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The current therapeutic strategies for healing bone defects commonly suffer from the occurrence of
bacterial contamination on the graft, resulting in nonunion in the segmental bone defects and the
requirement for secondary surgery to remove or sterilize the primary graft. A membrane with enhanced
anti-bacterial efficacy, mechanical strength and osteoconductivity would represent an improvement in
the therapeutic strategy for guided bone regeneration. The present study aims to optimize the content
of halloysite nanotubes (HNTs) and TiO, in the polymer matrix of chitosan (CTS) with a constant amount
(5%) with the objective of mimicking the mechanical and biological
microenvironment of the natural bone extracellular matrix with enhanced anti-bacterial efficacy. HNTs

of nano-hydroxyapatite

are a low-cost alternative to MWNCTs for enhancing the mechanical properties and anti-bacterial
efficacy of the composite. From the first stage of the study, it was concluded that the membranes
possessed enhanced mechanical properties and optimum biological properties at 7.5% (w/w) loading of
HNTSs in the composite. In the second stage of this investigation, we studied the effect of the addition of
TiO, nanoparticles (NPs) and TiO, nanotubes (NTs) in small amounts to the CTS/n-HAP/HNT
nanocomposite at 7.5% HNT loading, with an aim to augment the anti-bacterial efficacy and
osteoconductivity of this mechanically strong membrane. The study revealed a significant enhancement
in the anti-bacterial efficacy, osteoblast-like MG-63 cell proliferation and ALP expression with the
addition of TiO, NTs. The CHH-TIT membrane successfully inhibited the S. aureus and E. coli growth
within 16 hours and simultaneously assisted the enhanced proliferation of osteoblast-like cells on its
surface. The study supports the potential exploitation of CHH-TIT (7.5% HNT & 0.2% TiO, NT)
membranes as a template for guided bone tissue regeneration.
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due to a lack of bone graft harvested from the iliac crest and the
possibility of infections.*® Allografts are the second most
common grafting technique employed; although they are his-

1. Introduction

Bone grafts are typically utilized in an extensive number of

clinical settings to supplement bone healing and regeneration.
There are two types of traditional bone grafting methods,
namely autografts and allografts. Autografts are histocompat-
ible and non-immunogenic, but they require secondary surgery
to harvest the graft from the patient's own iliac crest.»* Thus,
they are very expensive and are associated with complications
such as donor site injury and morbidity, inability to seal gaps

“Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667,
India. E-mail: ppkfch@iitr.ac.in; sarimk@mit.edu

*Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, India
“Institute for Medical Engineering and Science, Massachusetts Institute of Technology,
Cambridge, USA

t Electronic supplementary information (ESI) available: Additional details on
method, XRD patterns, FTIR spectra, SEM images, TEM images, EDX analysis,
TGA, pH, water absorption trends and ion release curve. See DOIL
10.1039/c9ra08366a

39768 | RSC Adv., 2019, 9, 39768-39779

tocompatible, they suffer from the risks of transmission of
infections and immunoreactions.® Allografts are devitalized
before grafting them, so they have diminished osteoconductive
properties.® The field of bone tissue engineering focuses on
alternative treatment methods by grafting a biocompatible and
osteoinductive template that closely mimics the natural bone
extracellular matrix and assists in bone tissue regeneration.*
Grafting a polymer-nanoceramic composite material does away
with the complications associated with the traditional clinical
grafting methods such as donor site morbidity, the limited
supply of grafting material, high cost and immunogenic rejec-
tion. An ideal bone tissue nanocomposite should be multi-
functional in nature, it should possess properties such as suit-
able mechanical strength, biocompatibility, antibacterial effi-
cacy, biodegradability, hemocompatibility, and surface
functionality to favor cell proliferation.”® The most commonly
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used constituents in polymer-ceramic nanocomposites are
chitosan (CTS) and nano-hydroxyapatite (n-HAP, Ca;o(PO,)s(-
OH),), due to their excellent biocompatibility with the human
body.” Chitosan has several important properties such as anti-
bacterial efficacy, biocompatibility, biodegradability, and cyto-
compatibility.’ Chitosan is non-toxic and linear in nature and
is made up of randomly dispersed B-(1— 4)-linked b-glucos-
amine and N-acetyl-p-glucosamine. It is synthesized by alkali
deacetylation of the chitin shells of crustaceans.' It has been
reported that in vivo chitosan biodegrades to non-toxic products
by the enzymatic action of lysozyme or chitosanase."”” The
degradation kinetics is governed inversely by the crystallinity
and degree of acetylation of the chitosan polymer.” But chito-
san has limited osteoconductivity, therefore there is a need to
identify nanofillers that can increase the osteoconductivity.
Nano-hydroxyapatite (n-HAP) is an obvious choice as it provides
ample calcification sites thereby increasing the osteo-
conductivity of the nanocomposite.”* n-HAP has been reported
to increase the attachment and proliferation of neonatal rat
osteoblast cells.™ But the addition of HAP decreases the tensile
strength of the nanocomposite as n-HAP is intrinsically brittle
in nature. Halloysite nanotubes are natural and inorganic
multi-walled nano-dimensional tubes and are mined from
natural deposits. Their molecular formula is Al,Si,O5(OH),-
-nH,0." They possess a high aspect ratio which helps in rein-
forcing a polymer by optimizing the load transfer. In addition,
they are reported to be thermally stable and biocompatible.*
HNTs are non-toxic, abundant in nature and cheap to procure,
so they are a viable alternative to MWCNTs for use in bone
tissue engineering.'® Alongside n-HAP, HNTs can also be
incorporated into the CTS polymer matrix to improve its
mechanical properties to mimic the natural bone extracellular
matrix. TiO, nanoparticles (NP) are classified as a bio-ceramic
which possess appreciable mechanical strength and tough-
ness and have been in considerable attention because of their
capability to enhance osteoblast adhesion and to induce cell
growth by establishing a chemical bond with the living bone
tissue.”” TiO, nanotubes (NT) are one dimensional (1-D) nano-
tubes that possess a very large surface area and it has been re-
ported that they are more osteoconductive than their
nanoparticle counterpart.” The effect of the separate additions
of TiO, NP and TiO, NT into a chitosan matrix containing n-
HAP is yet to be reported in the literature, moreover, these
nanofillers can be used to augment the mechanical and bio-
logical properties of the chitosan composites. The current
clinical grafting methods suffer from post-operative infections
and the unwarranted adhesion between the healing bone and
the adjacent soft tissues. A membrane with enhanced anti-
bacterial efficacy would fight-off any post-operative bacterial
infections on their own without any secondary interventions or
surgeries, thus helping reduce the cost and the healing time. A
mechanically strong membrane would provide a barrier for
maintaining the original shape of the bone and avert any
postoperative attachment between the bone and the
surrounding soft tissues.*® These two associated complica-
tions with the current standards have inspired this study. The
ultimate tensile strength of the human trabecular bone is
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around 50 MPa.”* Chitosan polymer matrix is reported to have
poor mechanical strength and elasticity, which restricts its use
in bone tissue regeneration.” One of the major aims for the
nanofiller addition in this study is to propel the mechanical
strength of the chitosan matrix well above the strength and
elasticity of natural bone so that adequate mechanical support
can be provided even during the biodegradation phase of the
polymer matrix. Liu et al., have studied the chitosan-halloysite
interactions,”**® but their studies have not investigated the
application of the membranes in bone tissue regeneration.
Moreover, the addition of n-HAP is crucial for a bone tissue
template. From their studies, it is evident that the fibroblast
proliferation at the synthesized membranes of CTS/HNT is
lower than that for the control. In this study, we sought to
engineer and augment the osteoblast-like cell response of CTS/
n-HAP/HNT with the addition of TiO, after establishing the
optimised amount of HNT in the composite.

