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The synthesis of a novel modified nucleoside phosphoramidite, Acrylamide-dT-CE phosphoramidite,

obtained in three steps from commercially available starting materials, is reported. It was readily

incorporated into thrombin binding aptamer (TBA) sequences using automated solid-phase synthesis

under ultra-mild conditions, with the modification shown not to adversely affect duplex stability, G-

quadruplex structure, or thrombin binding. The reaction and integration of the modified strands with

acrylamide polymers was evidenced by gel electrophoresis. The Acrylamide-dT functional handle

promises to be an ideal synthon for preparing DNA–polymer hybrids for use in various macromolecular

materials applications.
Introduction

Nucleobase modications are commonplace for enhancing the
properties of oligonucleotides for therapeutic and diagnostic
applications. Such modications are typically employed for
improving duplex stability,1 increasing binding affinity and
selectivity towards certain targets2,3 or introducing detection
elements such as uorescent4 or redox-active5 groups. The C5
site of pyrimidines and the N7/C8 sites of purines are usually
selected for modication as they are more synthetically acces-
sible than other sites and do not interfere with base pairing
interactions (Fig. 1a).6 And largely too for synthetic reasons, the
most common nucleobase for functionalisation is thymine (or
uracil), as fewer protective steps are required. Functional reac-
tive handles sited at the C5 position of thymine/uracil are
typically amino,7 alkyne,8 carboxylate,9,10 halogenated,11 or
thiol12 groups. Once inserted into DNA, these handles may be
used to conjugate the oligonucleotide (i.e. using post-DNA
synthesis) to various motifs via amide coupling,13 palladium
catalysed coupling,14 or alkyne–azide click chemistry.15

Here, we introduce an acrylamide-containing group at the C5
position of thymine to create the novel nucleoside derivative
Acrylamide-dT in the form of its phosphoramidite (Fig. 1b).
This new handle is ideal for reacting with nucleophiles such as
thiols via the Michael addition reaction, or for forming poly-
mers via free radical polymerisation chemistry. Currently for
such purposes, oligonucleotides can be modied with the
commercially available phosphoramidite Acrydite™ (Fig. 1b).16
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tion (ESI) available. See DOI:
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For example, Jie and coworkers used this acrylamide reagent to
integrate uorescent DNA into hydrogels, whereas others have
incorporated it into aptameric systems for molecular
imprinting applications.9,10,17,18 However, the placement of
Fig. 1 Structures of: (a) canonical H-bonding DNA base pairs with
typical modification positions highlighted in blue; (b), Acrylamide-dT-
CE phosphoramidite, Acrydite™ and Carboxy-dT-CE
phosphoramidite.
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Acrydite™ is limited to the 50 end of the oligonucleotide. We
reasoned that a synthon such as Acrylamide-dT would allow
placement of acrylamide moieties not only internally, but also
at multiple positions within a strand.

Multiple incorporations of polymerisable groups into DNA
have previously been performed using the commercially avail-
able Carboxy-dT-CE monomer (Fig. 1b), with the ester moiety
reported as being converted to an amide upon oligonucleotide
deprotection with ammonia.9 The work by Turner et al. on DNA-
incorporated molecularly imprinted nanoparticles highlights
that multiple anchorage points of the DNA strand to the poly-
mer network is advantageous for target binding.9,10 A structural
comparison of this Carboxy-dT-CE monomer to Acrylamide-dT
suggests heightened reactivity for the latter through its
primary alkene which is less sterically hindered. Herein we
report the ready incorporation of Acrylamide-dT into DNA
sequences at both internal and end positions and also show
that these strands can undergo polymerisation with acrylamide/
bisacrylamide monomers in gel electrophoresis experiments.
Results and discussion
Synthesis of Acrylamide-dT and its phosphoramidite

In approaching the synthesis of the target Acrylamide-dT and its
corresponding phosphoramidite, our rst strategy involved
replacing the iodine at C5 of commercially available 5-iodo-20-
deoxyuridine with an acrylamide group via the Heck reaction
with N,N0-methylenebisacrylamide (Scheme 1). A microwave
assisted procedure adapted from Fujimoto19 was followed to
couple the two entities together to form Acrylamide-dT in good
yield (70%). Excess N,N0-methylenebisacrylamide was used to
minimise coupling to both sides of the molecule. The micro-
wave reaction was monitored by thin layer chromatography,
Scheme 1 Synthesis of Acrylamide-dT and its derivatives.

