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of chloroauric acid (HAuCl4) for
generation of catalytic Au nanoparticle embedded
triazine based covalent organic polymer networks

Sami Dursun, *ab Emine Yavuz *b and Zeynep Çetinkaya ab

Covalent-organic polymer networks (COPNs) have been used as catalyst supports due to their stable and

favorable structure. Herein, a simple synthetic route was applied to generate Au@COPN-1 hybrids via in situ

reduction of gold ions with no additional reducing agent. Synthesized novel COPN-1 was mixed with

different concentrations of HAuCl4 which resulted in Au@COPN-1 with varying sizes of Au nanoparticles

in a controlled manner. The microstructural and morphological features of COPN-1 and Au@COPN-1

were characterized in detail using FT-IR, C-NMR, elemental analysis, UV-Vis, XRD, TEM, BET, and TGA. It

is noteworthy that the red-shifted LSPR peaks of Au nanoparticles produced with increasing

concentrations of HAuCl4 indicated an increase in the particle size of the Au nanoparticles as justified by

TEM images. The optimum catalytic activity of Au@COPN-1 was obtained when 4.6 � 10�3 mM HAuCl4
was used, which led to the complete reduction of 4-nitrophenol within 16 minutes with excellent

recyclability for more than 5 catalytic cycles, giving yields over 94%. Moreover, the non-aggregation of

nanoparticles in the reused catalyst further confirmed the stability of the prepared catalysts.

Consequently, these results indicated that in situ synthesis of AuNPs inside the COPN-1 matrix produces

a promising catalyst platform for the reduction of aromatic nitro compounds, for example, for the

degradation of one of the most common persistent organic pollutants 4-nitrophenol, as shown here. In

addition, the Au@COPN-1 hybrid system showed good biocompatibility at appropriate doses confirmed

by a dynamic real-time cell analysis system which can be used in various medical applications, such as

drug delivery, in the future.
1. Introduction

Metal nanoparticles have gained great attention due to their
outstanding properties and applications. In particular, gold
nanoparticles (AuNPs) have unique characteristics such as
inertness, tunable localized surface plasmon resonance, and
easy surface modication which enable various applications
especially in the eld of drug delivery, catalysis, optical devices,
biosensors, and nanofabrication.1–6 In heterogeneous catalysis,
because of having high surface-to-volume ratios, small AuNPs
possess unique analytical activities in hydrogenation, C–C
coupling, and oxidation reactions with high conversion rates
even at low temperatures.7–10 However, the aggregation
tendency of AuNPs limits their usage in catalyst systems,
particularly at the industrial scale. Therefore, the immobiliza-
tion of AuNPs on solid supports has been attracted great
attention as one of the best promising strategies to overcome
aggregation hurdle.11,12
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Among the suitable solid supports, the porous materials
such as zeolites, activated carbon, dendrimers, and polymer
networks have been widely used due to their high surface
areas and large pore volumes.13–15 Recently, the usage of
covalent-organic polymer networks (COPN) has been exploi-
ted as catalyst support owing to chemical tailoring of its
network surface, well-dened porosity, and chemically stable
covalent bonded structure.16–18 For instance, highly stable and
porous COF synthesized by the Mannich-coupling reaction
was used to generate robust Au(0)@TpPa-1 via the reduction
of adsorbed HAuCl4 in the presence of NaBH4, a strong
reducing agent.19 This Au(0)-based catalyst system showed
a good catalytic activity towards the reduction of anthropo-
genic and toxic chemical, 4-nitrophenol. The synthetic
protocols excluding the usage of any additional chemical
reagents (i.e. surfactant, a reducing agent or solvent), which
may be difficult to eliminate from the catalysis platform,
subsequently are very benecial for practical applications,
especially in biocatalysis.20–22

