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Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and
inferior cycling performance, which limit their practical application. In this work, a minor content of Co
and B were co-doped into the crystal of a Ni-rich cathode (LiNig gCog1Mng 1O;) using cobalt acetate and
boric acid as dopants. The results analyzed by XRD, TEM, XPS and SEM reveal that the modified sample
shows a reduced energy barrier for Li* insertion/extraction and alleviated Li*/Ni?* cation mixing. With
the doping of B and Co, corresponding enhanced cycle stability was achieved with a high capacity
retention of 86.1% at 1.0C after 300 cycles in the range of 2.7 and 4.3 V at 25 °C, which obviously

iii:g’ti% %Z;h;zs:ﬂrgt;;é?? outperformed the pristine cathode (52.9%). When cycled after 300 cycles at 5C, the material exhibits
significantly enhanced cycle stability with a capacity retention of 81.9%. This strategy for the

DOI: 10.1039/c9ra07873h enhancement of the electrochemical performance may provide some guiding significance for the
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Introduction

The large-scale development of electric vehicles (EVs) is
hindered by the limited energy density of LIBs."” Since the
energy density is mainly determined by cathode materials,
much work has been committed to discover innovative cathode
materials with high capacity and a high voltage plateau.®** Ni-
rich layered transition metal oxides Li[Ni,_,_,Co,Mn,]O, (1 —
x — y > 0.6) with high theoretical capacity are promising LIB
cathodes for EVs.*™® Especially, LiNijgCo01Mn,,0, has
attracted much attention due to the balanced energy density
and thermal stability. However, the high content of Ni endows
poor electrochemical performance to LiNij C0¢ 1Mng 10,, such
as low rate capacity and inferior cycle performance, induced by
poor structural stability including Li*/Ni** cation mixing,
layered to rock-salt like phase degradation and unstable storage
properties.
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practical application of high nickel content cathodes.

To overcome the above problems, a great number of strate-
gies have been explored to boost the physical and chemical
stability of this cathode by morphology design, surface modi-
fication and interior ionic doping.””** Various of coating
substances including metal oxides, metal phosphates and metal
fluorides have been used to stabilize the interface between
electrode and electrolyte. Although the coating layer could
stabilize the structure of the interface region and alleviate the
side reaction between electrode and electrolyte, the approach
for construction of modification layer usually need post coating
process, thus increasing the complexity of material manufac-
ture.” Furthermore, most of surface coating strategies do not
change the lattice structure in the interior of particle.® As to
doping, a variety of dopants substituted on lithium sites, tran-
sition metal sites and oxygen sites have been reported and have
optimistic roles in stabilizing the structure and improving
electrochemical performance. Recently, Biao Li et al. prepared B
doped Li-rich cathode material, which displays an outstanding
recoverable capacity of 300 mA h g~ along with notable cycling
stability with a capacity retention of 89% after 300 cycles due to
the high thermal stability induced by B. The improved electro-
chemical performance is caused by the increased covalency of
the M-O bonds.>® On the other hand, the Ni-rich NCM cathodes
doped with metal cation (such as Zr, Al, Ti, Mg, etc.) show
improved structural stability and electrochemical performance.
Despite the utilization of inactive cation to modify the material
has been reported in many literatures, there still are only few
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reports about the modification of the Ni-rich cathode materials
using minor amount of transition metal ion, especially the 3d
metal ions. Consider the advantage provided by the existence of
minor amount of 3d transition metal, it is highly desirable to
systematically investigate the influence of cation and anion co-
substitution on the structure and electrochemical properties of
Ni-rich cathode. Among all 3d transition metal, cobalt doping
can certainly improve the electrochemical properties of cathode
materials. However, as far as we know, there is no literature on
the effect of adding cobalt on the high nickel cathode material
during the calcination stage.

Herein, minor content of Co and B were doped into the
crystal of Ni-rich cathode the using cobalt acetate and boric acid
as raw materials to enhance the electrochemical properties of
LiNjo sC00.1Mn, ;0,. The influences of co-doping on the phys-
ical structure and electrochemical properties of cathode mate-
rials were systematically explored. The co-doped material
exhibits enhanced electrochemical performance due to the
capacity activation effect with cobalt and the stabilized struc-
ture with boron.

