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Low-grade inflammation is usually defined as the chronic production and a low-grade state of inflammatory
factors, it often does not have symptoms, and has been associated with neurodegenerative disease, obesity,
and diabetes. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are the precursors of many anti-
inflammatory metabolites, such as resolvins and neuroprotectins. It is of interest to study the metabolic
profile of endogenous n-3 PUFAs in low-grade inflammatory conditions. To evaluate the protective
effects of endogenous n-3 PUFAs on low-grade inflammation with the metabolomics approach, we fed
fat-1 mice with an n-6 PUFAs rich diet for a long time to induce a low-grade inflammatory condition.
Multi-analysis techniques, including structural analysis using quadrupole time-of-flight mass
spectrometry with MSE mode, were applied in untargeted metabolomics to search for meaningful
metabolites with significant variance in fat-1 mice under low-grade inflammation. Following the
untargeted metabolomics screening, several meaningful metabolites were selected which were
associated with anti-inflammatory effects generated from endogenous n-3 PUFAs for further analysis.

) The results revealed that the purine metabolism, fatty acid metabolism and oxidative stress response
iig:;i% 11‘7122 ggtczbr:éezf);glg pathways through insulin resistance were involved in anti-inflammatory mechanisms of n-3 PUFA in low-

grade inflammatory conditions. For the first time, this study explored the highlighted pathways as
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1. Introduction

Low-grade inflammation has received considerable attention
recently. It is usually defined as the chronic production and
a low-grade state of inflammatory factors, but often does not
have symptoms. In addition, low-grade inflammation contrib-
utes to the establishment of obesity, type 2 diabetes, cancer,
cardiovascular diseases," neurodegeneration disease* and so
on. High-fat meals may induce the inflammation, and this is
exaggerated by saturated fatty acids (SFA) and trans-mono-
unsaturated fatty acids (trans-MUFA).* Polyunsaturated fatty
acids (PUFAs) are involved in the regulation of immunological
and inflammatory responses. n-6 PUFAs, such as linoleic acid
(LA) and arachidonic acid (AA), are associated with pro-
inflammatory.* Conversely, Omega-3 polyunsaturated fatty
acids (n-3 PUFAs) have been reported to be able to modulate
inflammatory responses to exert beneficial effects in a variety of
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contributors to the anti-inflammatory effects of endogenous n-3 PUFAs in low-grade inflammatory

neurological disorders.**° n-3 PUFAs are essential fatty acids for
normal metabolism in mammals and play key roles in main-
taining structural and functional integrity of cellular
membrane. Mammals are not able to endogenously synthesize
n-3 PUFAs and fail to convert n-6 PUFA to n-3 PUFAs, on account
of lacking n-3 desaturase, the enzyme that catalyzes this reac-
tion."* In fat-1 transgenic mice fed a diet rich in n-6 and defi-
cient in n-3 PUFAs, the tissue n-6 : n-3 ratio is approximately
1 : 1, whereas the ratio is 50 : 1 in wild type (WT) animals under
this diet condition.”" In WT mammals, n-6 PUFAs often
undergo transformation by the action of the enzyme n-6-
desaturase and vy-linolenic acid is elongated to form dihomo-
v-linolenic acid and arachidonic acid, the precursor of pro-
inflammatory cytokines.** Diet rich in n-6 and deficient in n-3
PUFAs has the ability to enhance proinflammatory cytokine
production.” The modern Western diet is poor in n-3 PUFAs
with a n-3 : n-6 PUFAs ratio of 1 : 15-20, whereas the diet of our
ancestors is estimated to have had a ratio of 1 : 1."**%"

It is of interest to provide detailed information about the role
of n-3 PUFAs in the low-grade inflammatory conditions. The
transgenic fat-1 mouse carries a fat-1 gene that encodes an n-3
fatty acid desaturase which can convert n-6 PUFAs to n-3
PUFAs, leading to an increased abundance of n-3 PUFAs and
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a decrease in n-6 PUFAs in animal tissues.'®" The majority of
studies adopt low-grade inflammation models with various diet
formula, but it is difficult to control the fat composition
between experimental groups. Fat-1 mice thus provide a desired
model to investigate the biological functions of n-3 PUFAs
under the low-grade inflammation condition induced by a diet
rich in n-6 PUFAs.