The in situ reduction of Au(+3) ions adsorbed onto
a porous material, without using any reducing agent, is
a superior technique to generate Au(0) catalysis system with
fewer production steps which makes the elimination of any
This journal is © The Royal Society of Chemistry 2019
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contamination caused by the reducing agent possible. The in
situ approach offers signicant assets including the stabili-
zation of AuNPs inside the porous matrix, generation of small
catalytic AuNPs, the formation of AuNPs species only inside
the porous material, and prevention of nanoparticle aggre-
gation. As an example, Au(+3) ions adsorbed onto porous
chitosan beads and lms were reduced in situ by chitosan.23,24

In addition, the reduction of HAuCl4 with chitosan itself
induced chitosan gelation to form AuNP@chitosan scaf-
folds.25 In other study, AuNPs embedded polydimethyl-
siloxane (PDMS) composite lms were successfully prepared
by reducing HAuCl4 with Si–H functional unit inside the
PDMS.26 In another study, Au nanoparticle decorated poly-
pyrrole (PPy) nanotubes by in situ reduction process was
presented. Au nanoparticles are stored by reducing HAuCl4 in
PPy nanotubes.27

Herein, we reported a simple synthetic route to generate
Au@COPN-1 hybrids via in situ reduction of gold ions Au(+3)
without using an extra-reducing agent. COPN-1, synthesized by
epoxy-amine coupling reaction, was mixed with HAuCl4 and
resulted in Au@COPN-1 due to the reduction of adsorbed
Au(+3) with free alcohol (OH) units of COPN-1 formed during an
epoxy-amine reaction. COPN-1 and Au@COPN-1 were spectro-
scopically characterized. Besides the effect of different HAuCl4
concentrations on the nal product Au@COPN-1, the catalytic
activities of this hybrid material towards 4-nitrophenol reduc-
tion were also investigated. Moreover, the biocompatibility of
Au@COPN-1 was investigated in L929 cells which conrmed its
possible usage in bioapplications.
2. Experimental
2.1. Chemicals

Tris(2,3-epoxypropyl)isocyanurate (TEPIC), melamine (99%),
tetraethylene glycol dimethyl ether (TEGDME, 99%), gold(III)
chloride trihydrate ACS reagent($49.0%, HAuCl4$3H2O), 4-
nitrophenol (99%, 4-Nph) and sodium borohydride ($98.0%,
NaBH4) were purchased from Sigma Aldrich. Acetone (ACS, ISO,
Reag. PhEur) was obtained from Merck Chemical Company. All
chemicals were used as received without any further purica-
tion. The water used in all experiments was deionized water
with a resistivity of 18 MW cm�1, which was prepared by an
ultrapure water system (Aqua Solutions).
2.2. Synthesis of porous covalent organic polymer (COPN-1)

Melamine (0.4255 g, 3.3647 mmol) was dissolved in tetra-
ethylene glycol dimethyl ether(4 mL) at 165 �C and tris(2,3-
epoxypropyl)isocyanurate (1 g, 3.3647 mmol) was dissolved in
tetraethylene glycol dimethyl ether (4 mL) at 70 �C, separately.
Then, tris(2,3-epoxypropyl)isocyanurate solution was added
dropwise to the 250 mL ask containing melamine solution
under continuous stirring at 165 �C. Aer 3 hours, the brown
precipitate was obtained and this precipitate was washed thrice
with acetone (15 mL), then thrice with distilled water (15 mL).
The light brown solid product (COPN-1) was dried by using
a vacuum oven at 75 �C for 3 hours.
This journal is © The Royal Society of Chemistry 2019
2.3. Synthesis of porous covalent organic polymer with
gold(III) chloride trihydrate (Au@COPN-1)

As-synthesized COPN-1 (100mg) was soaked in distilled water (5
mL). Then, gold(III) chloride trihydrate (10 mg, 0.0254 mmol) in
1mL distilled water solution was added dropwise to the COPN-1
solution under continuous stirring. The mixture was stirred at
room temperature for 12 hours. Aerward, the ask containing
HAuCl4$3H2O and COPN-1mixture was inserted into an oil bath
at 100 �C. Aer heating 3 hours, the mixture was cooled to room
temperature. The solid crude was washed thrice with distilled
water and then dried with a vacuum oven at 75 �C for 3 hours to
yield a dark red solid product.
2.4. Catalytic activity measurement