Experimental methods
Material synthesis

The co-precipitation method was adopted to make Nij gCog 1-
Mn, ;(OH), precursor. A certain amount of NiSO,-6H,0 (AR,
98.5%), CoSO,-7H,0 (AR, 99.5%) and MnSO,-5H,0 (AR, 99%)
was added to a continuously stirred tank reactor (5 L) under N,
atmosphere. Subsequently, 4 M NaOH (AR, 96%) solution was
also fed into the reactor, as well as a required amount of NH,OH
(AR, 28-30%) solution as the chelation agent. The pH value of
the reaction suspension was controlled at 11.2 by adjusting the
feeding rate of NaOH solution. The spherical Ni, gCoy1Mng (-
OH), materials were filtering, followed with washing and drying
operation in air under 120 °C. A stoichiometric amount of LiOH
(10% excess) was mixed into the precursor. The obtained
sample was preheated at 450 °C for 10 h and calcined at 800 °C
for 12 h under oxygen flowing, and the obtained pristine lithi-
ated material is denoted as NCM. In contrast, B and Co doped
Ni-rich materials were obtained via the similar process
mentioned above, except that corresponding amount of
C,H¢Co0, and H3BO; were also added along with the LiOH. Co
doped (the molar ratio of (Ni + Co + Mn) and Co was set as
1:0.005), B doped (the molar ratio of (Ni + Co + Mn) and B was
set as 1:0.001) and Co-B co-doped (molar ratio of (Ni + Co +
Mn, Co) and B was set as 1:0.005:0.001) materials were
denoted as NCM/C, NCM/B and NCM/CB, respectively.

Material characterization

The crystal structure of these materials were reflected by X-ray
diffractometry (XRD, PANalytical EMPYREAN) with Cu Ka
radiation (A = 1.54178 A). The 26 value ranging from 10 to 80° at
a scanning rate of 0.06° s~ * was set for XRD data collection. The
particle shape and morphology were observed with scanning
electron microscope (SEM, Hitachi, S-4800), transmission elec-
tron microscope (TEM, 300 kV FEI Tecnai G2 F30 S-TWIN) and
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focused ion beam (FIB, FEI HELIOS NanoLab 600i(FIB)). Energy
dispersive spectroscopy (EDS) was employed to obtain the
element mapping. X-ray photoelectron spectrometer (XPS, VG
Multilab 2000) was used to observe the chemical states of
element composition at the surface.

Electrochemical test

Coin cells (CR2025) are used to test the electrochemical
performance, which were installed in an argon-filled glove box.
The positive electrode was consisted by 80 wt% of active mate-
rial, 7 wt% of carbon black and 13 wt% of polyvinylidene fluo-
ride (PVDF), which were mixed with N-methyl-2-pyrrolidone
(NMP) as the solvent. The obtained material was coated
uniformly onto an aluminum foil current collector, then was
dried under vacuum at 120 °C for 10 h. Lithium metal foil and
polypropylene membrane (Celgard 2400) were treated as the
negative electrode and the separator, separately. The electrolyte
was made of 1 M LiPF, dissolved in a mixture of ethylene
carbonate and dimethyl carbonate (1 : 1 by volume). Galvano-
static charge-discharge test was obtained using a battery testing
system (Neware BTS-610) during the voltage range 2.7 to 4.3 V
(vs. Li/Li") at 25 °C. An electrochemical workstation (Zennium,
IM6) was employed to get the electrochemical impedance
spectroscopy (EIS) with an amplitude of 5 mV and a frequency
ranging from 100 kHz to 10 MHz.

Results and discussion

XRD data was collected to determine the phase and crystal
structure of all the samples. The results are shown in Fig. 1a,
where every pattern can be similarly matched to a hexagonal o-
NaFeO, structure with R3m space group. None of them were
found with impurities. As shown in all XRD patterns, the well-
organized layered structure can be reflected from the notice-
able peak split of the neighboring peaks ((006)/(102) and (108)/
(110)).*>° The absence of peaks related to boron compounds in
NCM/CB could be attributed to the low content of B. All the
results uncover that the process of doping would not impact the
structure of NCM. The shift of (003) reflection peak for NCM/CB,
NCM/B and NCM/C to lower angle is due to the expanded
interplanar spacing induced by B/Co doping.”” Among them,
the NCM/CB sample shows the largest interslab space. Since Li
ions diffuse in LiNi, gCoy ;Mn, ;0, along the a and b direction,
the enlarged interplanar spacing of (003) slab would be favor-
able for the lithium diffusion rate, thus resulting in the
enhanced rate performance. The ratios of Igo3)/I(104) for these
materials are higher than 1.2, which confirms the little cation
mixing in these materials.*® The above results reveal that B**
and Co>" are doped into crystal lattice of Ni-rich material. To
further get more structural details and the difference of inter-
slab spacing values, Rietveld refinements were carried out for
the XRD data of all the samples. The fitting curves and the
details are displayed in Fig. 1St and Table 1. There could be
seen the good agreement between the experimental and calcu-
lated results (R, < 5%, R, < 4%), which proves that the structural
model is reasonable.** Besides, the lattice parameter a and ¢ of
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Fig. 1 (a) The XRD patterns of NCM, NCM/C, NCM/B and NCM/CB, (b) the magnified image of the (003) peak.

