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Phonon—-phonon scattering selection rules and
control: an application to nanofriction and thermal
transportt

Antonio Cammarata 2~

Phonon—phonon scattering processes are the crucial phenomena which account for phonon decay,
thermal expansion, heat transfer, protein dynamics, spin relaxation and related quantities. In this work,
we show how the symmetries of the system determine which scattering processes are allowed at any
order of anharmonic approximation, irrespective of the chemical composition. We also discuss how to
control the system symmetries to switch on and off any single scattering process. We apply the
presented results to the study and control of nanoscale intrinsic friction and thermal transport in lamellar
van der Waals transition metal dichalcogenides. Thanks to its general formulation, the presented
framework expands the materials science tool set for the design of nanoengineered thermally-active
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Introduction

Lattice vibrations are usually described within the harmonic
approximation of the potential energy, allowing Newton's
equations of motion to be solved and to express atomic
displacements as a superposition of sinusoidal functions, i.e.,
the normal modes of the system.“* However, such harmonic
theory implies that: (i) a single lattice wave does not decay nor
changes form with time because two lattice waves do not
interact; (ii) there is no thermal expansion nor heat transfer; (iii)
adiabatic and isothermal elastic constants are equal; (iv) elastic
constants are independent of temperature and pressure; (v) the
heat capacity becomes constant at high temperatures. In real
materials, no such implications are strictly observed. Deviations
are attributed to anharmonic terms in the interatomic
displacements, which allow for phonon-phonon recombina-
tion processes. The fine tuning of such processes would allow
selective and powerful control of a vast variety of phenomena
such as spin relaxation,** protein dynamics,’® thermoelectricity,®
phase transition,” and thermal conductivity®* among others,
which are the basis of the design of ordinary and meta-
materials.’

In this work, we show how it is possible to state if a multi-
phonon scattering process is allowed by means of symmetry
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materials, irrespective of the specific chemical composition and atomic topology.

arguments only, without the need to compute the actual value
of the interaction strength. Symmetry properties are ordinarily
exploited to identify selection rules which govern infrared and
Raman transitions.'®** Such rules are based on group theoret-
ical arguments involving the symmetries of vibrational wave
functions of the ground and excited states, and the Hamiltonian
representing the external electric field inducing the transition;
in this framework, the knowledge of the point group of the
system under study is enough to predict which are the allowed
transitions. Recent works on thermal transport in carbon
nanotubes,'® graphene’ and Bas;N-derived materials*® pion-
ereed the formulation of phonon recombination selection rules
by means of symmetry arguments on the lattice potential energy
expansion in terms of interatomic force constants; such selec-
tion rules can be applied to all processes involving flexural
modes or acoustic and optical phonons in specific class of
materials.

In what follows, we show that the knowledge of the point
group of the system geometry is enough to determine which
phonon recombination process is allowed; this result is general
and does not have validity restrictions which depend on
chemical composition, atom topology, phonon wave vector and
branch of the material under study. We also discuss how to
control the system symmetries to enable or forbid selected
scattering processes; to this aim, we present the study case of
nanoscale intrinsic friction and thermal transport in lamellar
van der Waals transition metal dichalcogenides (TMDs), such
phenomena being relevant in the assembly and functioning of
micro- and nanoelectromechanical systems,**** photochemical
water-splitting, smart health diagnostics and flexible elec-
tronics, among others.*
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Method

We start by focusing on the first anharmonic term of the Taylor
expansion of the potential energy of a system written in terms of
normal coordinates; however, the theoretical result which we
get is applicable to anharmonic terms of any order. The first
anharmonic correction term V,, reads

Vor = 37> P 00,0 )
Ios
where A = (g, ) represents the phonon mode with wave vector g
and band indexj, Q, is the normal coordinate associated to the
phonon A, and @,,/,~ is the strength of interaction between the
three phonons 2, 2’ and 1" involved in the scattering. @, is
explicitly written as>*