31512 | RSC Adv., 2019, 9, 31511–31516
which took approximately 10 minutes to complete. The product
was isolated by precipitation from cold chloroform, and washed
with cold chloroform to remove excess N,N0-methyl-
enebisacrylamide. The next step was to perform tritylation and
phosphitylation to allow incorporation of the target molecule
into DNA sequences using automated synthesis. Unfortunately,
tritylation of the 50 hydroxyl position of Acrylamide-dT with
a dimethoxytrityl group proved difficult, resulting in extremely
low yields of compound 3 (<5%) even under prolonged reaction
conditions (3 days). An alternative route involving a change in
order was therefore devised in which tritylation was performed
rst on 5-iodo-20-deoxyuridine to give compound 2 (ref. 20) prior
to the palladium catalysed addition of N,N0-methyl-
enebisacrylamide. This route proved successful with identical
microwave conditions applied to produce compound 3 in good
yield. The enhanced hydrophobicity of compound 3 led to its
isolation by column chromatography using DCM/methanol
rather than precipitation from chloroform. The remaining 30

alcohol of compound 3 was then phosphitylated to obtain the
target Acrylamide-dT-CE phosphoramidite in 72% yield
(Scheme 1).

Incorporation of Acrylamide-dT into DNA

Preliminary 1H, 13C, and 2D NMR, and mass spectrometry exper-
iments on Acrylamide-dT showed that the phosphoramidite would
not be able to withstand standard oligonucleotide deprotection
conditions used inDNA synthesis as ammonia was found to add to
the terminal alkene to form a primary amine (see ESI†). However
no such problems were found using the ultramild deprotection
conditions of methanolic potassium carbonate. Therefore these
conditions were chosen for automated oligonucleotide synthesis.
Given the ongoing interest in functionalising aptameric DNA
sequences with polymerisable groups,9,10,17,18 and our recent work
This journal is © The Royal Society of Chemistry 2019
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on such systems,21 it was decided to incorporate Acrylamide-dT
into the thrombin binding aptamer (TBA). Different positions in
the TBA sequence were chosen, including internal T sites and end-
functionalisation, as shown in Table 1. Those T sites in the central
TGT loop known not to interact with the thrombin protein were
selected for replacement with Acrylamide-dT.22 DNA synthesis
proceeded very smoothly with up to three incorporations achieved
successfully, and high average stepwise yields of >90% for each
coupling. Each strand was puried by reversed-phase HPLC (RP-
HPLC) and characterised by analytical RP-HPLC and ESMS (see
ESI†). The strands were found to be stable, with no appreciable
degradation aer storing samples under standard conditions
(ultrapure water at �20 �C) over several months.
Structure and binding properties of Acrylamide-dT modied
DNA

Circular dichroism (CD) spectroscopy was used to probe the
effect of introducing acrylamide groups on the structure of the
modied aptamer strands (Fig. 2). In the presence of potassium,
TBA has a characteristic CD maximum at ca. 295 nm and a CD
minimum at ca. 265 nm, which is indicative of a G-quadruplex
conformation.23 The data showed no signicant difference in
peak positions of the CD signals of the modied strands
compared to the unmodied TBA strand. The strong peaks at
Fig. 2 CD spectra of unmodified (TBA) and Acrylamide-dT modified DN

Table 1 Unmodified and Acrylamide-dT modified DNA sequences
(denoted by X)

Oligo Sequence (X ¼ Acrylamide-dT unit)

TBA 50-GGTTGGTGTGGTTGG-30

Acryl-endT 50-XGGTTGGTGTGGTTGG-30

Acryl-T7/T9 50-GGTTGGXGXGGTTGG-30

Acryl-endT/T7/T9 50-XGGTTGGXGXGGTTGG-30

This journal is © The Royal Society of Chemistry 2019
ca. 295 nm highlight this effect and indicate that all modied
strands can similarly adopt a G-quadruplex conformation.

Thermal melting (Tm) experiments were performed to assess
whether the inclusion of acrylamide groups had any effect on the
stability of the duplexes formed with the 15-mer complementary
strand (Table 2). The average Tm values of the modied strands
were similar if not slightly higher than the unmodied version.
This suggests that the acrylamide groups enhance the stability of
the duplex to some extent, possibly since the acrylamide moiety
has sites for additional hydrogen bonding interactions.