the NCM sample is 2.8715 and 14.2008 A. After Co doping, a and
¢ increase to 2.8719 and 14.2019 A, respectively. Afterward B
doping, a and ¢ increase to 2.8718 and 14.2017 A, respectively.
For NCM/CB sample, the doping of B and Co causes the
increase of lattice parameter a and ¢ to 2.8725 and 14.2028 A,
respectively. The volume increases from 101.4054 to 101.4903 A,
which also implies the enlargement of the interslab distance
after doping.®*® The expansion of ¢ interslab may decrease the
energy barrier of Li" insertion/extraction, hence enhancing the
high-rate capability.*

As shown in Fig. 2, the secondary particles of all samples
show spherical morphology (~10 pm) that constituted by grain-
like primary particles (about 500 nm). Compared with NCM and
NCM/C, NCM/CB shows dim and blurry surface, which is
mainly ascribed to the presence of light B element. It can
obviously be seen from the Fig. 2 that the primary particle of the
material becomes slightly larger after doping, which may be
owed to the change of the surface energy. Fig. 2g-k show the
EDS mapping images of NCM/CB sample. As expected, the
secondary particles are consisted of Ni, Co, Mn and B, con-
firming the uniform doping of Co and B.*

In order to analyze the element concentration versus depth of
NCM/CB, the EDS line scan analysis of cross-sectional image
was obtained. As shown in Fig. 3a and b, the concentration of B
in the superficial surface region is much higher than that in the
inside region of particle. On the contrary, the concentration of
Co is slightly higher than that of Mn in the whole region of
particle. It can be surmised that the element of B and Co are
effectively doped into the particle.*

To further understand the structure of NCM/CB, micro-

Fig. 3¢, the HRTEM of NCM/CB has regular clear plaid stripes.
The lattice fringes of NCM/CB (Fig. 3d) with a spacing about
0.2704 nm, matching to (101) plane of the layered structure.***
The result of Fast Fourier Transform analysis is shown in
Fig. 3e, which shows that the material of NCM/CB is well-
preserved as the R3m phase.** The interplanar distances of
diffraction spots are corresponding to the crystal planes (113),
(012) and (101), which belong to the zone axis of [012].
According to the analysis of XRD and HRTEM, it can be
concluded the material of NCM/CB has well-organized layered
structure, which could be in favor of the improvement of elec-
trochemical performance.*

In order to further analyze the component and oxidation
state of the element at the surface of NCM, NCM/C and NCM/
CB, X-ray photoelectron spectroscopy were tested. As shown in
Fig. 4a, the full XPS spectra clearly shows the presence of Ni, Co
and Mn peaks in all of samples and the existence of B 1s in
NCM/CB. The Fig. 4b shows that Ni 2p,,, main peak at 872.5 eV
with a satellite peak and Ni 2p;3/, main peak at about 880.0 eV
with a satellite peak are exhibited in all samples. It could be
found that NCM and NCM/C show similar ratio value between
Ni** and Ni** (Ni**/Ni**). However, NCM/CB cathode displays
a higher value of Ni**/Ni**(1.35), indicating its ideal stoichio-
metric composition with less anti-defects.”>**** As shown in
Fig. 4c, the O 1s peak at approximately 529.3 eV related to the
lattice oxygen in the metal framework. And the O 1s peak at
532 eV is assigned to the absorbed oxygen originated from the
surface CO;>~, OH™ and some by-products.® It clearly shows
that NCM/CB sample exists more lattice oxygen and less
absorbed oxygen. The B peak at 191.7 eV, shown in Fig. 4d, can

structure of the cathode is analyzed by HRTEM. As shown in only be detected in the XPS spectrum of NCM/CB,
Table 1 Rietveld refinement of XRD data for NCM, NCM/C and NCM/CB

