three groups was noticed from the PCA
score plot, in which the scatter of the model group is distinctly
away from the control group and the scatter of the HQLYD-
treated group is close to the control group. This indicates that
the animal model was prepared smoothly and HQLYD can
regulate the metabolic disorder of type 2 diabetes mellitus. As
a more sophisticated analysis, the subsequent OPLS-DA score
plot (two-component model, R2X¼ 0.45, R2Y¼ 0.94, and Q2Y¼
rats. (A) OPLS-DA score plot of serum metabolites for clustering the
-DA model of serum metabolites for clustering the control and model
etabolites for clustering the control and model groups in positive ion
ing the control and model groups in positive ion mode.

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Multivariate analysis from metabolites in type 2 diabetes mellitus rat. (A) OPLS-DA score plot of serum metabolites for clustering the
control and model groups in negative ion mode. (B) Loading plot of OPLS-DA model of serum metabolites for clustering the control and model
groups in negative ion mode. (C) S-plot of OPLS-DA model of serum metabolites for clustering the control and model groups in negative ion
mode. (D) VIP-plot of OPLS-DA model of serum metabolites for clustering the control and model groups in negative ion mode.
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0.86 in positive ion mode; R2X ¼ 0.29, R2Y ¼ 0.83, and Q2Y ¼
0.59 in negative ion mode) was applied to conrm the above
results in Fig. 3A and Fig. 4A, in which the animals in the model
group were well-separated from those in the control group.
Then wed explored whether the differentially delivered metab-
olites were liable for the separation among the three groups. As
shown in Fig. 3B and 4B, the ions furthest away from the
beginning appear as the distinguished metabolites in the cor-
responding loading-plots. The S-plots (Fig. 3C and 4C) and VIP-
plots (Fig. 3D and 4D) were plotted following the OPLS analysis,
which exhibit the variation and correlation of the metabolites,
respectively. Potential biomarkers were screened considering
VIP values more than 1 and p value less than 0.05 in the
Student's t-test analysis.

As presented in ESI Table 1,† 25 differentially expressed
small molecule metabolites were identied using the consis-
tency between the MS and MS/MS signal data and screening in
network databases such as Mass-Bank, ChemSpider, KEGG and
LIPIDMAPS. Aer HQLYD treatment, 16 of the serum metabo-
lites changed signicantly compared with the model rats,
including galactose, citric acid, L-leucine, PE(14:0/24:1(15Z)),
isocitric acid, acetylglycine, 3-hydroxybutyric acid, homo-
cysteine, PC(18:1(9Z)/15:0), palmitic amide, PC(15:0/20:3(8Z,
11Z, 14Z)), uric acid, D-glucose, L-phenylalanine, D-glutamine,
and L-tyrosine. As shown in Fig. 5, the clustering heatmap
analysis of sixteen metabolites disclosed the differences in their
relative contents among the control, model and HQLYD groups,
in which the luminance uctuation of the color displays the
content alteration of the biomarker. The comparable signal
intensities of the serum metabolites, as shown in Fig. 6, mirror
the activity of HQLYD regulating type 2 diabetes mellitus, in
which the level of isocitric acid, acetylglycine, 3-hydroxybutyric
acid, PC(18:1(9Z)/15:0), palmitic amide, PC(15:0/20:3(8Z, 11Z,
This journal is © The Royal Society of Chemistry 2019
14Z)), citric acid, L-leucine, uric acid, D-glucose, L-phenylalanine,
D-glutamine and L-tyrosine observably changed aer HQLYD
treatment compared with the control group (P < 0.01).
3.3 Pathway analysis

MetPA analysis is a free web-based pathway topology tool, which
showed that the differentiated biomarkers were mainly involved
in phenylalanine, tyrosine and tryptophan biosynthesis (impact
value 1), phenylalanine metabolism (impact value 0.40741),
valine, leucine and isoleucine biosynthesis (impact value
0.33333), glyoxylate and dicarboxylate metabolism (impact
value 0.2963), glycerophospholipid metabolism (impact value
0.23056), tyrosine metabolism (impact value 0.14045), cysteine
and methionine metabolism (impact value 0.1388), citrate cycle
(TCA cycle) (impact value 0.09488), glycosylphosphatidylinositol
(GPI)-anchor biosynthesis (impact value 0.0439), starch and
sucrose metabolism (impact value 0.03778), galactose metabo-
lism (impact value 0.03644), and purine metabolism (impact
value 0.02077) in Fig. 7. The metabolite-metabolic pathway
interaction network from KEGG in conformity with the reac-
tions from indistinguishable chemical structures and molecular
activities is presented in Fig. 8A, which mainly refers to citric acid,
L-phenylalanine, L-leucine, L-tyrosine, uric acid, homocysteine, D-
galactose, D-glucose, isocitric acid, and D-glutamine. The gene–
metabolite interaction network enables exploration and visuali-
zation of interactions between functionally related metabolites
and genes, which mainly involved citric acid, homocysteine,
uric acid, L-leucine, L-phenylalanine, D-glucose, isocitric acid, L-
tyrosine, PC(16:0/16:0), and D-galactose (Fig. 8).
RSC Adv., 2019, 9, 39858–39870 | 39863
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Fig. 5 Hierarchical clustering heatmap of the sixteen differential metabolites regulated by HQLYD after onemonth of treatment with the degree
of change marked with colors including up-regulation (red) and down-regulation (blue).