Gel electromobility shi assays were then used to demon-
strate affinity of the Acrylamide-dTmodied oligonucleotides to
the thrombin protein (see ESI†). The images revealed near
complete binding to thrombin for all modied stands at a ratio
of 1 : 1 DNA : thrombin. Furthermore, the intensities of the
bands were similar to those observed with unmodied TBA,
indicating similar thrombin binding affinities, with the disso-
ciation constant (Kd) ratio for TBA and Acryl-endT estimated
from relative band intensities as: Kd

Acryl-endT/Kd
TBA ¼ 1.2.
Reaction of Acrylamide-dT modied DNA with acrylamide gels

An important aspect of the work was to check whether DNA
functionalisation would not adversely affect the ability of the
acrylamide groups to polymerise. A polyacrylamide gel
A strands.

Table 2 Tm values for complementary duplexes formed with
unmodified (TBA) and Acrylamide-dT modified DNA

Oligo Average Tm/�C Std. dev./�C

TBA 62.7 2.9
Acryl-endT 65.8 0.7
Acryl-T7/T9 64.2 0.5
Acryl-endT/T7/T9 66.7 0.2

RSC Adv., 2019, 9, 31511–31516 | 31513
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Fig. 3 Three polyacrylamide gel experiments involving unmodified (TBA, left of vertical dashed line) and Acrylamide-dT modified DNA (right of
vertical dashed line). In each gel, samples of each strand were loaded into two adjacent wells.
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experiment was therefore designed to test this in the presence
of other acrylamide monomers. A mixture of acrylamide, bisa-
crylamide, ammonium persulphate, TEMED, and DNA
(unmodied or Acrylamide-dT modied) was loaded into wells
of a polyacrylamide gel and allowed to set. It was anticipated
that if the acrylamide group on the strands could react with the
gel, the strands would become covalently bound and immobi-
lised. Conversely, unmodied TBA would move down the gel in
the normal way as it does not possess the acrylamide func-
tionality. Once run, the gels were stained and visualised to
determine the position of the strands (Fig. 3). As expected, each
Acrylamide-dT containing DNA strand remained in the wells at
the top of the gel. The absence of any band intensity lower down
each gel suggests a near-quantitative reaction under these
conditions. In contrast, samples of unmodied TBA moved
down the gel along with the current, with there being no indi-
cation of any reaction with acrylamide monomers, for example
via amine-containing nucleobases. This result clearly shows the
ability of the incorporated acrylamide groups to react with other
acrylamide monomers to anchor the DNA within the polymer
network. As expected, running gels of the three modied
strands in the absence of acrylamide, bisacrylamide and radical
initiators resulted in no retardation of the bands (see ESI†).
Conclusion

In conclusion, a new polymerisable nucleosidic monomer,
Acrylamide-dT, and its associated phosphoramidite has been
synthesised, with the latter made in three steps from commer-
cially available starting materials. Under ultramild DNA
synthesis conditions, it can be readily incorporated intact into
aptamer sequences, both internally and externally (i.e. at strand
ends) and in multiple positions, thus expanding the repertoire
for DNA modication chemistry. The modications were found
to have no adverse effect on the structures or thrombin binding
properties of the DNA strands, as evidenced by CD, Tm and gel
experiments. Furthermore, the acrylamide groups within these
strands were shown to react with other acrylamide monomers
under gel electrophoresis conditions to form acrylamide
31514 | RSC Adv., 2019, 9, 31511–31516
polymers. We expect Acrylamide-dT to be a useful synthon in
the future for constructing new DNA–polymer hybrids for
various applications such as stimuli-responsive hydrogels or
molecular imprinting. Although this methodology has currently
been tested only on thymine/uracil sites, given the ease of
synthesis, it should be possible to similarly attach acrylamide
groups to other nucleobases to broaden the applicability
further.

Experimental
Materials and methods

Reagents and solvents were purchased from commercial
suppliers and used without further purication, unless other-
wise stated. 50-O-(4,40-dimethoxytrityl)-5-iodo-20-deoxyuridine 2
was synthesised following an established procedure.20 Column
chromatography was carried out using open columns packed
with Merck grade 60 silica gel topped with 0.5 cm of sand. TLC
analysis was performed on Merck silica gel 60 silica sheets. 1H,
13C, and 31P NMR spectra were obtained on Bruker AVIII300 or
AVIII400 spectrometers. Chemical shis (d) are given in ppm
and are relative to the residual solvent peak. Electrospray mass
(ESI-MS) spectra were measured by either Waters micromass
LCT electrospray time-of-ight (ES-TOF), Waters Xevo G2-XS, or
Synapt G2S mass spectrometers. Milli-Q water puried with
a Millipore Elix-Gradient A10 system (resistivity > 18 mU cm,
TOC # 5 ppb, Millipore, France) was used for DNA sample
preparation.