Sample a(A) c(d) cla v (A% R, (%) R, (%) Tioos) T
NCM 2.8715 14.2008 4.9454 101.4054 3.91 3.73 1.798
NCM/C 2.8719 14.2019 4.9451 101.4415 3.93 4.21 1.781
NCM/B 2.8718 14.2017 4.9416 101.4330 3.46 3.54 1.369
NCM/CB 2.8725 14.2028 4.9444 101.4903 3.91 4.21 1.472

This journal is © The Royal Society of Chemistry 2019
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NCM/CB (g—k).

demonstrating B is doped into the crystal of material. The Co
XPS spectra in Fig. S21 presents Co 2p,,, main peak at about
795 eV and Co 2p3,, main peak at about 780 eV, verifying the
oxidation state of 4,404

At 0.1C, the primary charge/discharge curves of NCM, NCM/

C and NCM/CB are shown in Fig. 5a. The first coulombic
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Fig. 2 The SEM images of NCM (a and d), NCM/C (b and e) and NCM/CB (c and f), the SEM image and corresponding elemental mapping of

efficiency of NCM, NCM/C, NCM/B and NCM/CB is 83.44, 77.04,
74.85 and 74.54%, respectively, suggesting that the introduction
of element has slight effect on the coulombic efficiency of
primary cycle. With the intention of study the impact of co-
doping on the rate capability of Ni-rich cathode material, the
NCM, NCM/C, NCM/B and NCM/CB were charged under

Fig.3 The Element distribution obtained by EDS line scan (a), cross-sectional image (b), HRTEM images (c), enlarged version of HRTEM image (d)

and FFT (e) for NCM/CB.
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Fig. 4 Full XPS spectra (a), Ni 2p (b) and O 1s (c) for NCM, NCM/C and NCM/CB. XPS spectra of B 1s (d) for NCM/CB.

different current densities of 0.1C, 0.2C, 0.5C, 1C, 3C, 5C, and
10C (1C = 170 mA h g~ '). As shown in Fig. 5b, compared with
NCM/C, NCM/CB electrode shows relative lower reversible
capacity at 0.5, 1.0, 3.0, 5.0 and 10.0C, but it displays a slightly
higher reversible capacity at 0.1 and 0.2C. The rate performance
of NCM/C and NCM/CB at 0.1C is much higher than that of
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NCM, which may be due to the different degree of capacity
activation. From the figure we can see that the rate perfor-
mances of NCM/CB sample only display a slightly higher
reversible capacity at 0.1 and 0.2C compared with NCM/C
because the rate performance is not only affected by the
lattice parameters, but also by the conductive layer, particle

Cycle Number

Fig. 5 Primary charge/discharge profiles (a), rate performance profiles (b), cycle performance at 1.0C (c) and 5.0C (d) for the samples.
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size, etc.*” The reason of capacity activation is that co-doping
can remarkably decrease the energy barrier of Li' insertion/
extraction, which may slowly active the capacity of cathode,
and has been reported in the doped Li-rich cathodes.*>**

As shown in Fig. 5c, at the first cycle of 1.0C, the discharge
capacity is recorded as 170.3, 153.4, 172.0, and 157.6 mAh g *
for the NCM, NCM/C, NCM/B, and NCM/CB samples. The
capacity retention of NCM, NCM/C and NCM/CB is
52.9%,82.3% and 86.1% after 300 cycles, respectively. We can
clearly see that the cycle stability of NCM/CB at 1C is much
greater than other materials. The capacity fading could be
ascribed to the surface degradation, triggered by straight
contact of sensitive Ni** ions with the liquid electrolyte in the
charged state. Interestingly, both of NCM/C and NCM/CB show
capacity activation over a long period of time and maintain
notable cycling stability, with highest capacity of
174.04 mA h ¢! and 180.71 mA h g™, correspondingly. The
better cycle stability of NCM/CB could be attributed to the
increased interlayer spacing and suppressed Li/Ni mixing by B-
doping. At 5.0C, the cycling performance of NCM/CB is higher
than that of NCM and NCM/C sample (Fig. 5d). The capacity
retention of the NCM, NCM/C, NCM/B and NCM/CB after 300
cycles is 57.38, 63.49, 53.8 and 78.25%. The discharge capacities
of NCM/C and NCM/CB during cycle also show the capacity
activation. The results imply that the cycling stability has been
increased by the doping of B and Co.