Metabolomics has been widely applied to identify
biomarkers and investigate mechanisms of biological effects.*
Currently, ultra performance liquid chromatography quadru-
pole time of flight mass spectrometry (UPLC-Q-TOFMS) has
become an indispensable analytical platform of metabolomics
due to its high sensitivity, high throughput and wide coverage of
metabolites detected.”® LC-MS-based metabolomics offers
untargeted and targeted strategies. Untargeted metabolomics
aims to analyze all metabolites without prior knowledge of the
components by full-scan mode. The MSF, an effective MS tech-
nique, can perform parallel alternating scans for acquisition to
obtain precursor ion information at low collision energy and to
obtain full-scan accurate mass fragment, precursor ion and
neutral loss information at high collision energy.?* The MS*
mode allows almost simultaneous acquisition of both MS and
MS/MS fragmentation data in a single analytical run.”® Thus
MS® provides significant benefits in metabolite identification,
which is important to simplify untargeted metabolomics
studies.”® Additionally, Metabolite Set Enrichment Analysis
(MSEA) based on web-database is frequently used to identify
and reveal the biological significance of patterns of changes in
metabolite concentration.?

Herein, in the present study, the metabolomics was conducted
to investigate the anti-inflammatory effects of endogenous n-3
PUFAs in a low-grade inflammation animal model induced on
transgenic fat-1 mice. Additionally, we identified the metabolite
changes which are responsible for the anti-inflammatory effect of
endogenous n-3 PUFAs. It is worth mentioning that this study
explored the metabolism profile of the anti-inflammatory effects
of endogenous n-3 PUFAs for the first time.

2. Methods

2.1 Chemicals and materials

HPLC-grade acetonitrile, formic acid and methanol were
purchased from Thermo Fisher Scientific (Waltham, MA, USA).
EDTA K2-treated glass blood collecting tubes were purchased
from Kangjie Company (Jiangsu, China). Mouse IL-6 enzyme-
linked immunosorbent assay (ELISA) kit and Mouse TNF-
o ELISA kit were purchased from Ready-SET-Go® (eBioscience
Inc., Thermo Fisher Scientific, San Diego, USA). Eicosapentae-
noic acid (EPA), arachidonic acid (ARA), prostaglandin E2
(PGE2), palmitic acid, resolvin E1, 5-hydroxyeicosatetraenoic
acid, 20-hydroxyeicosatetraenoic acid-dé (20-HETE-d6) were
purchased from Cayman Chemical (Ann Arbor, MI, USA).

2.2 Animal, modeling and verification

Fat-1 transgenic mice breeders with a C57BL/6 background
were obtained from Dr Jing X. Kang (Harvard Medical School,
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Boston, MA, USA). The male heterozygous fat-1 mice mated
with female C57BL/6 mice. The offspring would be heterozy-
gous fat-1(+) mice and their wild type (WT) littermates. To get
the fat-1(+) transgenic mice, the progeny was identified by
PCR. All experimental animals were housed in controlled
conditions (temperature 25 + 2 °C, humidity 50 & 10%, 12 h
light/dark circle) and fed ad libitum. A total of 12 fat-1 trans-
genic mice and 12 wild type (WT) mice, designated as a fat-1
group and WT group, were fed a modified diet immediately
after weaning until they were 1 year old to induce the low-
grade inflammation model. The modified diet contained
10% corn oil (TROPHIC Animal Feed High-tech Co., Ltd,
China), with a fatty acid profile high in n-6 PUFAs (mainly
linoleic acid) and low in n-3 PUFAs (~0.1% of the total fat
content). An additional group of 7 WT mice, which were
designated as the control group, were fed a normal chow diet
during the corresponding experimental period. All animal
experiments were performed in strict accordance with the NIH
guidelines for the care and use of laboratory animals (NIH
publication no. 85-23 Rev. 1985) and were approved by the
Institutional Animal Care and Use Committee, University of
Macau, China.