Synthesis of Acrylamide-dT

5-Iodo-20-deoxyuridine (1.00 g, 2.82 mmol) and palladium
acetate (60 mg, 0.28 mmol) were suspended in DMF (3 ml) in
a 10ml microwave tube equipped with a small magnetic stirring
bar. Tributylamine (0.67 ml, 2.82 mmol) and N,N0-methyl-
enebisacrylamide (1.09 g, 7.06 mmol), were then added. The
suspension was stirred and degassed with argon for 10 minutes.
The tube was then tightly sealed, and the mixture irradiated in
a microwave for 10 minutes at 100 �C. Aer the irradiation
period, the reaction vessel was cooled to room temperature
This journal is © The Royal Society of Chemistry 2019
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before opening. The reaction was then ltered through Celite®.
The product was isolated by precipitation from cold chloroform,
washing with cold chloroform, to yield an off white solid
(748 mg, 70%). 1H NMR (400 MHz, (CD3)2SO) d 11.56 (s, 1H),
8.69 (t, J ¼ 5.9 Hz, 2H), 8.32 (s, 1H), 7.18 (d, J ¼ 15.6 Hz, 1H),
6.96 (d, J ¼ 15.6 Hz, 1H), 6.30–6.21 (m, 1H), 6.16–6.09 (m, 2H),
5.64–5.58 (m, 1H), 5.27 (d, J ¼ 4.3 Hz, 1H), 5.16 (t, J ¼ 5.0 Hz,
1H), 4.54 (t, J ¼ 5.8 Hz, 2H), 4.29–4.23 (m, 1H), 3.82–3.78 (m,
1H), 3.70–3.55 (m, 1H), 2.18–2.13 (m, 2H). 13C NMR (100 MHz,
(CD3)2SO) d 166.0 (C]O), 164.8 (C]O), 161.8 (C]O), 149.4 (C]
O), 142.4 (HC]C), 132.9 (HC]C), 131.5 (HC]C), 125.8 (H2C]
C), 120.8 (HC]C), 108.9 (C), 87.6 (CH), 84.6 (CH), 69.9 (CH),
60.9 (CH2), 43.6 (CH2), 40.0 (CH2). HRMS (ES +ve) (m/z): [M +
Na]+ calcd for C16H20N4O7Na, 403.1230; found 403.1229. IR neat
(cm�1): 3295 (m, OH/NH), 3065 (w, CH), 1689 (s, C]O), 1650 (s,
C]C). Mp: 250 �C (degradation).

Synthesis of compound 3

Compound 2 (ref. 20) (1.01 g, 1.54 mmol) and palladium acetate
(35 mg, 0.16 mmol) were suspended in DMF (3 ml) in a 10 ml
microwave tube equipped with a small magnetic stirring bar.
Tributylamine (0.37 ml, 1.56 mmol) and N,N0-methyl-
enebisacrylamide (475 mg, 3.08 mmol) were then added. The
suspension was stirred and degassed with argon for 10 minutes.
The tube was tightly sealed and the mixture irradiated in a micro-
wave for 10 minutes at 100 �C. Aer the irradiation period, the
reaction vessel was cooled to room temperature before opening.
The reaction was then ltered through Celite®, rinsing with DCM
(50 ml), and the ltrate washed with water (50 ml). The organic
phase was dried over magnesium sulphate and evaporated under
vacuum. The crude product was puried by ash chromatography
with an eluent of 9 : 1 DCM : 7 N ammonia in methanol. The
appropriate fractions were combined and evaporated to give an off
white solid (700 mg, 67%).