In this study, we have two different hypotheses. First, we set
out to fabricate a nanocomposite series of CTS/n-HAP/HNT
(CHH I-II), which is yet to be reported in the literature. Here,
our hypothesis is that mechanical and biological properties of
the membrane would depend on the HNT loading in the
membrane and these properties would be more favorable in
comparison to CTS/n-HAP nanocomposite, so the loading of
HNTSs has been varied (5%, 7.5%, and 10%; w/w) to study the
effect of HNT concentration on the mechanical and biological
characteristics and the relative agglomeration of HNTs with
increasing concentration in the membranes. The content of n-
HAP was kept constant at 5% for all the membranes.”* The
primary aim was to discover the membrane with the most
favorable mechanical properties and optimum biological
properties amongst CHH I-III. The HNT loading in that
membrane would be considered as the optimized HNT loading
in CTS/n-HAP (5%j; w/w)/HNT nanocomposites for mimicking
natural bone extracellular matrix. Subsequently, our second
hypothesis is that the separate additions of TiO, NP (0.2%) and
TiO, NT (0.2%) particles to the CTS/n-HAP/HNT membrane
with optimized HNT loading would enhance the biological
properties of the membrane. Then we compared the changes in
mechanical and biological properties upon TiO, nanoparticle
addition (CHH-TiP membrane) and TiO, nanotube (CHH-TiT
membrane) addition to the nanocomposite. The major outline
of this study is to engineer a chitosan-based polymer nano-
construct with enhanced mechanical strength, elasticity, anti-
bacterial efficacy, cell proliferation and attachment using
nanofillers and to ensure that these membranes can be used for
bone regeneration applications which would not be possible
with a bare CTS polymer membrane due to several shortcom-
ings as highlighted above. The fabricated nanocomposites have
been characterized by Fourier transform infrared spectroscopy
(FTIR) and small-angle X-ray diffraction (XRD) spectroscopy.
The surface morphology, topographical features, and agglom-
eration of HNTs have been studied using field emission scan-
ning electron microscopy (FESEM), transmission electron
microscopy (TEM) and atomic force microscopy (AFM). The
mechanical, thermal, water absorption, pH, hemocompatibility
antimicrobial, cell proliferation, attachment and differentiation
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studies have been carried out in order to establish the potential
of the fabricated membranes for further in vivo investigations to
be employed as a bone defect healing template.

2. Methodology

2.1 Synthesis of TiO, nanotubes, nano-HAP-TiO, NP and
nano-HAP-TiO, NT

The TiO, nanotubes were synthesized from TiO, nanoparticles
(Sigma Aldrich, 99%) by hydrothermal treatment using a stan-
dard procedure.* To synthesize nano-HAP, we followed the wet
precipitation method.” Since TiO, is not readily soluble in
aqueous solutions, separate fused mixtures with n-HAP were
formed for both TiO, NP and NT. To synthesize nano-HAP-TiO,
NP and nano-HAP-TiO, NT, 4% (w/w) of TiO, NP and 4% (w/w)
of TiO, NT were added separately to 96% (w/w) of nano-HAP
aqueous solution and the mixture was stirred at 800 rpm for
2 h. The resulting suspension was then filtered and dried in
a hot air oven at 100 °C for 2 h.

2.2 Synthesis of CTS/n-HAP/HNT and CTS/n-HAP-TiO,/HNT
nanocomposites

To synthesize the CTS/n-HAP/HNT nanocomposite membranes
CH [-1II (Table 1), we followed the solution casting method.*®
Briefly, we took varying percentages of CTS (85-90%) (w/w),
HNT (5-10%) (w/w), nano-HAP (5%) (w/w) for the membranes.
For CHH-TiP and CHH-TIT (Table 1), we added nano-HAP-TiO,
NP (5%) and nano-HAP-TiO, NT (5%) respectively instead of n-
HAP. The total amount of TiO, NP in CHH-TiP and TiO, NT in
CHH-TIT was 0.2%. Briefly, the required amount of chitosan
(HiMedia Private Ltd, degree of deacetylation =75%; M,, ~ 150-
200 kDa) was added to aqueous solution of 2.5% (v/v) glacial
acetic acid (HiMedia Private Ltd) and subsequently stirred for 2
hours at 800 rpm at room temperature. HNT (Sigma Aldrich),
nano-HAP, nano-HAP-TiO, NP or nano-HAP-TiO, NT were then
added in the required amounts to the solution and stirred
continuously for another 8 h at 800 rpm. The excess acetic acid
in the formulation was partially neutralized using 0.1 N NaOH
(HiMedia Private Ltd) solution. Subsequently, the solution was
ultra-sonicated at 200 watts for 1 h to get a homogenous blend
with proper intercalation. The formulation was then poured
into a Petri-dish and the solvent was allowed to evaporate. After
complete evaporation, the membrane was dried at 60 °C for
another 24 h. A control sample (CH) containing only CTS and

Table 1 Classification of CHH I-Ill, CHH-TiP, CHH-TIiT and CH

CTS HNT n-HAP HAP-TiO, NP HAP-TiO, NT
%) ) %) (%) (%)

CHH I 90 5 5 0 0

CHH II 87.5 7.5 5 0 0

CHH III 85 10 5 0 0

CHH-TIiP 87.5 7.5 0 5 0

CHH-TIT 87.5 7.5 0 0 5

CH 95 0 5 0 0
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nano-HAP (5%), was synthesized using the above-described
procedure.