The low-grade inflammation model was verified by deter-
mining the plasma levels of IL-6 and TNF-a. The levels of
these two inflammatory cytokines were tested by antigen-
specific ELISA with mouse IL-6 ELISA kit and mouse TNF-
o ELISA kit.

2.3 Blood sample collection and preparation

Blood samples (about 400 pL of each sample) were drawn from
the tail vein and collected in EDTA K2-treated glass tubes.
Plasma samples were collected after centrifugation of the blood
samples for 10 min at 6000 x g using a refrigerated centrifuge.
The samples were maintained at 0-4 °C during the processing
period. A mixture of equal amounts (20 pL) of each sample was
prepared for use as quality control (QC) sample. All the plasma
samples were stored at —80 °C until further analysis.

To maximize the component profile in samples used for
metabolomics analysis, the solvent in the protein precipitation
step was optimized. Methanol covered more metabolites and
had better performance than other solvents, including aceto-
nitrile, methanol with 0.1% formic acid and acetonitrile with
0.1% formic acid, respectively. Thus, methanol was used for
protein precipitation during the extraction of plasma metabo-
lites. First, 150 pL of methanol was added into a 50 uL aliquot of
plasma sample. The mixture was mixed by vortexing for 2 min
and then centrifuged twice at 13 000 x g for 15 min. Subse-
quently, the supernatant was transferred into an Eppendorf
tube and analyzed by untargeted metabolomics.

The metabolite 20-HETE-d6 was used as the internal stan-
dard (1.S.) and was prepared in acetonitrile at 10 ug mL ™", as
a stock solution. All the samples prepared for multiple reaction
monitoring (MRM) analysis were mixed with 5 pL of L.S. solu-
tion and 145 pL of methanol. The mixtures were then centri-
fuged twice at 13 000 x g for 15 min, and supernatants were
transferred into Eppendorf tubes.

This journal is © The Royal Society of Chemistry 2019
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2.4 UPLC-Q-TOFMS conditions for untargeted
metabolomics

Chromatographic separation was conducted on a Waters ACQ-
UITY UPLC system (Waters Corp., Milford, MA, USA) with an
ACQUITY HSS T3 column (2.1 x 100 mm, i.d. 1.8 um) at 50 °C.
The mobile phase was a mixture of 0.1% formic acid water
solution as solvent A and methanol as solvent B. An 18 min
gradient elution program was used as follows: 0-2 min, 5-55%
B (v/v); 2-10 min, 55-90% B (v/v); 10-15 min, 90-100% B (v/v);
15-17 min, 100% B (v/v). The column was equilibrated and
eluted under isocratic conditions with a flow rate of 0.4
mL min~ ", and the injection volume was 3 pL.

The LC eluent was introduced into a Waters SYNAPT G2-Si
High Definition Mass Spectrometry (HDMS) equipped with an
electrospray ionization (ESI) interface (Waters Corp., Man-
chester, UK). Ionization was achieved with the following
parameters: capillary voltage, 3.0 kV in the positive mode, 2.5 kV
in the negative mode; sampling cone voltage, 40 V in the posi-
tive mode and 30 V in the negative mode; source temperature,
140 °C and 120 °C, in the positive and the negative mode,
respectively; desolvation temperature, 450 °C; cone gas flow,
10 L h™'; desolvation gas, nitrogen; desolvation gas flow, 900 L
h™" in the positive mode and 600 L h™" in the negative mode;
nebuliser gas flow pressure, 5.9 bar. A Leucine-Enkephalin
solution (LE, 200 pg mL ') was continuously infused into MS
at 10 pL min~ ' for real-time calibration. In addition, the
samples were also analyzed in the MS® mode with mass range of
50 to 1000 Da, with a data acquisition rate set to 0.25 s for TOF-
MS scan, the collision energy ramp range was set from 0 to 30 V.