1H NMR (400 MHz, CDCl3) d 10.87 (s, 1H), 8.14 (s, 1H), 7.86
(s, 1H), 7.39–7.37 (m, 3H), 7.29–7.25 (m, 7H), 7.20–7.14 (m, 2H),
6.84 (d, J ¼ 8.7 Hz, 4H), 6.36–6.28 (m, 2H), 6.14–6.08 (m, 1H),
5.66 (d, J ¼ 11.1 Hz, 1H), 4.75 (t, J ¼ 6.6 Hz, 2H), 4.46 (s, 1H),
4.24–4.21 (m, 1H), 3.74 (s, 6H), 3.44–3.31 (m, 2H), 2.70–2.66 (m,
1H), 2.23–2.17 (m, 1H), 1.81 (s, 1H). 13C NMR (100 MHz, CDCl3)
d 168.1 (C]O), 166.8 (C]O), 162.2 (C]O), 158.8 (Ar–C), 149.6
(C]O), 144.4 (Ar–C), 142.2 (HC]C), 135.7 (Ar–C), 135.5 (Ar–C),
133.9 (HC]C), 130.3 (HC]C), 130.2 (Ar–CH), 130.0 (Ar–CH),
128.3 (H2C]C), 128.2 (Ar–CH), 127.2 (Ar–CH), 121.9 (HC]C),
113.5 (Ar–CH), 110.1 (C), 87.2 (C), 87.0 (CH), 86.8 (CH), 72.8
(CH), 64.0 (CH2), 55.4 (OCH3), 44.5 (CH2), 41.6 (CH2). HRMS (ES
+ve) (m/z): [M + H]+ calcd for C37H39N4O9, 683.2717; found
683.2715. IR neat (cm�1): 3483 (b, OH/NH), 2921 (s, CH), 2851
(s, CH), 1607 (m, C]O).

Synthesis of Acrylamide-dT-CE phosphoramidite

Compound 3 (771 mg, 1.13 mmol) was dried via azeotroping with
dry DCM (3 � 10 ml). The solid was then redissolved in dry DCM
(15 ml), and the solution stirred under argon. DIPEA (0.49 ml, 2.84
mmol) was added via syringe to the solution. Then 2-cyanoethyl
N,N-diisopropylchlorophosphoramidite (0.3 ml, 1.34 mmol) was
This journal is © The Royal Society of Chemistry 2019
cautiously added to themixture. The solution was le to stir under
argon until reaction completion was conrmed by TLC (�3 hours).
The reaction was diluted with degassed DCM (50 ml), and the
solution was washed with degassed saturated sodium bicarbonate
solution (2� 50 ml). The organic phases were collected, dried over
sodium sulphate, and evaporated under vacuum. The crude
product was puried by ash chromatography with an eluent of
9 : 1 DCM : 7 N ammonia in methanol. The appropriate fractions
were combined and evaporated to give an off white solid (717 mg,
72%).

1H NMR (400 MHz, CDCl3) d 8.65–8.59 (m, 1H), 7.79 (d, J ¼
21.1 Hz, 1H), 7.43–7.40 (m, 2H), 7.33–7.27 (m, 8H), 7.23–7.18
(m, 1H), 7.07 (dd, J ¼ 15.3, 2.7 Hz, 1H), 6.87–6.83 (m, 4H), 6.44
(dd, J ¼ 17.0, 1.1 Hz, 1H), 6.28–6.23 (m, 1H), 6.16–6.09 (m, 1H),
5.69 (dd, J ¼ 10.4, 1.0 Hz, 1H), 4.73 (t, J ¼ 6.0 Hz, 2H), 4.56–4.49
(m, 1H), 4.28–4.22 (m, 1H), 3.87–3.52 (m, 11H), 3.38–3.29 (m,
2H), 2.72–2.59 (m, 2H), 2.46 (t, J ¼ 6.4 Hz, 1H), 2.28–2.17 (m,
1H), 1.18–1.08 (m, 12H). 13C NMR (100 MHz, CDCl3) d 167.8
(C]O), 166.6 (C]O), 162.8 (C]O), 158.6 (Ar–C), 149.1 (C]O),
144.3 (Ar–C), 142.1 (HC]C), 135.6 (Ar–C), 135.4 (Ar–C), 133.5
(HC]C), 130.1 (HC]C), 130.0 (Ar–CH), 128.4 (H2C]C), 128.1
(Ar–CH), 128.0 (Ar–CH), 127.1 (Ar–CH), 122.0 (HC]C), 117.5/
117.4 (CN), 113.4 (Ar–CH), 109.9/109.8 (C), 86.8 (C), 86.3–86.0
(CH), 85.7 (CH), 74.0–73.5 (CH), 63.4/63.3 (CH2), 58.4/58.2
(CH2), 55.2 (OCH3), 44.6 (CH2), 43.4–43.2 (CH), 40.4 (CH2),
24.6 (CH3), 20.4–20.2 (CH2).