J i : Z :
I =
A SN2 w0y @y Gt /Ay g

X Ze;‘“(rk)eyﬁ(rkr)e;ﬂ(r ") (2)
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where 7 is the Planck's constant, N is the number of unit cells,
w, is the eigenfrequency of the mode A, my is the mass of the k-th
atom, r; is the position of the k-th atom at the equilibrium,
e;*(ry) is the a-th cartesian component of the eigenvector asso-
ciated to the mode A and to the k-th atom, ry; (rwr) is the
position of the ¥'-th (k"-th) atom in the /-th (I”-th) cell replica,
and .4, is the third-rank cartesian tensor of the cubic anhar-
monic force constants.

If, in the initial state, the populations of A, A’ and A" are n;, n;/
and n,, respectively, then the transition probability with which
the three phonons interact is*

27
71’1)\”1/ (na” + l)lqj)‘/y;‘”|26g7q+,’f,q”6(hw/1” — h(,l))‘ — h(,l))"),
3)

where 0g,4.¢ g7 = 1(=0) if the sum of the three wave vectors ¢, '
and ¢q" is (not) equal to a vector g belonging to the reciprocal
lattice,”® and d(hw;» — hw; — hwy) is the Dirac delta which
guarantees the conservation of the energy. We here note that,
while the populations depend on the temperature, @;;, is an
intrinsic property of the system. According to eqn (3), A+ A’ + 1/
scattering is not allowed if @, ,~ is null. By a proper control of
@5, it is therefore possible to enable or forbid selected scat-
tering processes.

We now show how it is possible to know if a specific phonon
recombination is not allowed, that is if @;;/;, is null, without
evaulating eqn (2); it is worthy to note here that the result which
we will obtain is analogous to the selection rules of infrared and
Raman transitions.

As a first step, let's notice that the eigenvectors do not
depend on the cell replica, that is e;*(rv) = e, (rer) and e, (rp) =
e; (rwp). If r is a generic vector spanning the cartesian space,
then each eigenvector e;(r) can be thought to be a function
defined in this way:

PRl
Pon =
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(4)

0 otherwise

e (r) = { ei(re) if r=r

where 0 is the null vector. The quantity » {--}=F;;; in

. . . 'l .
eqn (2) is a third rank tensor which corresponds to the Fourier

transform of the cartesian anharmonic tensor @,4,. Similarly to
definition 4, we can then define the function Fyy»(r,r,r") as

Fapar (re,rrf) ifr=rgr’ =r,r" =r/
Fppan(r,rr") =
0 otherwise
(5)

where @ is the null third-rank tensor. We then consider the
scalar function M(r, ¥, r’) defined as

1 .
———— fr=r,r=r,V=r
M(l‘, l"/,l’”) — /MMt e (6)
0 otherwise.

By using the definition of the triple inner product* between
three vectors and a third-rank tensor, we can then write eqn (2)
in a more compact form as

" 1
81?2 0,0y 0y

Dy =

x JM (r, ¥ ") es(r)ey (¥ ey (F) i Foye <r7 ¥, r”) drd/dr” (7)

where we changed the sum over the atomic labels into an
integral over the cartesian positions thanks to the definitions 4,
5 and 6. By exploiting a known result from group theory," we
can state that, if the integrand in eqn (7) forms a basis for the
totally symmetric representation, that is, if the direct product
among the representations of each factor of the integrand
contains the totally symmetric representation, then the integral
is not null and the A + A’ = 1" recombination is allowed.”® The M
and F functions are both invariant under symmetry operations,
since the former is a scalar and the latter depends only on the
relative positions of the atoms; then, they both transform as the
totally symmetric representation. Therefore, to know if @;;/;
can assume values different than zero, it is enough to check if
the direct product of the irreducible representations of e;, e,
and e;» contains the totally symmetric representation. In other
words, given the irreducible representations I'*, I'** and I'*”,
for which the eigenvectors e;, ey, e, are respectively a basis,
then

d’;\)‘/y/iozre)'@I?ﬂ®Fe)”EA [8)

which states that if the direct product among the irreducible
representations contain the totally symmetric representation 4,
then the A + 2’ = 2" scattering is allowed. The magnitude of the
allowed process depends on the actual numerical value of the
interaction strength which, in turn, depends on the specific
values of the anharmonic force constants. It is worthy to notice