Stock solutions of 16 mg NaBH4 in 10 mL distilled water and
10 mg 4-nitrophenol in 50 mL distilled water were prepared at
room temperature. 1 mL of each solution was taken and
transferred to a 5 mL vial under stirring. Following the addition
of 50 mg Au@COPN-1 (9.2 � 10�3 mM Au) to the vial, the
catalysis reaction was started. UV-Vis spectra were recorded at
every two-second within the range of 250–550 nm tomonitor the
catalysis reaction.
2.5. Recyclability test of 4-nitrophenol

Aer the rst run reaction was completed, the residual solid was
recovered by ltration. Then, the residual solid was washed with
distilled water, methanol and dichloromethane and then dried
in air. The catalyst was dried in air and was used for the next run
with the same amount of fresh 4-nitrophenol and NaBH4.
2.6. Real-time analysis of cell proliferation

L929 cells, an immortal non-cancerous mouse broblast cell line
frequently used in cytotoxicity screening tests, were cultured in
DMEM media supplemented with high glucose, L-glutamine,
sodium pyruvate, 1% penicillin/streptomycin, and 10% heated-
inactivated FBS in a humidied incubator of 5% CO2 at 37 �C.
Cell proliferation was monitored by the impedance-based xCEL-
Ligence real-time cell analyzer dual plate instrument (RTCA DP,
ACEA Biosciences, San Diego, CA) according to manufacturer's
instructions. Briey, background measurement was performed
rst. Then L929 cells were seeded (1� 104 cells per well) into the
E-plate 16 (ACEA Biosciences, San Diego, CA, USA) with a volume
of 100 ml and allowed to attach before treatment. The cell index
(CI) values were monitored automatically every 1 h at 37 �C in
a 5% CO2 atmosphere. When the cells entered the log phase,
Au@COPN-1 was added at concentrations of 500, 250, 125, and
62.5 mg mL�1 and impedance was measured every 15 min for at
least 250 h. Control groups were treated with medium only. The
measurements were analyzed by normalizing data of every single
well to the rst measurement aer adding Au@COPN-1 as the
normalized cell index. The RTCA soware v. 2.0.0 was used to
obtain viability proles of the cells treated with different
concentrations of Au@COPN-1 and the cytotoxic effect of
Au@COPN-1 was quantied by calculating the half-maximal
inhibitory concentration (IC50).
RSC Adv., 2019, 9, 38538–38546 | 38539
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2.7. Characterization

FTIR spectrum of the COPN-1 was recorded over the range of
4000–500 cm�1 at a resolution of 4 cm�1 using FTIR spectros-
copy (VERTEX-70 Bruker, Germany). Elemental analysis was
performed using a PerkinElmer 2400 CHN elemental analyzer.
Solid-state 13C CP/MAS NMR was recorded on a Bruker SB
Avance III 500 MHz spectrometer with a 4 mm double-
resonance MAS probe, a sample spinning rate of 8.0 kHz,
a contact time of 2 ms and a pulse delay of 5 s. To evaluate the
porosity of COPN-1, adsorption isotherms were obtained with
a Micromeritics Tristar II 3020 accelerated surface area and
porosimetry analyzer at 77 K, aer the samples were degassed at
75 �C for 6 h under vacuum. The adsorption–desorption
isotherms were obtained to give the BET (P/Po ¼ 0.01–0.25) and
Langmuir (P/Po ¼ 0.1–0.35) surface area. The UV-Vis spectra
from 400–700 nm were recorded using a Biochrom Libra S22
spectrometer using quartz cuvettes. X-ray diffraction (XRD)
analyses were performed for phase identication of the prod-
ucts. A BRUKER D8 ADVANCE diffractometer was used, using
Cu-Ka radiation (l ¼ 1.54 Å) and X-ray source operating voltage
of 40 kV in the 2q range of 10–75� at a scanning rate of 2� min�1.
To prepare samples for TEM, a drop of the nanoparticle
suspension (in water) was placed on a carbon-coated copper
grid and dried under ambient conditions in the fume hood.
High-resolution TEM images were taken using a JEOL 2100F
microscope operated at 200 kV. TGA analysis of the samples was
performed on Mettler Toledo analyzer under N2 and air atmo-
sphere at a heating rate of 10 �C min�1 within a temperature
range of 25–800 �C.