31P NMR (121 MHz, CDCl3) d 149.1,
148.6. HRMS (TOF-ES +ve) (m/z): [M]+ calcd for C46H56N6O10P,
883.3796; found 883.3793.
Synthesis of unmodied and Acrylamide-dT modied DNA
oligonucleotides

All oligonucleotides were synthesised using solid phase synthesis
on an Applied Biosystems ABI 394 DNA/RNA synthesiser using
commercially supplied DNA synthesis grade solvents and
reagents. Standard phosphoramidites of Pac-dA, iPr-Pac-dG, Ac-
dC, dT from Link Technologies, and Acrylamide-dT-CE phos-
phoramidite were used for ultramild synthesis. The phosphor-
amidites were dissolved in anhydrous acetonitrile to 0.1 M prior
to synthesis. Strands were synthesised at a 1 mmol scale on Syn-
Base™ CPG 1000/110 solid supports from Link Technologies.
Phosphoramidites were activated with 5-ethylthio-1H-tetrazole
(0.25M) in acetonitrile prior to coupling and coupling times of 25
seconds were used. Then, phenoxyacetic anhydride and methyl-
imidazole were added to cap unreactedmaterial, and iodine (0.02
M) in THF/pyridine/water (7 : 2 : 1) was added to oxidise the
phosphotriester formed. Upon sequence completion, the resins
were placed in freshly prepared 1 ml solutions of potassium
carbonate (0.05 M) in methanol and le overnight to cleave
strands from the resin and remove protecting groups. The solu-
tions were neutralised with acetic acid (6 ml) and the solvent was
removed on a Thermo Scientic speed vac. The dried powders
were redissolved in 1mlMilli-Q water and desalted with a NAP-10
column from GE Healthcare to remove residual resin and
potassium carbonate. The solutions were then concentrated to
1 ml and stored in the freezer for purication (see ESI for further
details†).
RSC Adv., 2019, 9, 31511–31516 | 31515
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Circular dichroism spectroscopy

500 ml aqueous solutions of each DNA sample (5 mM) in KCl (10
mM) and Tris$HCl buffer (10 mM, pH 7.5) were prepared. Prior
to CD analysis, the samples were heated to 95 �C for 5 minutes
and cooled slowly to room temperature. CD spectra of samples
were recorded on a Jasco J-810 spectropolarimeter, scanning
from 350–200 nm at a rate of 100 nm min�1. Three accumula-
tions were performed for each sample and the data produced an
average of the three scans. A baseline correction was manually
performed on each sample by subtracting the blank and off-
setting results at 350 nm.

Thermal melting experiments

100 ml aqueous solutions of each DNA sample (10 mM) and
complementary DNA (10 mM) in NaCl (100 mM) and sodium
phosphate buffer (10 mM, pH 7) were prepared. 10 ml of each
sample was withdrawn, added to 10 mL of SsoAdvanced™
universal SYBR® green supermix from Bio-rad, and the thermal
melting of the resulting solutions was performed on a M550
double beam scanning UV/visible spectrophotometer. Samples
were heated from 15 �C/ 90 �C and cooled from 90 �C/ 20 �C
at a rate of 1 �C min�1, and values were obtained from the
maxima of the negative rst derivative of the melting curve.

Polyacrylamide gel experiments

Experiments were performed on 12% native polyacrylamide gels
with 1� TBE buffer and 10 mM potassium chloride, using 1�
TBE buffer with 10 mM potassium chloride as a running buffer.
Gels were run on Bio-rad Mini-PROTEAN® gel kits with a Bio-
rad PowerPac (highest voltage: 5000 V/500 mA/400 W). Aer
electrophoresis, gels were stained with Diamond™ nucleic acid
dye and visualised under UV with an AlphaImager HP gel
imager from Alpha Innotech.

Gel electromobility shi assays. 50 ml aqueous solutions of
DNA (1 mM) and thrombin (1 mM) in KCl (10 mM), Tris$HCl
buffer (10 mM, pH 7.5), and glycerol (3%) were prepared. 10 ml
of each sample was loaded into wells and gels were run at 100 V
for 1 hour.

DNA–acrylamide gel copolymerisation experiments. 100 ml
aqueous samples containing 1 mM DNA, 12% acrylamide, 1�
TBE buffer, and 10 mM potassium chloride were prepared. 10%
APS in water (1 ml) and TEMED (1 ml) were added and 40 ml of
each sample was then immediately loaded into two adjacent
wells of a gel (20 ml per well). A three well gap was le between
unmodied and Acrylamide-dT modied DNA as the solutions
were found to react into neighbouring wells. The solution-
containing wells were then le to set (typically 5 minutes). Once
set, 10 ml of 12% polyacrylamide gel solution was added to the
same wells and le to set. The gels were then rinsed with HPLC
water and run at 100 V for 1 hour.
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