With the purpose of recognize the result of co-doping on the
electrochemical performance, the cycling performance is ob-
tained in the 2.7-4.5 V at 1C. After 100 cycles, as Fig. S31 shows,
the discharge capacity of NCM quickly reduced from 192 to
117 mA h g~'. However, the discharge capacity of NCM/C
decreases from 199 to 169 mA h g ' and the discharge
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capacity of NCM/CB decreases from 202 to 166 mA h g~ *. These
consequences imply that doping can boost the high-rate capa-
bility of the NCM/C and NCM/CB sample, which could be largely
owned to the decreased energy barrier of the Li" insertion/
extraction.*~>°

To validate the enhanced structural stability of the NCM/CB
cathode, dQ/dV profiles were gained by differential analysis of
charge-discharge curves. As shown in Fig. 6a, all cathodes show
four noticeable redox peaks caused by the multiple phase
transitions in the lithiation/delithiation of Li;_,NiygCo0q 1-
Mng;0,. The 0.0 = x = 0.25, correspond to an initial rhom-
bohedral phase (H1) the 0.25 = x = 0.55 correspond
a monoclinic phase (M), the 0.55 = x = 0.75 correspond
a rhombohedral phase (H2) and the 0.75 < x =< 1 correspond
two co-existing phases (H2 + H3). The last H2 + H3 phase
transition at around 4.2 V is account for the irreversible phase
transition related to capacity fade.>*®* Obviously, the peak
intensity corresponding to H2 + H3 phase transition for the
NCM/CB is lower than that for NCM and NCM/C at initial cycle.
As Fig. 6¢c and d shows, with the increase of cycle, the strength of
the main peaks decreases rapidly for NCM and NCM/C,
revealing that the layer structure is gradually damaged by the
compressive/tensile strain resulting from the H2-H3 phase
transition.*>* And NCM/CB exhibits overlapped profiles,
proving the outstanding reversibility of the H2 + H3 transition
and the good structural stability.

To further recognize the result of B and Co doping on the
electrochemical kinetic, electrochemical impedance spectros-
copy (EIS) were tested for electrodes before cycling. As Fig. 7a
shows, the equivalent circuit model (inset) is form by a system
resistance (R.), a constant phase element (CPE1), a charge-
transfer resistance (R.), and a Warburg impedance (W;). The
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Fig.6 Differential capacity images of NCM, NCM/C and NCM/CB at 1% cycle (a). Differential capacity curves of NCM (b), NCM/C (c) and NCM/CB

(d) at different cycle.
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surface charge transfer resistance is 71.28, 40.62 and 35.61 Q for
NCM, NCM/C and NCM/CB. The smaller R value of NCM/CB
shows the improved ionic conductivity caused by the co-
doping. The diffusion coefficient of lithium ion is calculated
and the formula is as follows.
R’T?
D = S pricis

The apparent lithium ion diffusion coefficient of NCM,
NCM/C and NCM/CB were obtained to be 2.5996 x 10~ '* cm?®
s7!, 5.2406 x 107'* em?® s7' and 7.7077 x 107'* cm® s},
correspondingly. Since the alike particle size, the lesser R.. and
improved mobility of lithium ions of co-doping sample are
caused by co-doping.

As shown in Fig. 8, the clear peak shift of (003) and existence
of peak in the dQ/dV indicate that NCM/CB electrode suffers
from incessant phase transition including the phase of H1, M,
H2 and H3 At the beginning, as the distance between the layers
increases, an irreparable structural transition occurs from H1
to M with the increase of delithiation at 3.6-3.8 V.** At the same
time, the (003) peak moves marginally to a lower angle. When
further charged to 4.0 V, M and H2 phase are coexisted in the
electrode, accompanying the change of (003) to a lower angle.
When the charging finished (4.0-4.2 V), the phase transition
from H2 to H3 originates from the destruction of the LiOg layer
caused by delithiation, in the company of the change of (003)
peak to higher angle. During the discharge procedure, the (003)
peak displays a similar angle change almost with the charging
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(a) Ex situ XRD patterns of NCM/CB during the first charging/discharging procedure at 0.1C. (b) Corresponding charging/discharging

curves. The ex situ XRD patterns of NCM/CB (c) and NCM (d) electrodes at dissimilar cycles at 1.0C.
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procedure, which means that the NCM/CB electrode has excel-
lent structural reversibility.>**

To further demonstrate the excellent structural stability of
NCMY/CB, ex situ XRD is used to analyze the structural stability of
these materials after different cycles. It can be seen that (Fig. 8c
and d) NCM/CB has better structural stability than NCM. It
could be predicted that NCM/CB retains high reaction and
kinetic activity during charge/discharge procedures on account
of the well-maintained crystal structure.