2.3 Experiments and characterization

X-ray diffraction (XRD) study of the CHH I-1II, CHH-TiP, CHH-
TiT, and CH were recorded using Glancing Angle XRD (Bruker
Model- D8-Advance) and patterns of HNT, HAP, n-HAP-TiO, NP
and n-HAP-TiO, NT were recorded using Powder X-ray Diffrac-
tometer (Bruker Model- D8-Advance). Cu K, radiations were
employed in the scanning range of 5° to 70° with the generator
operating at 40 kV and 30 mA. The step size was 0.02° with
a constant exposure time of 5 s per step. All the samples were
studied in triplicates and a representative figure has been
presented.

Fourier transform infrared (FTIR) spectra were recorded for
thin dry membranes and powder using FT-IR spectrometer
(PerkinElmer) in ATR mode. Dry membranes of CHH I-III,
CHH-TiP, CHH-TiT, CH and powders of HNT, HAP, HAP- TiP,
and HAP- TiT were scanned in the wavenumber range of 4000-
400 cm ! at a resolution of 4 cm ™. The spectra for each sample
were recorded in triplicates. No significant spectral variations
for the samples were encountered, so, a representative FT-IR
spectrum has been presented for each of them.

Surface morphology analysis of CHH I-III, CHH-TiP, CHH-
TiT membranes and size analysis of nano-HAP, TiO, nano-
particle were investigated using Carl-Zeiss Field-Emission
Scanning Electron Microscope (ZEISS Gemini SEM 300). The
bulk microstructure and the agglomeration of the HNTs in CHH
I-1II were investigated using a transmission electron micro-
scope (FEI Tecnai G2 20 S-Twin). The solutions of the polymer
formulations were diluted with ethanol and then drop casted (5
uL) onto the copper grid. They were subsequently imaged after
the solvent evaporated. The structure and size of HNTs and TiO,
nanotubes were also investigated using TEM. In addition, to
record the nano-topographic features of the dry nanocomposite
membranes (CHH I-III), we used a scanning probe microscope
(NT-MDT-INTEGRA) with AFM module.

These analyses were carried out in triplicates, but no
significant variation was encountered. So, the representative
figures for these samples have been provided here.

Mechanical properties such as tensile strength, Young's
modulus, stiffness and the elongation at break of CHH I-III,
CHH-TiP, CHH-TiT, and CH were recorded using the Small
Scale Mechanical Tensile Tester for Biomaterials (Bose Elec-
troForce 3200 Series III), at a crosshead speed of 5 mm min~".
The sample membranes had a gauge length of 20 mm, a width
of 5 mm and a thickness of 0.06 mm.

Thermogravimetric analysis (TGA) for CHH II, CHH-TiP,
CHH-TIiT and CH membranes was carried out in a thermo-
gravimetric and differential thermal analyzer (TG-DTA, SII
6300 EXSTAR). 10 mg of sample was placed on a platinum and
alumina pan and was then gradually heated from 35 °C to
620 °C at a controlled heating rate of 20 °C min~". The heating
was carried out in a nitrogen atmosphere to provide an inert
atmosphere without oxygen. The flow rate of the carrier gas (N,)
was fixed at 200 mL min~" (STP). Finally, based on the residual

This journal is © The Royal Society of Chemistry 2019
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weight of the nanocomposite with temperature, we carried out
the thermogravimetric analysis (TGA) of the nanocomposite
samples.

Rheological ~measurements of the nanocomposite
membranes such as storage modulus (E') and loss modulus (E”)
were evaluated using a Dynamic Mechanical Analyzer (TA Q800)
in the tensile mode. The dry sample membranes had a gauge
length of 30 mm, a width of 5 mm and a thickness of around
0.06 mm. A frequency sweep was employed to record changes in
the storage modulus (E') and loss modulus (E”) in the frequency
range of 0.1-5 Hz at room temperature (25 °C) under a constant
strain of 0.1 Hz.

Water absorption studies of all the fabricated membranes
were carried out to measure the ease of cell infiltration in the
membranes. The experiment procedure has been described in
SI 1.1 in ESLT Finally, the percentage of water absorption (E,)
was calculated using the following equation:

Ea = (Wt — Wo)/Wo x 100

pH studies of all the membranes were carried out, 8 mg of
each membrane sample was mixed with 30 mL of freshly
prepared physiological saline solution (0.9% NaCl). The
prepared solutions were stirred continuously at 37 °C on
a magnetic stirrer. The pH values were recorded after 1, 2, 4, 7,
and 14 days using a pH meter.

Hemolytic assay of CHH I-1II, CHH-TiP, CHH-TiT and CH
membranes were carried out with fresh human blood to
establish their compatibility with human erythrocytes. The
experiments were approved by the Institute Human Ethics
Committee of IIT Roorkee and were carried out as per the set
guidelines. The informed consent was obtained from the
human participants of this study. The standard procedure for
the hemolytic assay was followed (ASTM F756-00) (SI 1.2 in
ESIY). Finally, the percentage of hemolysis for each sample is
calculated using the formula:

Hemolysis (%) = (OD(sample) — OD(negative control)) x 100/
(OD(positive control) — OD(negative control))

Antibacterial efficacy of CHH I-11I, CHH-TiP, CHH-TiT, and
CH were investigated against the bacterial strain of Escherichia
coli XL1B (Gram negative) and Staphylococcus aureus (Gram-
positive), using the liquid culture method* (SI 1.3 in ESIf}).
Images supplied are representatives of three independent
experiments.