3. Results and discussion

Covalent organic polymer networks (COPN-1) shown in Scheme
1 was prepared by reacting melamine with tris(2,3-epoxypropyl)
isocyanurate (TEPIC) at high temperature via the Mannich-
coupling reaction. A brownish-yellow precipitate was formed
within the rst 1 hour of the reaction which showed the
production of insoluble porous polymer network. The coupling
of epoxy units in TEPIC with free amines in melamine gives
a new alcohol (–OH) functional group in the nal COPN-1
product.

The chemical structure of COPN-1 was characterized by
solid-state 13C-NMR and FTIR spectroscopy. As shown in Fig. 1a,
Scheme 1 COPN-1 synthesized via reacting tris(2,3-epoxypropyl)isocya

38540 | RSC Adv., 2019, 9, 38538–38546
the FTIR spectrum of COPN-1 showed strong bands at 1680 and
1453 cm�1 arising from the characteristic peaks of the C]N
stretching of melamine and the amide carbonyl C]O stretch-
ing of isocyanurate. The appearance of the O–H stretching band
at 3340 cm�1 conrmed the successful Mannich-coupling
reaction which resulted to an alcohol unit from the ring-
opening of the epoxy group in TEPIC. In addition, the exis-
tence of NH stretching band at 3407 cm�1 and out of plane
bending vibration at 835 cm�1 were detected. Finally, aliphatic
CH and CN stretching bands at 2907 cm�1 and 754 cm�1

indicated the formation of COPN-1 network structure
respectively.28

In the solid-state 13C-NMR spectrum of COPN-1 (Fig. 1b), the
peaks in the range of 130–170 ppm are assigned to the aromatic
carbons and carbonyl atom of melamine and TEPIC in the
COPN-1 structure, respectively. The chemical shi at 132 ppm
was the carbonyl of amide unit in TEPIC molecule, and the two
chemical shis at 151 and 142 ppm were the aromatic carbons
of melamine which is well consistent with the reported
results.29,30 The other three peaks at 20–70 ppm were the
aliphatic peaks of the linker unit between melamine and iso-
cyanide molecules. The chemical shis of aliphatic carbons
next to alcohol (–OH), amine unit of melamine, and nitrogen
atom of isocyanide, were 51, 40 and 28 ppm, respectively.31 The
elemental analysis of as-synthesized COPN-1 showed the
content of carbon, nitrogen, hydrogen, and the remaining
oxygen atoms in Table 1 which were 43.29, 25.19, 5.66, and
25.85 wt%, respectively. These experimental analyses were
consistent with the theoretically calculated elemental analysis
of the hypothetical COPN-1 structure in Scheme 1. Furthermore,
the COPN-1 gave negligible Brunauer–Emmett–Teller (BET)
surface area (0.0891 m2 g�1) and Langmuir surface area (0.1392
m2 g�1) and showed an average pore size of 7.8533 nm. There-
fore, COPN-1 network had low porosity possibly due to linking
the aromatic building blocks with aliphatic chains and random
orientation of the pores in the network.32

In this study, we further aimed to use the COPN-1 network as
a template for the in situ synthesis of AuNPs. For this purpose,
COPN-1 solid was inserted to the HAuCl4 solution with stirring
at room temperature to entrap Au(+3) ions inside the polymer
network. Aer a certain time, the mixture was heated to boiling
and turned into a red color solution as shown in Fig. 2a (inset).
This was the indication for the generation of gold nanoparticles
nurate with melamine.