Conclusion

In this work, minor content of Co and B were doped into the
crystal of LiNi, gCop1Mn, 0, cathode with cobalt acetate and
boric acid. The doped material exhibits significant enhanced
cycle stability (86.1% capacity retention at 1C after 300 cycle),
especially at high rate (81.9% capacity retention at 5C after 300
cycle). The reasons for the improved structure stability,
enhanced rate performance and cycle life of the cathode could
be attributed to the reduced energy barrier of the Li" insertion/
extraction and alleviated content of Li/Ni mixing. We believe
that this method will offer a directorial significance for the
synthesis of other high-performance layered cathode materials.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (grant no. 21878195, 21805198, 21805018),
Distinguished Young Scholars of Sichuan University
(2017SCU04A08) and Huohua Ku project of Sichuan University
(2018SCUHO0094). Research Foundation for the Postdoctoral
Program of Sichuan University (No. 2017SCU12018 and
2018SCU12045). Research Foundation for the Sichuan Univer-
sity and Zigong City Joint research project (2018CDZG-16).
Thanks Dr Zhuo Zheng and for the help of data analysis.

References

1 Y. Xiao, X. D. Zhang, Y. F. Zhu, P. F. Wang, Y. X. Yin, X. Yang,
J. L. Shi, J. Liu, H. Li, X. D. Guo, B. H. Zhong and Y. G. Guo,
Adv. Sci., 2019, 1801908.

2 G. Assat and J.-M. Tarascon, Nat. Energy, 2018, 3, 373-386.

3 H. Zhou, F. Xin, B. Pei and M. S. Whittingham, ACS Energy
Lett., 2019, 4, 1902-1906.

4 F. Wy, N. Liu, L. Chen, Y. Su, G. Tan, L. Bao, Q. Zhang, Y. Lu,
J. Wang and S. Chen, Nano Energy, 2019, 59, 50-57.

5 Y. Meesala, A. Jena, H. Chang and R.-S. Liu, ACS Energy Lett.,
2017, 2, 2734-2751.

6 M. D. Radin, J. Vinckeviciute, R. Seshadri and A. Van der Ven,
Nat. Energy, 2019, 4, 639-646.

7 L. Qiu, W. Xiang, W. Tian, C.-L. Xu, Y.-C. Li, Z.-G. Wu,
T.-R. Chen, K. Jia, D. Wang, F.-R. He and X.-D. Guo, Nano
Energy, 2019, 63, 2211-2855.

36856 | RSC Adv., 2019, 9, 36849-36857

View Article Online

Paper

8 X. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A. S. Al-Bogami,
J. Lu and K. Amine, Adv. Energy Mater., 2019, 1900161.

9 U.-H. Kim, H.-H. Ryu, J.-H. Kim, R. Miicke, P. Kaghazchi,
C. S. Yoon and Y.-K. Sun, Adv. Energy Mater., 2019, 1803902.

10 G. Chen,]. An, Y. Meng, C. Yuan, B. Matthews, F. Dou, L. Shi,
Y. Zhou, P. Song, G. Wu and D. Zhang, Nano Energy, 2019, 57,
157-165.

11 T. Weigel, F. Schipper, E. M. Erickson, F. A. Susai,
B. Markovsky and D. Aurbach, ACS Energy Lett., 2019, 4,
508-516.

12 W. Li, X. Liu, H. Celio, P. Smith, A. Dolocan, M. Chi and
A. Manthiram, Adv. Energy Mater., 2018, 8, 1703154.

13 Y. You, H. Celio, J. Li, A. Dolocan and A. Manthiram, Angew.
Chem., Int. Ed., 2018, 57, 6480-6485.

14 Y. Su, G. Chen, L. Chen, Y. Lu, Q. Zhang, Z. Lv, C. Li, L. Li,
N. Liu, G. Tan, L. Bao, S. Chen and F. Wu, ACS Appl. Mater.
Interfaces, 2019, 11, 36697-36704.

15 T. Hatsukade, A. Schiele, P. Hartmann, T. Brezesinski and
J. Janek, Origin of Carbon Dioxide Evolved during Cycling
of Nickel-Rich Layered NCM Cathodes, ACS Appl. Mater.
Interfaces, 2018, 10, 38892-38899.