This journal is © The Royal Society of Chemistry 2019
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here that this result is general and also applies to scattering
processes involving more than three phonons, corresponding to
anharmonic terms of any order, since the relative interaction
strength can be recast in a form analogous to eqn (7). In fact,
condition 8 can be generalized as

@Allz,,_)ﬁ F0=T9"Q - QI? <= A (9)

for a scattering process involving p phonons. By controlling the
symmetries of the eigenvectors e;, it is then possible to forbid/
allow selected scattering processes. Moreover, condition 9 is
a quick guide to identify which recombination processes are not
null and at which order of anharmonic approximation.

Results and discussion

As showcase examples, we apply this result to the study of
intrinsic friction and thermal conductivity in MX, transition
metal dichalcogenides. Related results are discussed in what
follows.

Intrinsic friction

Nanoscale intrinsic friction in lamellar van der Waals MX,
transition metal dichalcogenides occurs during relative sliding
of adjacent layers. We have already shown**° that all possible
sliding directions can be represented by suitable combinations
of few vibrational modes, namely sliding modes; moreover, the
layer sliding occurs until such modes own enough energy, and
therefore, the frictional forces are all those forces which activate
dissipative processes producing a depopulation of the sliding
modes.** Such depopulation occurs via phonon-phonon scat-
tering involving sliding and non-sliding, hence dissipative,
modes; if such scattering is forbidden, then dissipation does
not occur and sliding is longer active. In what follows, we show
how symmetries determine which dissipation processes are
allowed and suggest how to control them. Computational
details and schematic of the discussed modes with relative
irreducible representations are reported in the ESL{

We choose the 2H polymorph crystalline MX, compound
as a reference structure (Fig. 1), with M = Mo, W and X = S,
Se, Te and hexagonal P6;/mmc symmetry (SG 194). Starting
from such reference geometries, for each MX, system, we
truncate the structure along the ¢ periodic direction and

Fig. 1 Hexagonal P6s/mmc structure of 2H polymorph MX, model
geometry. M—X bonds are arranged in a trigonal prismatic coordina-
tion forming MX; layers bound together by van der Waals interactions.

This journal is © The Royal Society of Chemistry 2019
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consider only 2, 3, 4, 5 and 6 adjacent layers. In this way, we
build 5 model geometries that we name MX-nL, where n
corresponds to the considered number of adjacent MX,
layers. The space group of the MX-nL systems is P3m1 (#164)
or P6m2 (#187) if n is even or odd, respectively. Regardless the
chemical composition, the sliding modes which mainly
contribute to relative layer displacements have wave vector
corresponding to the I' point of the Brillouin zone (see ESIT).
One of the main sources of energy dissipation preventing
layer gliding is the recombination involving rigid lateral
(Fig. 2a) and vertical (Fig. 2b) layer shifts. At increasing
number of layers, more and more sliding modes are present
other than rigid ones, thus increasing the number of possible
recombination channels; however, some of the latter are not
effective because the corresponding recombination process
is forbidden by symmetry. For example, the scattering
involving lateral layer sliding at different velocity (Fig. 2¢) and
vertical layer shift (Fig. 2b) is not allowed in systems with an
even number of layers (point group 3m), while it is active for
odd number of layers (point group 6m2), no matter the
chemical composition of the system. In order to confirm such
prediction, for all the considered compounds, we calculated
the @;;;» matrix elements by means of eqn (2) withg=¢q' =¢q"
= I' and band indicesj, j,j’ spanning the integer value range
[1, 3N], where N is the number of atoms in the system; indeed,
the numerical values we obtain for allowed processes vary in
the interval [107°, 107'*] eV, while the magnitude of
forbidden processes is of the order of 10 3° eV. Moreover, it is
immediately apparent that the number of possible phonon
recombinations involving sliding and dissipative modes,
hence the relevant &,;;» values to be calculated, rapidly
increases with the size of the system. In this respect, eqn (8)
(in general Equation (9)) constitutes a fast tool to promptly
identify which are the ®,;;~ coefficients, hence the recom-
bination channels, which effectively contribute to the global
dissipation process, thus avoiding unnecessary computa-
tional effort to evaluate anharmonic terms which will turn
out to be null by symmetry.