This journal is © The Royal Society of Chemistry 2019
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Table 1 Elemental analysis of COPN-1

Elements (wt%)

C% H% N% Others%

Theo. Exp. Theo. Exp. Theo. Exp. Theo. Exp.

42.55 43.29 5.00 5.66 29.77 25.19 22.66 25.85

Fig. 1 (a) FTIR and (b) C-NMR spectra of COPN-1.
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(AuNPs) inside the network. Aer centrifugation, reddish-
brown colored precipitate (Au@COPN-1) with yellow-colored
supernatant containing Au(+3) ions was obtained. This was an
excellent proof for the in situ reduction of Au(+3) ions without
any reduction of Au(+3) outside the polymer network. In Fig. 2a,
the UV-Vis spectrum of the Au@COPN-1 precipitate showed the
formation of characteristic surface plasmon band of AuNPs at
545 nm. The sole COPN-1 did not have any peak at 500–700 nm
range.

X-ray diffraction (XRD) patterns of the Au@COPN-1 were
shown in Fig. 2b. Characteristic patterns of Au@COPN-1 with
peaks at 38.33, 44.74, and 64.90� (2q) correspond to the planes
of (111), (200) and (220), respectively.33 All these diffraction
planes were also in good agreement with JCPDS 05-0681. EDX
Fig. 2 (a) UV spectra and (b) XRD Pattern of COPN-1 and Au@COPN-1

This journal is © The Royal Society of Chemistry 2019
result (not shown) also conrmed that the COPN-1 structure
consisted of Aumetal. Furthermore, the crystallite size of AuNPs
was calculated as 5.4 nm using the peaks of the (111) and (200)
planes based on the Scherrer equation.34 The XRD spectrum
demonstrated the successful in situ synthesis of AuNPs inside
the COPN-1 network.

Fig. 3a and c showed transmission electron microscopy
(TEM) images of Au@COPN-1 with different concentrations of
Au(+3) (4.6 � 10�4 mM and 4.6 � 10�3 mM, respectively). These
images displayed that AuNPs were only formed inside the
COPN-1 network. No AuNPs were remaining outside the matrix,
as can be seen by focusing on the single gold nanoparticle
highlighted by a red dashed circle at the outer frame of the
structure (Fig. 3c). This proved the in situ reduction of the
Au(+3) within the COPN-1 structure only. The average size and
size distribution of the AuNPs, as seen in the inset of Fig. 3a (4.6
� 10�4 mM HAuCl4) and Fig. 3c (4.6 � 10�3 mM HAuCl4), were
determined via TEM images by using Image J soware. It was
conrmed that mostly single crystal morphology of AuNPs with
increasing sizes was produced as the concentration of Au ions
increased. The average sizes of 5.00 � 3 nm and 35.00 � 15 nm
were calculated. Furthermore, the HR-TEM images given in
Fig. 3b and d exhibited the lattice fringe and the interplanar
(4.6 � 10�3 mM Au).

RSC Adv., 2019, 9, 38538–38546 | 38541
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Fig. 3 (a and c) TEM images of Au@COPN-1 obtained from different concentrations of Au(+3) (4.6� 10�4 mM and 4.6� 10�3 mM, respectively)
with the corresponding particle size distribution histograms (b and d) The HR-TEM images of Au nanoparticles showing interplanar spacing.
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spacing of 0.229 nm and 0.231 nm for the (111) planes of
Au(0).35 The images veried the spherical morphology of
nanoparticles.

Fig. 4a showed the UV-Vis absorption spectra of Au@COPN-1
generated by using different concentrations of Au solution. All
Au@COPN-1 displayed a characteristic absorption peak in the
range of 500–600 nm due to localized surface plasmon reso-
nance of spherical Au nanoparticles.36
Fig. 4 (a) UV spectra of COPN-1 and Au@COPN-1 at different concentra
thermograms of COPN-1 and Au@COPN-1 (4.6 � 10�3 mM Au) in N2.