Ion release study was carried out to measure the release of Al
and Si ions from the membranes, 8 mg of each of the CHHI-III
and CH film samples were immersed in 30 mL of fresh
phosphate-buffered saline (PBS) solution at 37 °C for 7 days.
Then the solution was collected for inductively coupled plasma
(ICP) emission spectral analysis ((PerkinElmer) ELAN DRC-e) to
detect the concentration of silicon (Si) and aluminum (Al) ions
released from the HNTs in CHH I-IIIL.
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Invitro cell proliferation study (MTT assay) was carried out to
investigate the cytocompatibility of osteoblast-like MG-63 cells
with the composites CHH I-1II, CHH-TiP, CHH-TiT, and CH.
The MG-63 cells have the potential to retain a differentiated
phenotype in culturing conditions and they proliferate faster
compared to normal osteoblast cells. The cells were harvested
by a 3 min trypsinization with 0.25% trypsin-EDTA solution
(Sigma Aldrich; T4049) followed by centrifugation. MTT assay
was carried out following a standard procedure (SI 1.4 in ESIt)
on the 1 and the 3™ day.

Cell attachment and morphological study with the
osteoblast-like MG-63 cells were carried out, the membranes
with the seeded cells were rinsed thrice with PBS and then fixed
using 4% paraformaldehyde at 4 °C for 30 minutes after 24 h
and 72 h of initial seeding. Then the membranes were
sequentially immersed in 25%, 50%, 75% and 100% ethanol for
dehydration. The membranes were subsequently imaged using
Carl-Zeiss Field-Emission Scanning Electron Microscope (ZEISS
Gemini SEM 300). Images provided are representatives of three
independent experiments.

Alkaline phosphatase (ALP) activity test was carried out with
the osteoblast-like MG-63 cells to measure the extent of ALP
expression after 3 and 7 days initial seeding on the membranes.
The UV-sterilized membrane samples were cultured with 5 x
10%® MG-63 cells each in a 48 well plate. The test was performed
following a standard procedure (SI 1.5 in ESIt). The ALP activity
has been normalized for each well by dividing it by the protein
content in the well to account for different cell proliferation.

All the quantitative data yielding experiments (mechanical
properties, rheological measurements, water absorption, pH
study, hemolytic assay, antibacterial efficacy, MTT assay, and
ALP activity test) were carried out in triplicates and their re-
ported values are expressed as the means of triplicate counts +
standard deviations (SD). Except for TGA, which was only
carried out once. Statistical analysis was conducted using the
ANOVA test (Dunnett's T3 multiple comparisons test).

3. Results and discussion

3.1 Optimization of the HNT loading in CTS/n-HAP/HNT
(CHH I-III) nanocomposite membranes

The XRD patterns of CHH I-III are shown in SI 3.1 in ESI,} the
presence of CTS is characterized by the peaks at 26 = 9.47° and
20.08°. The broad peak at 20.08° demonstrates the amorphous
nature of CTS. The peak intensity increases with an increasing
amount of CTS in the nanocomposite. These peaks at 9.47° and
20.08° correspond to planes (020) and (022). The presence of
HNT is marked by peaks at 2§ = 12°, 20° and 25°,*® corre-
sponding to (001), (02, 11) and (002) planes, respectively. The
intensity of the peak at 26 = 20° increases with increasing HNT
content. The presence of n-HAP is confirmed from strong peaks
at 260 = 31.76°, 32.97°and additional peaks are also observed at
25.74° and 49.41° (SI 3.3 in ESIT), which are in good accordance
with the standard ICDD card # 09-0432.

From the FTIR spectra of CHH I-1II (Fig. 1), the presence of
chitosan is confirmed from the broad peaks at 3270 cm ',

3278 ecm ™%, and 3286 cm !, which are attributed to the
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Fig. 1 FTIR patterns of CHH I-Ill and chitosan (CTS).

overlapped NH band and OH band vibration.”” This shift in the
frequencies in CHH I-III suggests the presence of electrostatic
interaction and hydrogen bonding between the HNTs and chi-
tosan.?*? A similar change in the peaks centered at 1552 cm ™"
and 1410 cm ™" was observed; these peaks can be attributed to
the deformation vibration of the hydroxyl group and protonated
amine group in chitosan.”” The presence of HNTs can be
established by the presence of two peaks centered at 3692 cm ™"
and 3620 cm ™, due to the Al,-OH stretching bands of HNTSs.?
Also, the broad peaks centered at 1014, 1010 and 1009 cm ™! for
CHH I-III respectively, were present due to the overlap of
phosphate stretching vibration of n-HAP*” and the glycosidic
linkage present in chitosan.

From the FESEM image (SI 3.5 in ESIY), it can be confirmed
that the nano-HAP particles are spherical in shape and uniform
in size, with the particle diameter varying in the narrow range of

Fig. 2 FESEM images of CHH | (a), CHH Il (b), CHH Il (c) and TEM
images of TiO, nanotube (d), CHH | (e), CHH Il (f) and CHH Il (g).
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18-25 nm. The HNTs are tube-shaped (SI 3.6 in ESIf) with
varying lengths in the range of 200-600 nm and an average
diameter of 70 nm. From the FESEM images of CHH I-III
(Fig. 2(a)—(c)), it is observed that as the percentage loading of
HNT increases from CHH I (5%) to CHH II (10%), the
agglomerated states of these tubes increase in number and size.
CHH I (5% HNTs) shows the most homogenous dispersion of
HNTSs, while CHH II (7.5% HNTs) has both well-dispersed tubes
as well as smaller aggregated states of the dimensions 1.5 pm x
1.5 um. CHH III (10% HNTs) has relatively larger agglomerate
centers which can act as fracture points or stress concentration
points during mechanical loading. The major reason for the
agglomeration of these tubes is attributed to the re-aggregation
during the solvent evaporation in the solvent casting
method employed. The uniform distribution of HNTs in CHH I
and CHH II can also be confirmed from their TEM images
(Fig. 2(e)-(g)). On the other hand, the presence of agglomerates of
HNTs in a small number and size in CHH II and a large number
and size in CHH III is confirmed from their respective TEM
images. The regions surrounding the HNTs in highly magnified
TEM images of CHH II are blurred at several interface points in
the TEM image (SI 3.9 in ESIt); this can be due to the wrapping of
chitosan around the HNTSs, thus providing evidence for the
presence of interaction between the HNTs and the chitosan
polymer matrix. Similar interactions have also been reported in
a similar study of the CTS matrix and HNT.* The EDX (SI 3.10 in
ESIt) analysis confirms the presence of n-HAP and HNTs in CHH
II. Upon examining the nano-topography results of the CTS/n-
HAP/HNT nanocomposites (Fig. 3), it is seen that there is
a non-uniform distribution of nanopores in CHH I-III
membranes. Such nanopores were absent in a CTS-HNT nano-
composite synthesized by Liu et al, 2012.* The pores present
might assist in the transfer of cell nutrition and oxygenation
through the process of diffusion as the membrane thickness is 60
um, which is well below the diffusion limit of oxygen (200 um).*
The surface roughness of these nanocomposites also increases
with the increasing amount of HNTs in the nanocomposites
which are present at the surface of the membrane. The average
surface roughness values for CHH I-III are 4.58 nm, 9.60 nm, and
17.20 nm respectively. The increasing surface roughness is
advantageous for cell attachment and proliferation. The posi-
tively charged chitosan in the mildly acidic solution interacts
electrostatically with the HNTs in the polymer matrix, so no
surface modification of HNTs was required in order to disperse
them in the polymer matrix.”®