The scattering involving rigid lateral and vertical layer shifts
is allowed in finite n-layer systems but it is forbidden by
symmetry in the bulk. In this latter case, one of the main
dissipative processes involving the sliding modes is instead due
to the dissipative mode corresponding to out-of-phase lateral
shift of the X atom layers only (Fig. 2d). Since symmetries
cannot be now adjusted by changing the number of layers (n =
o in bulk), we choose to perform a cation substitution in order
to turn off this dissipation channel. We then consider the
Ti: MoS, system which we already identified as promising
tribological material,?® with the symmetry of Cmcm (#63) space
group. With such specific Ti — Mo substitution, the dissipative
scattering which was allowed in the pristine MoS, bulk, is now
forbidden by symmetry (see ESIt).

Thermal conductivity

The lattice thermal conductivity tensor k(7') as a function of the
temperature T can be written in terms of phonon modes of the
system®” as

RSC Adv., 2019, 9, 37491-37496 | 37493
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Fig. 2 Schematic representation of selected phonon modes: (a) rigid layer sliding, (b) rigid vertical shifting, (c) layer sliding at different velocity
and (d) out-of-phase lateral shift of X anions. Displacement patterns represented in (a and c) and (b and d) correspond to sliding and dissipative
modes, respectively. Larger arrow size indicates larger atomic displacement per time unit. Atom color code is the same as in Fig. 1.

= % Y o (T)vy @vyen(T), (10)
q 2
where V is the unit cell volume, N, is the number of g points,
7;(7) is the relaxation time of the mode 2, v; is the group velocity
of the phonon 1 and ¢;(7) is the mode specific heat capacity. In
bulk MX, TMDs, lattice thermal conductivity is dominated by
phonon recombination processes involving low- and high-
frequency phonon bands.**** Inspection of eqn (10) suggests
that one way to control such processes is to act on the group
velocity v,; indeed, this has already been achieved by inducing
strain on the pristine structure via ion intercalation in the
interlayer region, or by applying an external pressure.**** An
other approach is to modify the relaxation time 7,. One of the
factors determining the value of 7, is the phonon-phonon
interaction strength, since

= 2T (w)

1
o« Tpp,l

~ 36
;ZIQZA; P {4+ e+ 1)

oG

X 0(w — wy — wyr) + (ny —ny)

x[0(w+ wy —wy) = 6(w, A +wp)]}  (11)

where 1, is the phonon lifetime due to phonon-phonon
scattering and I';(w) is the self energy.** From eqn (10) and eqn
(11), it is apparent that the higher the number of non-null @;;/;
elements, the shorter the lifetime of the phonon 7, and the
lower the lattice thermal conductivity. We now show how the
selection rule represented by eqn (8) can help to identify which
interband scattering processes bring an effective contribution
to the thermal conductivity. We first notice that each band j has
a specific symmetry which does not depend on the considered
g-point;* all the allowed scattering processes can then be
identified by means of eqn (8) at any g-point and are valid
throughout the entire Brillouin zone, regardless of the chosen
{4, 4', q"} triplet. The phonon band structure of all the consid-
ered model systems of the bulk MX, compounds is formed by 18
bands (since there are 6 atoms in the primitive unit cell),
labeled with an increasing integer number j = 1---18; the low-

37494 | RSC Adv., 2019, 9, 37491-37496

and high-frequency bands are labeled as 1-6 and 7-18,
respectively. The number of interband three-phonon processes
is then 6 x 18 x 18 = 1944, which rapidly increases with the
number of atoms in the unit cell.** By applying eqn (8), we
observe that the number of active interband processes is 1656,
all the remaining one being forbidden by symmetry. In solving
the Boltzmann transport equation, a mesh comprising at least
about 4300 g-points is required, in order to obtain reliable
values of the tensor [;** this corresponds to a maximum of
about 8 359 000 matrix elements to be evaluated; by using eqn
(8), it is possible to precompute a list of effective transitions to
be considered, and the number of @;,/,» elements to determine
is reduced by 15% (about 7 121 000 values).