16 U. H. Kim, D. W. Jun, K. J. Park, Q. Zhang, P. Kaghazchi,
D. Aurbach, D. T. Major, G. Goobes, M. Dixit, N. Leifer,
C. M. Wang, P. Yan, D. Ahn, K. H. Kim, C. S. Yoon and
Y. K. Sun, Energy Environ. Sci., 2018, 11, 1271-1279.

17 Y. Su, C. Gang, C. Lai, W. Li, Q. Zhang, Z. Yang, L. Yun,
L. Bao, T. Jing and R. Chen, ACS Appl. Mater. Interfaces,
2018, 10, 6407-6414.

18 Z. Qiyu, S. Yuefeng, C. Lai, L. Yun, B. Liying, H. Tao, W. Jing,
C. Renjie, T. Jing and W. Feng, J. Power Sources, 2018, 396,
734-741.

19 S. Dou, L. Tao, R. Wang, S. El Hankari, R. Chen and S. Wang,
Adv. Mater., 2018, 30, €1705850.

20 C.Ma, C. Deng, X. Liao, Y. He, Z. Ma and H. Xiong, ACS Appl.
Mater. Interfaces, 2018, 10, 36969-36975.

21 T. Chen, F. Wang, X. Li, X. Yan, H. Wang, B. Deng, Z. Xie and
M. Qu, Appl. Surf. Sci., 2019, 465, 863-870.

22 J. An, L. Shi, G. Chen, M. Li, H. Liu, S. Yuan, S. Chen and
D. Zhang, J. Mater. Chem. A, 2017, 5, 19738-19744.

23 C. Xu, W. Xiang, Z. Wy, Y. Xu, Y. Li, Y. Wang, Y. Xiao, X. Guo
and B. Zhong, ACS Appl. Mater. Interfaces, 2019, 11, 16629-
16638.

24 M.]J.Zhang, G. Teng, Y. K. Chen-Wiegart, Y. Duan, J. Y. P. Ko,
J. Zheng, J. Thieme, E. Dooryhee, Z. Chen, J. Bai, K. Amine,
F. Pan and F. Wang, J. Am. Chem. Soc., 2018, 140, 12484~
12492.

25 Y.-D. Xu, W. Xiang, Z.-G. Wu, C.-L. Xu, Y.-C. Li, X.-D. Guo,
G.-P. Lv, X. Peng and B.-H. Zhong, Electrochim. Acta, 2018,
268, 358-365.

26 B. Li, H. Yan, M. Jin, P. Yu, D. Xia, W. Huang, W. Chu and
Z. Wu, Adv. Funct. Mater., 2015, 24, 5112-5118.

27 S. W. Woo, S. T. Myung, H. Bang, D. W. Kim and Y. K. Sun,
Electrochim. Acta, 2009, 54, 3851-3856.

28 Y. Su, Y. Yang, L. Chen, Y. Lu, L. Bao, G. Chen, Z. Yang,
Q. Zhang, J. Wang, R. Chen, S. Chen and F. Wu,
Electrochim. Acta, 2018, 292, 217-226.

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra07873h

Open Access Article. Published on 12 November 2019. Downloaded on 11/9/2025 2:59:56 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

29 K.-S. Lee, S.-T. Myung, J. Prakash, H. Yashiro and Y.-K. Sun,
Electrochim. Acta, 2008, 53, 3065-3074.

30 Y. Liu, D. Ning, L. Zheng, Q. Zhang, L. Gu, R. Gao, J. Zhang,
A. Franz, G. Schumacher and X. Liu, J. Power Sources, 2018,
375, 1-10.

31 J. Mao, K. Dai, M. Xuan, G. Shao, R. Qiao, W. Yang,
V. S. Battaglia and G. Liu, ACS Appl. Mater. Interfaces, 2016,
8, 9116-9124.

32 P. Xue, S. Liu, X. Shi, C. Sun, C. Lai, Y. Zhou, D. Sui, Y. Chen
and J. Liang, Adv. Mater., 2018, 30, 04165.

33 C. L. Xu, W. Xiang, Z. G. Wu, Y. D. Xu, Y. C. Li, M. Z. Chen,
X. D. Guo, G. P. Lv, J. Zhang and B. H. Zhong, ACS Appl.
Mater. Interfaces, 2018, 10, 27821-27830.