The trabecular bone is reported to have a tensile strength of
50 MPa,** so the tensile strength of the membrane swathed
around the healing bone should be of similar magnitude. The
mechanical properties such as ultimate tensile strength (UTS),
stiffness, Young's modulus, and elongation at break of CHH I-
III and CH were evaluated in tensile mode and are listed in
Table 2. The ultimate tensile strength is maximum for CHH II,
amongst CHH I-III which is attributed to the uniform disper-
sion of the HNTs in CHH II. The UTS of CHH II (7.5% HNT) is
significantly greater than CHH I (5% HNT) due to the higher
loading of a high aspect nano-filler (HNTs) which optimizes the
load transfer from the polymer matrix to the tube. But due to the

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 AFM images of the surfaces of CHH I-IIl (top to bottom).

excessive agglomeration of HNTs in CHH III (10% HNT), there
is a large number of stress concentration points which act as
fracture points during stress application, but interestingly the
mechanical strength of CHH III is greater than the control
sample (CH) which doesn't contain any HNTs. The elongation at
break (%) was lesser for CHH I-III in comparison to CH, as the
strength and toughness have a trade-off relationship. The
Young's modulus and stiffness followed a similar trend as the
ultimate tensile strength for the CHH I-III nanocomposites. To
assess the gain in the thermal stability of the membrane due to
the addition of HNTSs, the results of TGA have been analyzed.
From SI 3.11 and SI 2 in ESI,} it is observed that the primary
degradation occurs between the temperature range of 100-
200 °C due to the loss of solvent molecules, while the secondary
degradation occurs in the temperature range of 250-300 °C.
Also, the thermal degradation of CHH II is protracted (SI 3.11 in
ESIT) in comparison to CH (control samples), due to the addi-
tion of 7.5% (w/w) HNTs in CHH II. The additional thermal
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resistance due to the presence of HNTs results from the tubular
structure of HNTs and the presence of iron.*

The membranes used for bone regeneration are expected to
experience a stimulus when implanted in vivo due to daily
activities. Thus, it is crucial to assess the viscoelastic nature of
the membranes to ensure that the membranes return to their
original state after experiencing such a stimulus. To evaluate
the effect of HNT loading on the network structure of the CTS/n-
HAP/HNT nanocomposite, an analysis of the rheological
measurements (Fig. 4) was carried out. The storage modulus (E')
increased with increasing frequency for CHH I-III membranes,
suggesting the viscoelastic nature of CHH I-1IIl membranes. The
tube-tube interaction for HNTs is minimal at low loading (5%),
but it dominates at relatively higher loading (>10%). Signifi-
cantly higher E' for CHH I and CHH II over that of CHH III are
attributed to the better dispersion and better interfacial inter-
actions of HNTs with CTS polymer matrix, resulting in
enhanced elasticity. CHH III has a lower E' than the control
sample (CH) due to the presence of large agglomerate states.
The tube-tube interaction is significant at a higher loading
(10% HNTs), resulting in the agglomeration of HNTs and
a decreasing elasticity of the system thereafter. A larger value of
storage modulus for the nanocomposites at a higher frequency
in comparison to that at lower frequencies indicates that the
polymer nanocomposite is taking lesser time for re-orientation
at higher frequencies after providing a frequency driven defor-
mation stimulus to the membranes.

From SI 3.11 in ESIL,} it is observed that CHH I had the
highest water uptake followed by CHH II and then CHH III. This
is due to the increasing content of HNTs in the membranes, the
HNTs interact with the chitosan polymer, resulting in
a decreased number of free hydroxyl groups in CTS; the water
molecules have lesser sites available for hydrogen bonding with
the chitosan matrix.*>* The pH of CHH I-1II (SI 3.12 in ESI{) in
the saline started at a mildly acidic environment (6.56-6.70) on
day 1 and developed a mildly basic (7.27-7.40) environment by
day 14, possibly due to the presence of n-HAP (Lewis base). No
shape change (morphological index) have been reported in
RBCs in the pH range of 6.5 to 8.0, so it is assumed that no
detrimental effects are caused to the cells or their cellular
functions in the initial few days when the pH of the samples is
in the slightly acidic range of 6.56-6.93.> The hemolytic
behavior of the implants is a very common complication that
arises due to the contact between the medical implant and the

Table 2 Mechanical properties of CHH |-Ill, CHH-TiP, CHH-TIiT, and CH*

Ultimate tensile strength (MPa)

Elongation at break (%)

Young's modulus (MPa) Stiffness (kN m ™)

CHH I 44.29 +1.82 35.45 + 1.36* 641.48 + 20.17 90.50 £ 3.09
CHH 11 58.91 + 2.13* 38.46 + 1.11* 836.25 + 31.89* 115.97 &+ 4.17
CHH III 40.87 £+ 2.01 29.32 £ 3.12%* 502.15 £ 28.65 80.64 £ 10.21
CHH-TiP 64.36 + 2.74* 42.88 & 2.07 932.26 £ 39.76** 132.23 + 7.98*
CHH-TIiT 67.14 + 2.51%* 37.72 + 1.94%* 967.49 + 37.70%* 140.14 + 5.61*
CH 36.88 = 1.44 52.29 £ 3.55 454.63 £ 20.43 90.70 £ 14.43

“ Data here is represented as means of triplicate values + SD, wherein * indicates p < 0.05 and ** indicates p < 0.01 when compared with CH.