Fig. 6 Relative signal intensities of metabolic biomarkers effectively changed by HQLYD treatment in serum sample selected from the control
model and HQLYD-treated groups, in which the level of isocitric acid, acetylglycine, 3-hydroxybutyric acid, PC(18:1(9Z)/15:0), palmitic amide,
PC(15:0/20:3(8Z,11Z, 14Z)), citric acid, L-leucine, uric acid, D-glucose, L-phenylalanine, D-glutamine and L-tyrosine observably changed after
HQLYD compared with the control group (P < 0.01).
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Fig. 7 Pathway analysis of HQLYD therapeutic effect on type 2 dia-
betes mellitus rats by serum metabolomics. 1. Phenylalanine, tyrosine
and tryptophan biosynthesis; 2. Phenylalanine metabolism; 3. Valine,
leucine and isoleucine biosynthesis; 4. Glyoxylate and dicarboxylate
metabolism; 5. Glycerophospholipid metabolism; 6. Tyrosine metab-
olism; 7. Cysteine and methionine metabolism; 8. Citrate cycle (TCA
cycle); 9. Glycosylphosphatidylinositol(GPI)-anchor biosynthesis; 10.
Starch and sucrose metabolism; 11. Galactose metabolism; and 12.
Purine metabolism.

Fig. 8 (A) Metabolite–metabolite interaction network related with
HQLYD therapeutic effects resisting type 2 diabetes mellitus on the
model animal. (B) Gene-metabolite interaction network of HQLYD
therapeutic effects enables exploration and visualization of interac-
tions between functionally related metabolites and genes in type 2
diabetes mellitus treatment.
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4. Discussion

Type 2 diabetes is amultifactorial disease that is mainly affected
by genetic factors and environmental factors. Insulin resistance
(IR) is dened by the WHO as a common ground for T2DM and
various complications caused by it.26,27 Currently, the “second
strike” doctrine of oxidative stress has occupied the core posi-
tion of IR research. Studies have shown that oxidative stress not
only originates from IR, but also damages islet b cells and
aggravates lipid metabolism disorder.28,29 Therefore, it is
necessary to conduct reasonable external intervention on the
diabetic oxidative stress state to observe whether it can reduce
insulin by improving oxidative stress. Aer 4 weeks, the effects
of HQLYD on blood glucose, blood lipids, liver and kidney
tissues facing oxidative stress were explored in diabetic rats.
Aer treatment with HQLYD, the SOD, MDA, GSP-x and CAT
indexes of the liver and kidney tissues changed to the normal
trend in contrast to the control group. The results show that
HQLYD improved the peroxide level in body, which reects that
HQLYD has an anti-oxidation effect and can improve the
oxidative stress level of diabetic rats. Simultaneously, it was
found that HQLYD effectively reduced the abnormal levels of
urea, Scr, AST and ALT in the diabetic rats. Studies have shown
that ALT may be an important reference index reecting insulin
resistance and metabolic disorders in sufferers with newly
diagnosed diabetes.30,31 In sufferers with type 2 diabetes
This journal is © The Royal Society of Chemistry 2019
mellitus, the severity of retinopathy increases and serum urea
nitrogen levels are negatively correlated with retinal ber layer
thickness.32,33 It can be seen that HQLYD effectively improved
liver and kidney dysfunction in the diabetic rats. In the regu-
lation of blood lipids, blood lipids TC, TG, HDL (p < 0.01) and
LDL (p < 0.05) were notably lower in the diabetic rats aer
HQLYD treatment. In terms of insulin, HQLYD can raise insulin
and lower blood sugar. In recent years, IRS has become an
important indicator for assessing insulin resistance.34 The IRS
in the serum of the model group increased in contrast to that of
the normal group (P < 0.01), suggesting that the insulin sensi-
tivity in diabetes was reduced and insulin resistance occurred.
Compared with the model group, HQLYD signicantly relieved
RSC Adv., 2019, 9, 39858–39870 | 39865
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the IRS level (P < 0.01). Thus, the biochemical indicators show
that HQLYD can treat diabetes by perfecting glucose and lipid
metabolism and oxidative stress in diabetic rats.