2.5 Statistical analysis

The raw data were processed with MarkerLynx XS software
(Waters, Milford, MA, USA). Pretreatment procedures of vari-
ables extraction, alignment, and normalization were performed
to process the raw data. The resulting matrix was composed of
sample name, m/z - retention time, and normalized peak
intensity. Ions were refined by “80% rule”, in which the ions
that were detected in <80% of the all injections were removed
from the dataset.*® The data were then processed using EZinfo
3.0 (MKS Umetrics, Umed, Sweden) with pareto scaling and
mean centering before multivariate data analysis to perform the
unsupervised principal component analysis (PCA) and super-
vised orthogonal partial least squares-discriminant analysis
(OPLS-DA). In these two models, cumulative goodness of fit (R%)
and the cumulative goodness of prediction (Q*) were used to
evaluate separates classes of observations. In the OPLS-DA, the
variable importance in projection (VIP) was weighted to esti-
mate the importance of metabolites. The metabolites with a VIP
value above 1 were responsible for the apparent discrimination
in OPLS-DA models. One-way ANOVA and significance analysis
of microarray (SAM) were also performed to identify important
metabolites. The metabolites selected by VIP with both p value
less than 0.05 in one-way ANOVA and FDR equal 0.001 in SAM.

The structural characterization information of the metabo-
lites as potential biomarkers was performed by MS® analysis. To
illuminate the concentration change, interaction, and core
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pathways of potential biomarkers, the Metaboanalyst 4.0 soft-
ware (http://www.metaboanalyst.ca/), the high-quality Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolic path-
ways as the backend knowledgebase were applied. A one-
column marker candidates list with human metabolome data-
base (HMDB) ID input type was imported into the online soft-
ware. During the process, the Mus musculus (mouse) pathway
library was chosen for the following enrichment pathway
analysis.

2.6 Selected metabolites analysis conditions

20-HETE-d6 was used as the internal standard. For uric acid,
PC16, eicosapentaenoic acid, prostaglandin E2, arachidonic
acid, palmitic acid, the lower limit of determination (LLOD) was
selected by S/N > 10 and showed in Table S3.f In addition,
LLOQs of RvE1 and 5-HETE were selected by S/N > 3. Chro-
matographic conditions were same as the untargeted metab-
olomics. Ionization was achieved using electrospray in negative
mode with capillary voltages at 3000 V, sampling cone voltage at
30 V, source temperature at 120 °C, desolvation temperature at
450 °C, cone gas flow at 50 L h™", desolvation gas flow at 900 L
h™*, and nebuliser had the flow pressure at 5.9 bar. Quantifi-
cation was performed using the MRM mode at m/z 325.2 —
275.3 for EPA, m/z 303.2 — 259.25 for ARA, m/z 353.2 — 289.2
for PGE2, m/z 255.2 — 239.2 for palmitic acid, m/z 351.2 —
303.2 for RvE1l, m/z 319.2 — 303.2 for 5-HETE, m/z 327.4 —
253.2 for LS. The cone voltages for EPA, ARA, PGE2, palmitic
acid, RvE1, 5-HETEand I.S. were set at 30, 30, 30, 15, 20, 20 and
20 V, respectively. The trap CE voltages of each chemical were
20, 20, 20, 15, 0, 0 and 0 V, respectively.

The data sets from the MRM determination analysis were
then processed with the Metaboanalyst 4.0 software to obtain
the relative determination by metabolite set enrichment anal-
ysis (MSEA).

3. Results and discussion

3.1 Biological change of the low grad inflammation in
normal and fat-1 animal model

Low-grade inflammation is recognized as a pathological feature
of a wide range of chronic conditions in a growing number of
chronic diseases.”” Various biomarkers have been shown to
correlate with the morbidity biological profile. The most
prominent ones are the interleukin (IL) cytokines and tumor
necrosis factor (TNF).?® Circulating IL-6 and TNF-o levels are
associated with the state of systematic low-grade inflamma-
tion.>?* In this study, IL-6 and TNF-a levels in plasma were
measured by high-sensitivity ELISA to validate the low-grade
inflammation model. As shown in Fig. 1, both IL-6 and TNF-
a level in WT mice fed with a modified diet were much higher
than those in the animals which were fed with a normal diet,
indicating that long-term intake of n-6 PUFAs could lead to low-
grade inflammation. Compared with the WT mice, fat-1 mice
showed less plasma levels of IL-6 and TNF-a (Fig. 1), which is
consistent with previous studies that endogenous n-3 PUFAs
significantly reduces inflammation.?**

RSC Adv, 2019, 9, 41903-41912 | 41905
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Fig. 1 Plasma levels of Tnf and IL-6 in the baseline; control group, WT group and fat-1 group.