34 Y. Liu, Z. Yang, J. Li, B. Niu, K. Yang and F. Kang, /. Mater.
Chem. A, 2018, 6, 13883-13893.

35 P. Li, S. Zhao, Y. Zhuang, J. Adkins, Q. Zhou and J. Zheng,
Appl. Surf. Sci., 2018, 453, 93-100.

36 W. Xiang, W.-Y. Liu, J. Zhang, S. Wang, T.-T. Zhang, K. Yin,
X. Peng, Y.-C. Jiang, K.-H. Liu and X.-D. Guo, J. Alloys Compd.,
2019, 775, 72-80.

37 W. Xiang, C.-Q. Zhu, J. Zhang, H. Shi, Y.-T. Liang, M.-H. Yu,
X.-M. Zhu, F.-R. He, G.-P. Lv and X.-D. Guo, J. Alloys Compd.,
2019, 786, 56-64.

38 T. Chen, X. Li, H. Wang, X. Yan, L. Wang, B. Deng, W. Ge and
M. Qu, J. Power Sources, 2018, 374, 1-11.

39 Y.-C. Li, W. Xiang, Y. Xiao, Z-G. Wu, C.-L. Xu, W. Xu,
Y.-D. Xu, C. Wu, Z-G. Yang and X.-D. Guo, J. Power
Sources, 2019, 423, 144-151.

40 J. S. Sanchez, A. Pendashteh, J. Palma, M. Anderson and
R. Marcilla, Electrochim. Acta, 2018, 279, 44-56.

41 J. Zhu, Y. Ge, D. Kim, Y. Lu, C. Chen, M. Jiang and X. Zhang,
Nano Energy, 2016, 20, 176-184.

This journal is © The Royal Society of Chemistry 2019

View Article Online

RSC Advances

42 C.-L. Xu, W. Xiang, Z.-G. Wu, Y.-C. Li, Y.-D. Xu, W.-B. Hua,
X.-D. Guo, X.-B. Zhang and B.-H. Zhong, J. Alloys Compd.,
2018, 740, 428-435.

43 C.-L. Xu, W. Xiang, Z.-G. Wu, Y.-D. Xu, Y.-C. Li, H.-T. Li,
Y. Xiao, B.-C. Tan, X.-D. Guo and B.-H. Zhong, J. Alloys
Compd., 2019, 777, 434-442.

44 Y.-C. Li, W. Xiang, Z.-G. Wu, C.-L. Xu, Y.-D. Xu, Y. Xiao,
Z.-G. Yang, C.-J. Wu, G. P. Lv and X.-D. Guo, Electrochim.
Acta, 2018, 291, 84-94.

45 B. Wu, X. Yang, X. Jiang, Y. Zhang, H. Shu, P. Gao, L. Liu and
X. Wang, Adv. Funct. Mater., 2018, 28, 1803392.

46 D. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-
Jurcakova, J. Zou and L. Wang, J. Mater. Chem. A, 2014, 2,
18767-18774.

47 C. Wu, Z. Zhang, Y. Tang, Z. Yang, Y. Li, B. Zhong, Z. G. Wu,
X. Guo and S. X. Dou, ACS Appl. Mater. Interfaces, 2018, 28,
43740-43748.

48 Y.-C. Li, W.-M. Zhao, W. Xiang, Z.-G. Wu, Z.-G. Yang,
C.-L. Xu, Y.-D. Xu, E.-H. Wang, C.-J. Wu and X.-D. Guo, J.
Alloys Compd., 2018, 766, 546-555.

49 X. Liu, G. Feng, E. Wang, H. Chen, Z. Wu, W. Xiang,
Y. Zhong, Y. Chen, X. Guo and B. Zhong, ACS Appl. Mater.
Interfaces, 2019, 11, 12421-12430.

50 X. Hu, H. Guo, W. Peng, Z. Wang, X. Li and Q. Hu, J.
Electroanal. Chem., 2018, 822, 57-65.

51 G. Feng, X. Liu, Y. Wang, Z. Wu, C. Wu, R. Li, Y. Chen,
X. Guo, B. Zhong and J. Li, RSC Adv., 2019, 9, 12710-12717.

52 C. Wu, W. Hua, Z. Zhang, B. Zhong, Z. Yang, G. Feng,
W. Xiang, Z. Wu and X. Guo, Adv. Sci., 2018, 5, 1800519.

53 Y. Liu, E. Wang, R. Rajagopalan, W. Hua, B. Zhong,
Y. Zhong, Z. Wu, X. Guo, S. Dou and J. Li, J. Power Sources,
2019, 412, 350-358.

RSC Aadv., 2019, 9, 36849-36857 | 36857


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra07873h

	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h

	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h
	Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c9ra07873h