Mass spectrometry-based metabolomics has enabled the
discovery of many biomarkers and provides insight into path-
ogenesis,35–55 disease diagnosis,56–75 treatment prognosis,76–80

and monitoring testing.81–87 Some researchers have found that
amino acids are the nal metabolites of proteins. The amino
acid spectrum of diabetic patients undergoes characteristic
changes. It has also been reported by the Framingham
Offspring Study in 2011 that ve types of amino acids in blood,
including isoleucine, leucine, valine, tyrosine and phenylala-
nine, increase abnormally in the early stage of type 2 diabetes.88

As one of the essential amino acids for extrahepatic oxidation,
phenylalanine in the free state and other amino acids will be the
main source of energy supply when insulin secretion is insuf-
cient and the body cannot make full use of glucose and fatty
acids, which leads to a large number of phenylalanine appear-
ing in the serum.89 L-leucine is a branched-chain amino acid
(BCAAs) together with isoleucine and valine, which play a key
role during the insulin secernment, protein turnover and
synthesis adjustment. The increased fasting level of circulating
BCAAs is connected with in increase in the threat of type 2
diabetes mellitus, insulin resistance and other metabolic
diseases in humans on account of the lowered physiological
activity of branched-chain a-keto acid dehydrogenase.90 L-tyro-
sine, an aromatic amino acid, is a glucogenic and ketogenic
amino acid. Studies have found that L-tyrosine has resistive
effects on the pathological development of diabetes.91

Compared with the control group, the content of serum
phenylalanine, tyrosine and leucine increased in the model
group, which indicates that diabetic rats had insufficient blood
sugar utilization, increased protein catabolism and weakened
anabolism. Sugar-producing amino acids were consumed in
large quantities and their content decreased. HQLYD therapy
effectively regulated the metabolic activities of phenylalanine,
tyrosine and tryptophan biosynthesis, phenylalanine metabo-
lism, and valine, leucine and isoleucine biosynthesis. Homo-
cysteine (HCY) is a sulfur-containing amino acid generated by
methionine metabolism. 80% of HCY binds to protein through
the disulde bond in the blood, and only a small amount of free
homocysteine participates in circulation.92 Compared with the
control group, the content of HCY in the model rats was lower
than normal. HQLYD regulated the metabolism of cysteine and
methionine to make the content of HCY trend to normal in
blood. Lipids are the most abundant metabolites in human
serum. Aer the body ingests a large amount of glucose and fat,
the synthesis of cholesterol and triglyceride increases under the
action of insulin, and the storage of lipids in peripheral tissues
also increases. A long-term increase in lipid metabolites leads to
insulin resistance in peripheral tissues in the initial stage,
which is still in the early stage of onset for developing dia-
betes.93 The serum levels of cholesterol esters, free fatty acids,
phospholipids and triglycerides in diabetic patients are higher
than that in the normal glucose tolerance group. It has been
found that the fatty acid composition of serum lipids and
skeletal muscle phospholipids can affect insulin sensitivity in
39866 | RSC Adv., 2019, 9, 39858–39870
elderly diabetic patients, which further conrms the relation-
ship between lipid metabolism and type 2 diabetes mellitus.94

In our investigation, HQLYD had an intense inuence on glyc-
erophospholipids, such as PC and PE, which were observably
elevated in the model rats. PC and PE as the glycer-
ophospholipids with the highest contents in mammals are vital
elements in biomemebranes and transport the majority of
membrane lipids within cells. Glycerophospholipid species are
synthesized downstream of DG, resulting in many metabolic
diseases. The synthesis of both PC and PE occurs through DG in
most cells, and an increase in PC and PE is closely associated
with obesity, insulin resistance and other metabolic
syndromes.95 PC forms lipid droplets and lipoproteins accu-
mulation during the lipid storage process, which are both
increased risks of obesity. It was suggested that the incremental
increase in PC in liver-derived microsomes in vitro or the extra
PC level in the membrane restrains calcium homeostasis in
organelles regulated by the calcium transport activity of sar-
coendoplasmic reticulum Ca2+-ATPase (SERCA), which results
in protein misfolding and endoplasmic reticulum (ER) stress,
and nally stimulates insulin resistance.96,97 HQLYD validly
reduced the contents of PC(18:1(9Z)/15:0), PC(15:0/20:3(8Z,11Z,
14Z)) and PE(14:0/24:1(15Z)) by regulating glycerophospholipid
metabolism and glycosylphosphatidylinositol(GPI)-anchor bios-
ynthesis. D-glucose exists in the blood, spinal uid and lymph of
animals, and is used as a nutrient for diuretic, detoxication and
cardiotonic. HQLYD directly regulated D-glucose by promoting
starch, sucrose and galactose metabolism to reduce the
abnormal level of D-glucose in the model rats.