3.2 Metabolic variations of the low grad inflammation in
normal and fat-1 animal

The procedure and result of validation of untargeted metab-
olomics method are shown in ESL.{ The base peak intensity
(BPI) chromatograms obtained in the positive and negative
modes are depicted in Fig. 2. After data extraction alignment,
normalization and miss value elimination, 721 peak indices
(RT-m/z pairs) and 501 ions were acquired from plasma sample
in positive and negative modes, respectively. The resultant
matrix with the exact mass-retention time pair, intensity and
sample code was generated for further statistical analyses. After
pareto scaling and mean centering, OPLS-DA score plot was
constructed using the datasets from fat-1 and WT groups

(Fig. 3A and E). The separation between the fat-1 and WT group
was observed in OPLS-DA score plots derived from the data in
either positive or negative mode. The OPLS-DA on plasma
samples from the WT and baseline control group was also
performed to monitor the metabolite changes in the low-grade
inflammation situation (Fig. 3C and G). The scatter plots of the
variable importance in projection (VIP) values in these two
OPLS models are shown in Fig. 3B, D, F and H. All VIP values of
variables greater than one are marked with red dots and labeled
in the BPI chromatograms, and a total of 171 metabolites are
marked (Fig. 2). One-way ANOVA results of these highlighted
metabolites are shown in Fig. 31. As a way of conceptualizing the
rate of true null hypothesis incorrect rejection, false discovery
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Fig.2 The base peak intensity (BPI) chromatograms of QC samples obtained in the positive and negative modes are depicted in this figure. A total of
116 metabolites were marked and shown in (A) under the positive mode, whereas 55 metabolites were marked under the negative mode (B).
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Fig. 3 Metabolomics study on low-grade inflammation. (A) OPLS-DA scores of plasma samples collected from the fat-land WT groups in the
positive mode. (B) Scatter plots of VIP of plasma metabolites obtained from the fat 1 and WT group in the positive mode. (C) OPLS-DA scores of
plasma samples collected from the fat-1 and WT groups in the negative mode. (D) Scatter plots of the VIP of plasma metabolites obtained from
the fat-1 and WT groups in the negative mode. (E) OPLS-DA scores of plasma samples collected from the baseline control and WT groups in the
positive mode. (F) Scatter plots of the VIP of plasma metabolites obtained from the baseline control and WT groups in the positive mode. (G)
OPLS-DA scores of plasma samples collected from the baseline control and WT groups in the negative mode. (H) Scatter plots of the VIP of
plasma metabolites obtained from the baseline control and WT groups in the negative mode. (I) Significant features identified by one-way
ANOVA. (J) Significant features identified by SAM. The green circles indicate features that exceed the specified threshold. (K) Pie chart repre-

senting the number of altered metabolites within the 3 groups.

rate (FDR) procedures are used under conditions of multiple
comparisons. Among the various FDR analytical methods, the
microarray is a typical example to solve the calculation of matrix
with multi-classes. Significance analysis of microarray (SAM)
identifies statistically significant variables by carrying out ¢-tests
for 2 groups® and F-tests for multi-groups.*® It provides a tuning
parameter, namely the delta, to obtain significant variables
along with acceptable FDR.*” In this study, 171 metabolites
derived from the OPLS-DA of plasma samples analyzed in the
ESI positive and negative mode were mixed in one matrix for
SAM. In the analysis procedure, the delta was adjusted to
control the FDR to no more than 0.001 and a p-value of less than
0.05 (Fig. 3]J). The more a variable deviated from the expected
line, the more likely it was to be significant. A total of 85
significant metabolites were selected from the ones obtained
from the OPLS-DA model. As shown in Fig. 3K, 54% of the
metabolites showed significant alteration among the baseline
control, WT, and fat-1 group. However, only 24% of the
metabolites showed significant alteration between the WT and
fat-1 group. Those metabolites contributing most to the
significant variance between the baseline control and WT group
could be considered as potential biomarkers for low-grade

This journal is © The Royal Society of Chemistry 2019

inflammation, and those contributing to the variance between
the WT and fat-1 group could be considered to play roles in the
mechanism of the anti-inflammatory effects of n-3 PUFAs.