This journal is © The Royal Society of Chemistry 2019

RSC Adv., 2019, 9, 39768-39779 | 39773


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra08366a

Open Access Article. Published on 02 December 2019. Downloaded on 2/6/2026 12:59:44 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances
—=—CHH I
—=—CHH Il
4000 — e
v CHH-TIP|
< CHH-TIT|
e +—— 1 [——cH |
§ 3000 //‘
= T -
@ P
. o P
£ . L L
8 29001 / o
= -
= L
5 -
- .
* e
1000 - e
T ' ' |
o M T ,
Frequency (Hz)
CHH |
—=—CHH Il
—=—CHH Il
—— CHH-TiP
\ - Shnme
210 \ e
’:?
o
=
W
@
= 140
S
3
]
=
@
3
&
]
70
T . , |
o 2 T ]

Frequency (Hz)

Fig. 4 Variation of storage (E') and loss (E”) modulus with frequency
for CHH I-1ll, CHH-TiP, CHH-TIT, and CH. Data here is represented as
means of triplicate values + SD.

human blood. Acute hemolysis leads to the release of hemo-
globin and organ failure in the host. The compatibility of CHH
I-1II membranes with the human erythrocytes was established
using hemolytic assay (Fig. 5). CHH I-III membranes had
hemolysis percentages less than 5%, so it is concluded that
CHH I-III can be safely applied for in vivo purposes without
causing acute hemolysis.* The results support a similar finding
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Fig.5 Hemolysis study of CHH I-Ill, CHH-TiP, CHH-TiT and CH. Data
here is represented as means of triplicate values + SD, wherein *
indicates p < 0.05 and ** indicates p < 0.01 when compared with CH.
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that a low concentration of HNTs has no toxic effect on human
erythrocytes.®® The current grafting procedures commonly
suffer from the post-surgical infections in the region
surrounding the implant, so there is a clinical urgency to
engineer membranes that can fight the infections on their own.
This would eliminate the need for secondary surgery to sterilize
the region or to remove the implant. From Fig. 6, it is observed
that the bacterial growth has been significantly inhibited in
both the bacterial suspensions with the addition of CHH I-III
nanocomposites. In both the suspensions, the reduction in
bacterial growth is higher for nanocomposites with higher HNT
loading. Amongst the different S. aureus suspensions, the cell
growth started to stall in the suspension containing the CHH III
membrane after 4 h. The cell growth came to a halt after 6 h in
the S. aureus suspension. These results establish that a higher
concentration of HNTs leads to a higher antibacterial efficacy in
these membranes. The bacterial inhibition is slightly more in S.
aureus suspension than in the E. coli suspension; this is
attributed to the presence of an additional outer liposaccharide
membrane in Gram-negative microbes (E. coli), leading to the
increase in their resistance to antibiotics and antibacterial
agents.*”
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Fig. 6 Antibacterial studies of CHH I-Ill, CHH-TiP, CHH-TiT and CH
with E. coli (top) and S. aureus (bottom). Data here is represented as
means of triplicate values £ SD.
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From Fig. 7(1), it is observed that the cell proliferation after
24 h and 72 h was maximum on CHH I (5% HNT) amongst CHH
I-1II and decreased with increasing HNT loading. CHH I-III
contain a high amount (>80%) of biocompatible CTS.” The cell
proliferation was higher on CH II and CHH III (CTS/n-HAP)
than the control well but lower than the CH membrane. This
indicates that cell growth is dependent on HNT concentration.
The highest cell growth is observed for the lowest (5%) HNT
loading and relatively lesser cell proliferation is observed for
higher HNT loading. Since the cell proliferation at CHH I-III is
higher than that in the control well, it can be concluded that
CHH I-III have an overall positive effect on the proliferation of
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Fig. 7 (1) Absorbance values from the MTT assay to quantify the MG-
63 cell proliferation on the surface of the membranes. (2) ALP activity
of the cells seeded on the membranes on day 3 and 7. (3) FESEM
images of attached MG-63 cells on CHH | after 24 h (a), 72 h (b) and
CHH-TIT after 24 h (c), 72 h (d). Data in (1) and (2) is represented as
means of triplicate wells + SD, wherein * indicates p < 0.05 and **
indicates p < 0.01 when compared with CH membrane at respective
time points.
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human osteoblast-like MG-63 cells. From SI 3.14 in ESI,7 it can
be observed that the addition of HNTs in CHH I-III leads to the
release of Si and Al ions in the buffer solution, this increased
release of Al ion in the cell media could have contributed to the
decreased cell proliferation in CHH II and CHH III, where the
ion release concentration is higher in comparison to CHH I
Hallab et al. (2002) have reported that the metal ions such as Al
reduce the osteoblast proliferation.®®

The attachment of the osteoblast-like cells on the surface of
the membrane depends on the surface topography and chem-
istry. From the FESEM image (Fig. 7(3a and b)), it can be
observed that the cell attachment improved over the span of
seeding time on the membrane. On the 3™ day after seeding, the
cells started to attach and spread on the membrane surface by
forming a mineralized layer. The cells displayed an elongated
polygonal like shape with outward extending filopodia in contact
with the membrane. These results confirm the successful
attachment of the MG-63 cells on the surface of CHH 1.

ALP enzyme activity is a marker of osteoblastic differentia-
tion and mineralization for bone regeneration, an increased
ALP activity signifies maturation of the extracellular matrix.
From our studies on the ALP expression of the MG-63 cells on
the CHH I-III membranes, we observed that the CHH I-III
membranes have a higher ALP activity on the 3™ and 7" day
after the initial seeding than the CH membranes. The increased
activity can be attributed to the presence of HNTs in CHH I-III.
From similar studies on composites, the presence of Si at the
surface of HNTs is expected to upregulate the secretion of
collagen I** and bioactivity of hydroxyapatite particles in the
membrane.* The overall trend in the ALP activity at day 3 to day
7 supports the claim that there is an increase in osteogenic
potential of CHH I-III over CH, possibly due to the addition of
HNTs.

From the above results, it was established that CHH II (7.5%
HNT) had the most favorable mechanical properties such as
UTS and elasticity. But, CHH III (10% HNT) had higher anti-
bacterial efficacy than CHH II and the MG-63 cell proliferation
on CHH II was lower than CHH I (5% HNT) and the control
sample (CTS/n-HAP). To overcome the shortcomings in the
biological characteristics of the CHH II membrane, we sepa-
rately added TiO, NP (0.2%) (CHH-TiP) and TiO, NT (0.2%)
(CHH-TIT) into polymer constructs with a similar composition
as that of CHH II to synthesize new membranes. The aim of this
second study was to augment the favorability of the biological
characteristics of the membrane such as anti-bacterial efficacy,
osteoblast-like cell proliferation, and differentiation potential,
at the optimized HNT loading (7.5%). We then studied the
mechanical and biological properties of these new membranes
(CHH-TiP and CHH-TIT; Table 1) and compared them with each
other.