Proteins, lipids, and sugars can be directly or indirectly
converted through the tricarboxylic acid cycle (TCA). In our
study, citric acid and isocitrate as differential metabolites of
type 2 diabetes were involved in the metabolic pathway of TCA
cycle. Insulin is a citrate synthase activator, which causes the
TCA cycle to be blocked when it is insufficient. It is also an
inhibitor of lipolytic enzyme, and it causes fat decomposition to
accelerate, and acetyl COA production and ketone bodies
increase when it is insufficient in diabetic patients. The
increased content of citric acid and the decreased content of
isocitric acid in the model group indicated that disorder in the
TCA occurred in the rats.98,99 Aer HQLYD treatment, the
content of citric acid and isocitrate acid trended to the level of
control group, which suggests that HQLYD promoted the TCA
cycle and ensured the normal metabolism of proteins, lipids
and sugars in the diabetic rats. Studies have reported that
a high level of uric acid (UA) is an independent risk factor for
type 2 diabetes. With an increase in age, the blood UA of dia-
betic patients gradually increases, which is more prominent in
males than females.100 There is still no clear answer to the
mechanism of diabetes caused by hyperuricemia. However,
hyperuricemia is an inevitable result of purine metabolism
disorder. Abnormal purine metabolism due to any cause and/or
abnormal renal excretion of UA can lead to elevated blood UA
levels. Relevant animal experiments have shown that insulin
relies on an NO-mediated mechanism for the uptake of glucose;
however, high levels of blood UA can inhibit the biological
activity of NO, and then destroy endothelial cells, leading to
This journal is © The Royal Society of Chemistry 2019
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endothelial cell dysfunction. Ultimately insulin resistance can
arise due to the inhibition of glucose uptake leading to the
development of type 2 diabetes. UA also has the potential to
increase the risk of systemic inammatory responses and
oxidative stress, which are closely related to type 2 dia-
betes.101 HQLYD can effectively control the abnormal
increase of UA level and regulate the purine metabolism to be
balanced. 3-Hydroxybutyrate is a type of ketone body in the
body, which is mainly produced by the oxidative metabolism
of fatty acids in the liver to produce acetyl-CoA. Muscle tissue
can utilize ketone bodies to prevent excessive consumption of
protein in the body. 3-Hydroxybutyric acid is closely related
to the occurrence of diseases, such as energy metabolism
disorder and diabetes. It has been reported that 3-hydrox-
ybutyrate is catalyzed by 3-hydroxybutyrate dehydrogenase to
produce acetoacetate, which provides energy for the activities
of cells such as brain and heart muscle when the body is
starved or insulin is below normal. The abnormal increase in
the content of 3-hydroxybutyrate in the model group may be
the result of the lack of insulin in the diabetic rats, which led
to the compensatory increase to supply the energy required
for physiological activities in the body.102

5. Conclusion

The indispensable power of this research is its global plan to
reveal insight into the mechanism of HQLYD on type 2 diabetes
mellitus using a serum metabolomic strategy. It searched for
and identied meaningful representative metabolite markers
associated with HQLYD treatment, and the obtained
biomarkers were veried by serum metabolic proling and
quantitative analysis. Furthermore, biochemical indicators
such as blood lipid, blood glucose, oxidative stress and liver and
kidney function as an auxiliary tool were applied to explore the
pharmacological mechanism of HQLYD. The therapeutic effect
of HQLYD on type 2 diabetes mellitus ameliorating glucose and
lipid metabolism and oxidative stress reaction occurred based
on multiple elements acting on various aims in different path-
ways, which regulated sixteen serum biomarkers and mainly
affected amino acid metabolism, lipid metabolism and glucose
metabolism, especially, the phenylalanine, tyrosine and tryp-
tophan biosynthesis pathway was affected the most. This study
provides a systemic novel way to disclose the scientic foun-
dation of traditional Chinese medicine formulas.
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