The highlighted metabolites were tentatively identified by
analyses of the MS spectra and then by searching those data in
available biochemical libraries, including the HMDB (http://
www.hmdb.ca/spectra/ms/search), METLIN (http://
metlin.scripps.edu/) and KEGG (http://www.genome.jp/kegg/)
using a 50 ppm tolerance. The candidate markers were tenta-
tively assigned (Table 1).

To gain a better understanding of the function of these
candidate markers in the mechanism of the anti-inflammatory
effect of endogenous n-3 PUFAs, the pathway analysis was per-
formed by the Metaboanalyst 2.1 software (Fig. 4A). The heat
map of selected metabolites in the serum in the baseline
control, WT and fat-1 group was generated to observe the rela-
tive change of the metabolites (Fig. 4B). Red indicates the high
intensity of the metabolite relative to its mean intensity (black),
and green represents the low intensity. In this study, energy
metabolisms, including glycerophospholipid metabolism,
starch and sucrose metabolism, and fatty acid metabolism,
including biosynthesis of unsaturated fatty acids, linoleic acid

RSC Adv, 2019, 9, 41903-41912 | 41907
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Table 1 Identification of the significantly different endogenous metabolites in the model
Adduct MW Compound MW Chemical

No. HMDB RT m/z Adduct (Da) (Da) Delta formula Compound name

1 HMDB61890 0.59 187.0797 M + H 187.0713 186.0641 0.0084 C7H10N204  Pyroglutamylglycine

2  HMDB40275 0.60 203.0547 M + H 203.0550 202.0477 0.0003 C8H1006 Ethyl aconitate

3 HMDB00289 0.95 169.0369 M + H 169.0356 168.0283 0.0013 C5H4N403 Uric acid

4 HMDB29737 1.79 146.0612 M + H 146.0600 145.0528 0.0012 COH7NO 1H-Indole-3-carboxaldehyde

5 HMDB00734 1.79 188.0721 M + H 188.0706 187.0633 0.0015 C11H9NO2 Indoleacrylic acid

6 HMDB32857 1.84 261.1335 M + H 261.1333 260.1260 0.0002 C12H2006 Glycerol tripropanoate

14 HMDB02904 7.06 343.2267 M + H 343.2115 342.2042 0.0152 C18H3006 2,3-Dinor-TXB2

18 HMDB10383 7.14 494.3279 M + H 494.3241 493.3168 0.0038 C24H48NO7P  LysoPC (16 : 1)

19 HMDB10389 7.14 516.31 M +H 516.3085 515.3012 0.0015 C26H46NO7P  LysoPC (18 : 4)

53 HMDB10410 8.38 351.2309 M + H 351.2166 350.2093 0.0143 C20H3005 Resolvin E1

62 HMDB01220 8.83 353.2476 M + H 353.2323 352.2250 0.0154 C20H3205 Prostaglandin E2

63 HMDB11651 8.83 375.2296 M + H 375.2166 374.2093 0.0130 C22H3005 11beta,20-Dihydroxy-3-oxopregn-4-en-21-oic
acid

64 HMDB10409 9.00 321.2117 M + H 321.2424 320.2351 0.0307 C20H3203 11,12-EpETTE

71 HMDB13213 9.83 367.3202 M + H 367.3445 366.3372 0.0243 C23H44NO2 alpha-Linoleoylcholine

89 HMDB11134 7.01 319.23 M — H 319.2279 320.2351 0.0009 C20H3203 5-HETE

118 HMDB00822 0.64 167.0226 M — H 167.0350 168.0423 0.0124 C8H804 p-Hydroxymandelic acid

119 HMDBO01874 0.98 191.0211 M — H 191.0197 192.0270 0.0014 C6H807 D-threo-Isocitric acid

121 HMDB06357 2.24 187.0084 M — H 187.0248 188.0321 0.0164 C7H806 cis-2-Methylaconitate