38542 | RSC Adv., 2019, 9, 38538–38546
The amount of HAuCl4 used in the in situ reduction process
played an important role in determination of the size of Au
nanoparticles inside the COPN-1 network. The LSPR peaks of
536, 541, 545, and 550 nm were obtained by using 4.6 � 10�4,
9.2 � 10�4, 4.6 � 10�3 and 9.2 � 10�3 mM of HAuCl4, respec-
tively. As indicated in the UV-Vis spectra, there was a clear red
shi in LSPR peaks of Au nanoparticles while increasing the
concentration of HAuCl4 from 4.6 � 10�4 to 9.2 � 10�3 mM.
tion (4.6� 10�4, 9.2� 10�4, 4.6 � 10�3 and 9.2� 10�3 mM Au) (b) TGA

This journal is © The Royal Society of Chemistry 2019
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The red-shiing LSPR peaks of Au nanoparticles indicated an
increase in the particle size of the Au nanoparticles as previ-
ously reported in literature.37 TEM images (Fig. 3) also
conrmed the increase in size with increasing concentration of
HAuCl4.

Fig. 4b showed the thermogravimetric analysis (TGA) and
differential scanning calorimetry (inset) spectra of both COPN-1
and Au@COPN-1 within the temperature range 25–800 �C
carried out under inert atmospheres. According to the DSC
results, three endothermic peaks were observed. When the DSC
curves and TGA curves were considered together, the endo-
thermic reactions seen in the DSC curves were attributed to the
degradation of the COPN-1 polymeric network structure. COPN-
1 structure started to degrade at 222 �C and this degradation
was completed at about 657 �C. For Au@COPN-1 structure
degradation occurred between 239–627 �C. The mass loss
observed in COPN-1 and Au@COPN-1 was 94% and 54%,
respectively. For the COPN-1 structure, the remaining mass
(6%) may be ascribed to carbon-based ash le from the
synthesized material. In the Au@COPN-1 structure, the
remaining mass (�46%) was due to the gold used for the
synthesis of Au@COPN-1 and the ash remaining from the
COPN-1 structure. In the AuCOPN-1 structure, the weight loss
between 222 �C and 344 �C was 72% and in the Au@COPN-1
structure, the weight loss between 239 �C and 400 �C was
34%. Furthermore, it was concluded that COPN-1 and
Au@COPN-1 structures underwent secondary thermal degra-
dation at temperatures between 493–657 �C and 484–627 �C,
respectively. From the TGA graph, it was deduced that
Au@COPN-1 structure was more thermally resistant than
COPN-1 structure.

Following the characterization of the Au nanoparticles inside
the COPN-1 network, we further explored the plausible mech-
anism for the reduction of HAuCl4 ions to Au atoms by using
COPN-1 network. In our synthesis, Au(+3) embedded COPN-1
network in aqueous solution was thermally heated to generate
Au nanoparticles in the absence of strong reducing agents like
sodium borohydride (NaBH4), which has been commonly used
to reduce Au ions inside a matrix. We performed the same
reduction of HAuCl4 by using melamine or tris(2,3-epoxypropyl)
isocyanurate (TEPIC) instead of COPN-1 network as starting
molecules. However, even aer prolonged thermal treatments,
there was no color change (i.e. the characteristic color of Au
nanoparticle) or any precipitate/nanoparticle formation in the
reaction solution. This may be ascribed to the lack of thermal
decomposition of HAuCl4. Thus, any possible residuals of the
starting compounds were not responsible for the reduction of
HAuCl4.