The detail of the microscopic mechanisms giving an effec-
tive contribution to the thermal conductivity can then be
revealed by identifying the allowed phonon-phonon scattering
processes. As an example, we consider the 1656 identified
allowed processes in MoS, and WS,, and calculate the average
Dypos, and Py, values of the corresponding @;;/;» elements on
a mesh of 19 x 19 x 12 = 4332 g-points; we obtain 1.92 x
107" and 1.79 x 10 eV for ®yys, and Pys,, respectively.
This result can explain the higher thermal conductivity in bulk
WS, compared to bulk MoS, discussed in a previous work,**
while the identified allowed processes constitute the micro-
scopic origin of such difference. Once the allowed processes
have been determined, it is possible to selectively control
them. To show this, we here examine the case of the Ti : MoS,
bulk system already considered above. The Ti-doped MoS,
system is represented by a unit cell containing 24 atoms, 4
times larger than the unit cell of pristine MoS,, corresponding
to a larger number of phonons hence interband recombina-
tions (i.e., 124 416); however, the induced change of the band
symmetry reduces to 62 464 (about 50% less) the number of
allowed transitions effectively contributing to k. The average
Driamos, value which we obtain for such transitions is 6.54 x
10~ eV; by comparing this value with those obtained for the
MoS, and WS, systems, this compound is expected to show
lower phonon lifetimes hence lower phonon contribution to
the thermal conductivity.

This journal is © The Royal Society of Chemistry 2019
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Conclusions

By exploiting the knowledge of the symmetries of the phonon
modes of the stable structure, it is therefore possible to predict if
a specific multi-phonon scattering process is allowed without the
need to compute the corresponding interaction strength coeffi-
cient. As a consequence, by acting on the symmetries of the
system, it is possible to switch on and off specific phonon chan-
nels. As a first example, we apply such result to the analysis of
dissipative processes preventing layer sliding in lamellar var der
Waals transition metal dichalcogenides. We find that, in finite
systems, the number of layers determine the symmetries of the
atom geometry, hence which specific dissipation channel is active.
In bulk systems, where the number of layers in the unit cell is
fixed, a viable solution to act on the symmetries is to perform
a cation substitution. Other ways to switch on/off selected dissi-
pation channels is the local control of the symmetries via atom
dislocations, creation of vacancies, local distortion of the atomic
geometry and introduction of geometric constraints (e.g. presence
of fixed substrate). We then exploit the here presented selection
rules to identify the effective contribution to the lattice thermal
conductivity in bulk TMDs. We find that the number of active
scattering processes is 85% of the total amount obtained without
considering the symmetry restrictions on the involved eigenvec-
tors. The number of effective phonon recombinations found in the
considered bulk systems is further reduced by lowering the atomic
site symmetries via cation substitution.

The specific value of the interaction strength, that is the
magnitude of the scattering process, can be tuned via a fine
control of the electronic structure or the lattice vibrations through
collective descriptors such as orbital polarization,*** bond cova-
lency**** and cophonicity.”® The present results can be exploited to
build a simulative framework which combine symmetry, elec-
tronic and dynamical descriptors, in order to finely design scat-
tering processes in solid state materials. Finally, the selection rule
condensed in eqn (9) could help to further expedite the calculation
of anharmonic terms in large automated libraries*' or software
packages which compute physical quantities involving anhar-
monic corrections,**>** where symmetry properties are already
exploited in the calculation of phonon self-energies.*
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