3.2 Comparative study between TiO, NP and TiO, NT doped
CTS/n-HAP/HNT matrix with 7.5% HNTs

From SI 3.2 in ESL, T small peaks at 26 = 37.85° and 37.84° can
be observed in the XRD patterns, corresponding to the presence
of TiO, NP (SI 3.3 in ESI{) and TiO, NT (SI 3.3 in ESIt) in CHH-
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TiP and CHH-TIiT respectively. The small size of the peaks is due
to the high dispersion of a small amount (0.2%; w/w) of these
nanoparticles in the CTS/n-HAP/HNT polymer matrix. In addi-
tion, other peaks can be observed at 20 = 25.36°, 47.98° and
62.81° for both TiO, NP and NT in SI 3.2 in ESL,T which are in
good accordance with the standard ICDD (JCPDS) card # 21—
1272 (anatase TiOy).

The presence of TiO, NP and TiO, NT in CHH-TiP and CHH-
TiT respectively can also be confirmed through the presence of
peaks at 1372 cm™ ' in their respective FTIR spectra (SI 3.4 in
ESIT).

The TiO, NP (SI 3.7 in ESIf) are spherical in shape with the
particle diameters in the range of 30-35 nm. From the TEM
(Fig. 3(d)) and FESEM images (SI 3.8 in ESI{) of TiO, NT, it can
be inferred that the synthesized entities are tube-shaped with
an average length of the order of 300 nm and diameter in the
range of 30-70 nm. The crystallinity of the synthesized TiO,
nanotubes is manifested by the highly resolved TiO, lattice
fringe details in the TEM image (Fig. 3(d)).

In CHH-TiP, the ultimate tensile strength (UTS) increased
over the UTS of CHH II due to the integration of TiO, NP (0.2%)
in the polymer matrix (Table 2). An even higher increase in the
ultimate strength was observed in CHH-TIT over CHH II due to
the addition of TiO, NT (0.2%), as the tubular structure of the
TiO, NT facilitates the load transfer from polymer matrix and
other nanofillers to the additional TiO, nanotubes integrated
into the nanocomposite. The trabecular bone is reported to
have a tensile strength of 50 MPa,* so CHH II (58.91 MPa),
CHH-TiP (64.36 MPa) and CHH-TiT (67.14 MPa) showcasing an
ultimate tensile strength greater than 50 MPa, can serve as
potential bone tissue regeneration templates without under-
going any potential mechanical failure. These UTS values are
significantly higher in comparison to the recently reported CTS
based nanocomposite membranes.”?*?%27:41:42

From the results of TGA, the effect of TiO, NP and TiO, NT
addition on the thermal resistance of the chitosan matrix con-
taining 4.8% n-HAP and 7.5% (w/w) HNTs was studied (SI 2 in
ESIT). CHH-TIT had a higher residual weight at all the heating
temperatures and had a protracted degradation curve over
CHH-TiP and CHH II (SI 3.11 in ESIt}). It can be easily concluded
that the addition of TiO, NT had a higher increase in thermal
resistance over TiO, NP addition in the CTS/n-HAP/HNT poly-
mer matrix. From Fig. 4, it is observed that CHH-TiT has the
highest storage modulus at all frequencies followed by CHH-TiP
and CHH I; this is attributed to the presence of TiO, NT and
TiO, NP along with 7.5% HNTSs. TiO, NT has a high aspect ratio,
thus provides a higher potential for enhancement in elasticity
than TiO, NP to the CTS/n-HAP/HNT network. The trend of E’
and E” confirm the viscoelastic nature of both the CHH-TiT and
CHH-TiP.

The results of the hemolytic assay (Fig. 5) established the
compatibility of CHH-TIiT and CHH-TiP with the human blood
as the hemolysis (%) was low (<5%) for both these nano-
composite membranes. These results indicate that the addition
of TiO, NP and TiO, NT in small amounts doesn't have any toxic
effects on human erythrocytes. These values are significantly
lower than those reported in similar studies.***
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From the Fig. 6, it is established that CHH-TiT and CHH-TiP
had a significantly higher antibacterial efficacy than CHH II
(7.5% HNT) and CHH III (10% HNT), which is attributed to the
addition of TiO, NT and TiO, NP respectively. The final OD for
CHH-TIT in S. aureus suspension at 18 h was even lower than
the initial OD (at 0 h), indicating superior anti-bacterial prop-
erties afforded by TiO, NT addition. From Fig. 8(b), it was
observed that the nanoparticles leached from CHH-TIT
membranes were internalized within the rod-shaped body of
E. coli and small bleb-like structures could be observed on their
surfaces. The rod-like shape of E. coli seems to be compromised
and bacteria cells didn't possess the same structural integrity as
their untreated counterpart (Fig. 8(a)). Spherical shaped bacte-
rial inner vacuoles also appeared in the treated E. coli sample.
From Fig. 8(d), it was observed that the microbes shriveled and
deformed upon treatment with CHH-TIT, signaling necrosis of
S. aureus. These results show the superior anti-bacterial efficacy
of the CHH-TIT film.

Upon the degradation of the membranes, the TiO, nano-
particles could potentially accumulate in the spleen, kidney or
liver. But the amount of TiO, present in a CHH-TiT or CHH-TiP
membrane for healing a 2-4 cm long segmental bone defect is
very minimal (0.3 mg), which is well below the safety limit of
2.25 mg TiO, NPs per kg bw per day.*

From Fig. 7(1), it is established that CHH-TIT had a higher
osteoblast-like cell proliferation than CHH-TiP and CHH II,
even at the same HNT and n-HAP loading. This is due to the
highly osteoconductive nature of Titania tubes.*®* The increased
cell proliferation on CHH-TiT and CHH-TiP in comparison with
CHH II proves that the respective addition of TiO, nanoparticles
and nanotubes in lower quantities (0.2%) increased the cell
proliferation of osteoblast-like MG-63 cells on their respective
surfaces. The cell attachment improved on the surface of CHH-

Fig. 8 FESEM images of untreated E. coli (a), CHH-TIT treated E. coli
(b), untreated S. aureus (c) and CHH-TIT treated S. aureus (d).