During the reduction of HAuCl4 with COPN-1 network, the
Au nanoparticles only formed inside the COPN-1 network sug-
gested that the in situ reduction solely underwent through the
COPN-1 structure itself. As depicted in Scheme 1, the only
structural difference between the starting molecules and COPN-
1 matrix was the new hydroxyl (–OH) functional group formed
via the Mannich-coupling of epoxy units in TEPIC with free
amines in melamine. Having reported in the literature as polyol
method, Au nanoparticles could be generated by the reduction
This journal is © The Royal Society of Chemistry 2019
of Au ions with the hydroxyl (–OH) end groups of the polymer
chains, for instance, with polyvinylpyrrolidone (PVP).38 There-
fore, in our case, we proposed a polyol-based reduction mech-
anism shown in Scheme 2.39 Basically, Au(+3) ions inside the
COPN-1 network were reduced to its atomic form Au(0) when
the alcohol (–OH) units were oxidized. During the diffusion of
HAuCl4 into the COPN-1 matrix, the Au(+3) ions could be
chemisorbed onto the amine- or amide-functionalized polymer
network which facilitated the entrapment of Au(+3) inside the
network leading to the reduction process.39 With thermal
heating, the hydroxyl groups have undergone a redox reaction
in which Au(+3) was reduced to zero-valent Au(0). Therefore, the
hydroxyl groups in the COPN-1 structure acted as a reductant
for Au(+3) ions.

The conversions of aromatic nitro molecules to amines even
by using a strong reducing agent, NaBH4, resulted in only about
5% yield due to the high kinetic barrier.40 Since the discovery of
fast conversions of aromatic nitro molecules with high yielding
via catalytic Au nanoparticles, there has been a rapid growth in
the development of Au catalysts platforms for the reduction of
phenolic nitro compounds.41 These high yielding reduction
reactions were catalyzed by AuNPs due to the effective hydrogen
transfer from NaBH4 species to nitro units on the reactive
surfaces of Au atoms.

In this regard, the catalytic activities of Au@COPN-1 systems
were evaluated by the reduction of 4-nitrophenol (4-Nph) to 4-
aminophenol (4-Aph) in aqueous solutions. 4-Nph is an essential
intermediate for various industries, including pharmaceuticals,
corrosion inhibitors, leather darkening, and photographic devel-
opers. However acute inhalation and/or ingestion of 4-Nph by
humans cause serious health problems.42 The reduction proles
easily monitored by UV-Vis spectrometry showed a decrease in the
absorption peak of 4-Nph at 400 nm and a new peak appearance
of 4-Aph at 300 nm. The reduction of 4-Nph only by COPN-1
without using any Au catalyst was also tested. Fig. 5a showed
the real-time absorbance spectra for the reduction kinetics of 4-
Nph into 4-Aph by COPN-1 which presented a very low conversion
within 16 minutes as expected.

Aer the addition of as-synthesized Au@COPN-1 into the
aqueous solution of 4-Nph in the presence of NaBH4, the
absorbance peak of 4-Nph at 400 nm started to decrease with
a new peak appearance at 300 nm, which revealed the genera-
tion of 4-Aph as shown in Fig. 5b. As the reaction proceeded to
16 minutes, the absorbance peak of 4-Nph at 400 nm almost
disappeared along with a clear ascent in the peak of 4-Aph at
300 nm. Visually, the yellow color of aqueous reaction solution
containing 4-Nph completely disappeared within 16 minutes.
Therefore, it can be concluded that the in situ synthesis of
AuNPs inside the COPN-1 matrix is a promising catalyst plat-
form for the reduction reactions of aromatic nitro compounds.
This investigation demonstrated that the prepared catalyst
system was able to degrade dye pollutants and showed prom-
ising activity against one of the most common persistent
organic pollutants which causes toxicity in industrial and agri-
cultural wastewater.

As shown in Fig. 5c, the kinetics of the reduction reaction of
4-Nph to 4-Aph was explored. To further understand the
RSC Adv., 2019, 9, 38538–38546 | 38543