127 HMDB01445 7.01 586.3178 M — H 586.2188 587.2260 0.0990 C23H43NO12P2 N-Acetyl-D-glucosaminyldiphosphodolichol

138 HMDB13206 7.59 255.2342 M — H 255.2204 256.2277 0.0138 C15H30NO2 9-Decenoylcholine

142 HMDBO01045 7.70 554.3286 M — H 554.2620 555.2693 0.0666 C28H37N507  Enkephalin L

148 HMDB13022 7.88 616.3632 M — H 616.3716 617.3788 0.0084 C32H51N507 Neuromedin N

149 HMDB01999 7.97 301.2192 M — H 301.2173 302.2246 0.0019 C20H3002 Eicosapentaenoic acid

156 HMDB59632 8.33 395.2222 M — H 395.2204 396.2277 0.0018 C18H3707P  (95,10S)-10-Hydroxy-9-(phosphonooxy)
octadecanoate

157 HMDB02183 8.34 327.2347 M — H 327.2330 328.2402 0.0017 C22H3202 Docosahexaenoic acid

158 HMDB01043 8.36 303.2349 M — H 303.2330 304.2402 0.0019 Arachidonic acid

159 HMDB12869 8.36 371.222 M — H 371.2228 372.2301 0.0008 C23H3204 9'-Carboxy-gamma-tocotrienol

163 HMDB00220 8.69 255.2345 M — H 255.2330 256.2402 0.0012 C16H3202 Palmitic acid

165 HMDB04708 8.76 329.2499 M — H 329.2333 330.2406 0.0166 C18H3405 9,12,13-TriHOME

166 HMDB41480 8.93 281.2504 M — H 281.2486 282.2559 0.0018 Octadecenoic acid

167 HMDB13040 8.94 349.2377 M — H 349.2020 350.2093 0.0357 C20H3005 PGH3

169 HMDBO00827 9.72 283.2661 M — H 283.2643 284.2715 0.0088 C18H3602 Stearic acid

metabolism, a-linoleic acid metabolism and fatty acid elonga-
tion in mitochondria were found to be involved. As most altered
metabolites were lipids and fatty acids, this indicated that lipid
and fatty acid metabolisms were severely disrupted in low-grade
inflammation model. It was reported that n-3 PUFAs acted as
substrates of cyclooxygenase (COX) and lipoxygenase (LOX)
enzymes to generate alternative eicosanoids and reduce the
generation of eicosanoids from arachidonic acid.*® Accordingly,
it was apparent that endogenous n-3 PUFAs could decrease low-
grade inflammation.*>***’ In addition, purine metabolism and
tryptophan metabolism were found to be involved in the anti-
inflammatory effects of endogenous n-3 PUFAs in this study.
As shown in Fig. 3A, the purine metabolism was strongly
correlated to low-grade inflammation. It is well-known that
purine metabolism is associated with oxidative stress.*"*
However, the relationship between n-3 PUFAs and purine
metabolism has rarely been reported. Recently, the study of
tryptophan metabolism has become a hotspot for research on
low-grade inflammation and inflammatory disorders, such as
metabolic syndromes and neuropsychiatric diseases. Altered
tryptophan metabolism could be triggered by steroids,

41908 | RSC Adv, 2019, 9, 41903-41912

cytokines and tryptophan itself under inflammation.*® Previous
studies showed that the major route of tryptophan metabolism
was the kynurenine pathway,***® which was found to be asso-
ciated with high levels of TNF-o. and IL-6 in a systemic inflam-
matory condition.** In conclusion, with the global
metabolomics analysis, the major pathway changes have been
determined in the low-grade inflammation model.