This journal is © The Royal Society of Chemistry 2019
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TiT from day 1 to day 3 (Fig. 7(3c and d)) as the cells at day 3
have a relatively flatter morphology with filopodia extending
outwards from their bodies over the membrane surface. More-
over, the ALP activity (Fig. 7(2)) is higher on CHH-TiP and CHH-
TiT membranes than the CHH I-III membranes on day 3 and
day 7. This is attributed to the presence of TiO, in CHH-TiP and
CHH-TIT, which stimulates ALP activity and hence would
increase the in vivo osteoblast differentiation as reported in
a similar study.** These results support the osteogenic potential
of CHH-TiP and CHH-TIiT membranes, but further investiga-
tions on the osteogenic differentiation at the molecular and
cellular levels with the hMSCs are required. Our future studies
will be focused on the osteogenic differentiation of hMSCs and
in vivo investigations of the CHH-TIiT membrane implantation.

Recently, Zheng et al, 2019 (ref. 47) have reported the
preparation of HNT-HAP hybrid via facial hydrothermal reac-
tion process. Their synthesized CTS/HNT-HAP composite has
the ability to enhance cytocompatibility and osteogenic differ-
entiation ability towards preosteoblasts. In addition, Jing et al.,
2017 (ref. 48), have reported that the filler content of n-HAP and
HNT can be varied and optimized in a poly(caprolactone) (PCL)
matrix to enhance the cellular differentiation on its surface.
Valverde et al., 2019 (ref. 49) have reported that the implants
obtained from the addition of hyaluronic acid/chitosan multi-
layer films on the Ti-6Al-4V alloys enhance their anti-bacterial
efficacy. The CHH-TIiT membrane can also be considered for
use with permanent implants after further investigations.

Our dual-study has established that the addition of TiO, NT
(0.2%) to CTS/n-HAP/HNT nanocomposite at the optimized
HNT loading of 7.5% results in a nanocomposite (CHH-TiT)
with superior mechanical and in vitro biological properties.
CHH-TIT can be used to mimic the natural extracellular matrix
of the bone as it possesses the required multi-functionalities.”®
Moreover, the use of CHH-TIT as a food packaging membrane
can be further investigated as it is biocompatible and has
superior antimicrobial efficacy. Our future work will further
investigate the in vitro and in vivo effects of these multi-
functional membranes on human bone regeneration. These
nanocomposite membranes have the potential to be employed
for healing short segmental bone defects (2-6 cm) and the
defects with limited contact. The membranes can be wrapped
around the defect using bioabsorbable screws* as it can with-
stand the mechanical load and provide a surface for osteoblast
attachment, proliferation, and differentiation. The mechanical
rigidity of the CHH-TiT membrane would provide a barrier for
maintaining the original shape of the bone and avert any
postoperative attachment between the bone and the
surrounding soft tissues. The CHH-TiT membrane has the
potential to induce rapid necrosis in the bacterial cells, hence it
can also be used for treating the pre-infected bone defect
models by swathing the membrane around the infected defect.

4. Conclusion

In the first stage of the study, we successfully fabricated CTS/n-
HAP/HNT (CHH I-III) nanocomposites which are yet to be re-
ported in the literature. The primary aim was to optimize the

This journal is © The Royal Society of Chemistry 2019
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HNT loading in CHH I-III so that the properties of the membrane
with optimized loading can mimic the mechanical and biological
properties of the natural bone extracellular matrix for successful
bone tissue regeneration. FESEM and TEM images confirmed the
uniform dispersion of HNTs in CHH I (5% HNT) and CHH II
(7.5% HNT), while the presence of larger agglomerates in CHH I1I
(10% HNT) indicated increased tube-tube interactions at 10%
HNT loading. TEM images also confirmed electrostatic attrac-
tions between the CTS matrix and the dispersed HNTs. AFM
images revealed the presence of nano-dimensional pores (200-
300 nm) on the surface of CHH I-III. The nanocomposite with
7.5% HNT loading (CHH II) displayed the highest tensile
strength of 58.91 MPa and a highly viscoelastic nature. But, the
proliferation of osteoblast-like MG-63 cells on CHH II was
comparatively lower in comparison to CHH I (5% HNT) and CH
(control sample; CTS/n-HAP) and the antibacterial efficacy was
higher at 10% HNT loading (CHH III). The ALP activity was
higher for CHH I-III in comparison with CH membranes due to
the presence of Si at the surface of HNTs in CHH I-III. With an
aim to enhance the biological properties such as cell proliferation
and antibacterial efficacy of CTS/n-HAP/HNT nanocomposite at
7.5% HNT loading, we separately doped TiO, nanoparticles and
TiO, nanotubes into CHH II like polymer formulations. The
ultimate tensile strength of CHH-TiP and CHH-TIT increased to
64.35 MPa and 67.14 MPa respectively, due to TiO, NP and NT
addition. These rigid membranes will help in restricting the
growth of the healing bone to a specific region and avert any
postoperative attachment between the bone and the surrounding
soft tissues. CHH-TiT had the highest elasticity amongst all the
membranes and had an increased thermal resistance over CHH-
TiP and CHH II. CHH-TiT (7.5% HNT, 0.2% TiO, NT) followed by
CHH-TIP (7.5% HNT, 0.2% TiO, NT), considerably reduced the
microbial growth (both Gram-positive and Gram-negative) by
initiating cell blabbering and subsequent necrosis, their efficacy
was even higher than CHH III (10% HNT). All the nano-
composites had hemolysis (%) well below the limit of acute
hemolysis, thus establishing their compatibility with the human
erythrocytes. The cell proliferation of osteoblast-like MG-63 cells
was maximum for CHH I (5% HNT) while for the membranes
with 7.5% HNT loading, it increased well above the cell prolif-
eration at CH with the addition of TiO, nanotubes (CHH-TiT) and
nanoparticles (CHH-TiP) to the membrane. The expression of
differentiation marker for the osteoblast-like MG-63 cells
increased over time and it was maximum for CHH-TiP and CHH-
TiT owing to the presence of 7.5% HNTs and 0.2% TiO,. These
results establish the potential use of CHH-TiT in bone tissue
regeneration, but further in vitro and in vivo studies are required
before it can be used in clinical settings. This study highlights
a feasible two-staged strategy to engineer bioresorbable
membranes possessing enhanced anti-bacterial efficacy to
inhibit any post-implantation bacterial infections and simulta-
neously serve as a template for guided bone tissue regeneration.
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