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra08822a


Scheme 2 Proposed mechanism for HAuCl4 reduction with COPN-1 in water.
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photocatalytic activity of the prepared samples, the kinetic
analysis of 4-Nph reduction was investigated. It is generally
assumed that the decomposition reaction kinetics can be
described with a pseudo-rst-order kinetics model. Here, the
samples exhibited a linear behavior and the reaction rate
constants (k) were estimated from the slope of the plots pre-
sented in Fig. 5d. In 4-Nph reduction, Au@COPN-1 catalyst
showed much higher activity compared to the HAuCl4$3H2O
and COPN-1 with a rate constant of 0.191 min�1. For the
HAuCl4$3H2O and COPN-1 samples, k was obtained as 0.148
and 0.04 min�1, respectively. However, the k value of the
Au@COPN-1 sample was calculated as almost 28% higher than
that of HAuCl4. The higher reaction kinetics of Au@COPN-1
than HAuCl4$3H2O emphasizes the use of supported nano-
particles to heterogeneously catalyze organic transformation
reactions.19
Fig. 5 Catalytic reduction of 4-nitrophenol by using NaBH4, (a) COPN-
process of 4-Nph solution (4-Aph formation) and (d) fitted data of the p

38544 | RSC Adv., 2019, 9, 38538–38546
Furthermore, the Au@COPN-1 has also shown notable
recyclability for more than 5 catalytic cycles giving yields over
94% in about 16 min (Fig. 6a). It is noteworthy that the non-
aggregation of nanoparticles in the reused catalyst further
affirmed the stability of the Au@COPN-1 catalytic system. Thus,
it can be stated that the prominent catalytic activity of
Au@COPN-1 might be due to the highly stable two-dimensional
support of COPN-1 which holds the loaded nanoparticles to
a high extent.19

The biocompatibility of Au@COPN-1 was studied by using
new biosensor technology, the xCELLigence real-time cell
analysis system. To gather more accurate information
compared to commonly used conventional endpoint cytotox-
icity assays (i.e. MTT), the effect of Au@COPN-1 on viability,
adhesion and proliferation of L929 broblast cells was moni-
tored in real-time for about 10 days by RTCA DP instrument. In
1, (b) with Au@COPN-1 (4.6 � 10�3 mM Au), (c) kinetics of reduction
seudo-first-order kinetics (Au@COPN-1, HAuCl4$3H2O, and COPN-1).

This journal is © The Royal Society of Chemistry 2019
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Fig. 6 (a) Recycling experiment of Au@COPN-1 for the conversion of 4-Nph during 5 cycles of reaction and (b) real-time cell analysis results:
effect of Au@COPN-1 treatments on L929 cell line proliferation.
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this dynamic system, kinetic responses were evaluated to
understand the action mechanism of Au@COPN-1 by process-
ing valuable information about cell growth and cellular status
changes upon Au@COPN-1 exposure. For analysis, impedance
values were calculated as the normalized cell index (the CI from
each time point was normalized to themaximumCI attained for
the control cell lines at the time zero of the Au@COPN-1 treat-
ment, here normalization time is 19:01:40). According to the
cytological prole of L929 cells, incubation with higher doses of
Au@COPN-1 (125, 250 and 500 mg mL�1) caused an antimitotic
effect (i.e. cells remain in a mitotic arrest state) whereas lower
dose treatment (62.5 mg mL�1) caused no cytotoxicity (Fig. 6b).
Additionally, the IC50 value of Au@COPN-1 was 59.5 mg mL�1

for L929 cells. Thus, the cellular effects of Au@COPN-1 shown
here may help to design future biomedical applications
meticulously.

4. Conclusion

In summary, we have accomplished the in situ synthesis of
AuNPs inside the COPN-1 matrix without using any reducing
agent. We have shown that novel Au@COPN-1 can be used to
facilitate the reduction of environmentally toxic aromatic nitro
compounds. Herein, the catalytic activity of this new hybrid
material showed a successful reduction of 4-nitrophenol with
higher performance compared to HAuCl4$3H2O and COPN-1
alone. The k value of the Au@COPN-1 sample was calculated
as almost 28% higher than that of HAuCl4$3H2O. Furthermore,
the catalyst had notable recyclability for more than 5 catalytic
cycles giving yields over 94% in 16 min. In addition, the amount
of HAuCl4 used in the in situ reduction process affected the size
of the Au nanoparticles assembled which may be purposive for
different applications. The real-time cell analysis results speci-
ed the dose-dependent effects of Au@COPN-1 on living cells
continuously, valuable data to be used in designing future
biomedical applications.
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