3.3 Pathway changes of anti-inflammation effect of
endogenous n-3 PUFA

After the selection of metabolomics study, several metabolites,
uric acid, PC 16, EPA, ARA, PGE2, palmitic acid, RvE1, 5-HETE,
were character makers which were highlighted in an alternated
pathway. In this study, these markers were compared between
WT group and fat-1 group with quantitative analysis. Stable
isotope-labeled 20-HETE-d6 (I.S.) were used to correct error in
the determination of the concentration changes of the reference
metabolites. All the MRM detected metabolites were compared
with the peak area of the LS. in each sample to obtain the
concentration with the reference. Linear responses were ob-
tained for analytes in the range of concentration curves. The

This journal is © The Royal Society of Chemistry 2019
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Fig. 4

regression equations were shown in Table S3.7 The concentra-
tion data set was analyzed by MSEA with MetaboAnalyst 4.0
(Fig. 5). Alpha-linolenic acid and linoleic acid metabolism,
arachidonic acid metabolism,

Fig. 5
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mitochondria, fatty acid metabolism, glycerolipid metabolism
and insulin signaling pathways were found to be altered, and
the rank of Holm p values are shown as the color depth ranked

(Fig. 5).
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(@) Metabolite Set Enrichment Analysis (MSEA) overview of affected pathways associated with anti-inflammatory mechanisms of
endogenous n-3 PUFAs in the low-grade inflammation model by targeted metabolomics. (b) The relative concentration changes of biomarkers
in plasma samples from WT and fat-1 group.
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inhibitory effects between inflammatory mediators. Red arrows indicate the effects of n-3 PUFA on regulating inflammatory mediator levels.

4. Discussion

At high n-6 PUFAs concentration increased the serum levels of
IL-6 and TNF-o in animals (Fig. 1) consistent with previous
reports.*”*® The key intermediate metabolite of n-6 PUFAs is
arachidonic acid (ARA)* as the substrate of COX or prosta-
glandin H (PGH) synthase, and precursor of prostaglandins
such as PGE2.*° PGE2 could also be derived from IL-6 and TNF-
o and induced COX enzymes expression.’™** Previous studies
suggested that the gene encoding for IL-6 is regulated by
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-«kB).>*** However, NF-kB could induce oxidative stress by
regulating the level of reactive oxygen species.”® Based on this
metabolomics study and a review of the literature, inflamma-
tory mediator interactions occurring during the inflammatory
process are summarized (Fig. 6). Solid arrows indicate stimu-
latory effects and dotted arrows indicate inhibitory effects
between inflammatory mediators. Red arrows indicate the
effects of n-3 PUFA on the regulation of the level of inflamma-
tory mediators. Uric acid was identified as a biomarker which is
closely associated with the oxidative stress response pathways*®
and recognized as the final oxidation product of purine
metabolism. In addition, the high level of uric acid might act as
a strong pro-oxidant which accelerates the copper-induced
peroxidation of lipids, even in the presence of endogenous
antioxidants.”” Thus, the strengthened oxidative stress would
directly activate the transcription factor NF-kB in feedback.
Following NF-kB activation, insulin resistance could be the
result.®® As a consequence, purine metabolism and fatty acid
metabolism would also be affected. Thus, n-3 PUFA-derived
eicosanoids, such as EPA and resolvin E1 were subsequently
up-regulated, and n-6 PUFA-derived eicosanoids, including
PGE2, 5-HETE, cytokines (TNF-a, IL-6), and macrophage tissue
infiltration were subsequently downregulated. Presumably, the

41910 | RSC Adv, 2019, 9, 41903-41912

anti-inflammatory effects of endogenous n-3 PUFAs might be
exerted through alteration of the signaling pathway of insulin
resistance,” purine metabolism, fatty acid metabolism and
oxidative stress response pathways.*

5. Conclusion

A metabolomics study was conducted to investigate the anti-
inflammatory effects of endogenous n-3 PUFAs response to
a low-grade inflammation induced on transgenic fat-1 mice in
this work. Multi-analysis techniques, including OPLS-DA, one-
way ANOVA and SAM, were used to optimize the identification
of 1222 candidate markers. Structural analysis using the
quadrupole time-of-flight mass spectrometry specifically tar-
geted the altered pathways associated with the low-grade
inflammation. After analyzing the MS/MS spectrum obtained
using the MSF mode, candidate markers related to anti-
inflammatory effects of endogenous n-3 PUFAs were identified
by further MSEA analysis. Ultimately, the altered pathways
involved in the anti-inflammatory effects of endogenous n-3
PUFAs were identified, indicating that insulin signalling and
fatty acid alteration are responsible for anti-inflammatory
effects of endogenous n-3 PUFAs.
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