RSC Advances

PAPER

Cite this: RSC Adv., 2019, 9, 37747

Received 4th September 2019 Accepted 7th November 2019

DOI: 10.1039/c9ra07087g

rsc.li/rsc-advances

1 Introduction

Compared with carbocyclic aromatic energetic compounds, nitrogen heterocyclic nitro compounds have higher density and better detonation performance. However, the difficulty of synthesizing some nitro heteroaromatic systems may attributed to their electron deficiency, making electrophilic aromatic substitution problematic.¹ By the addition of electron donation substituents to the heteroaromatic ring, especially the amino group, nitration may proceed relatively smoothly. Additionally, high-nitrogen materials, which have large numbers of N–N and C–N bonds and few or no nitro groups, typically gain energy from their very high positive heats of formation rather than from the conventional organic energetic materials oxidizing the carbon in the backbone to carbon dioxide. Meanwhile, due to their lower carbon and hydrogen content, some properties of high-nitrogen such as density and oxygen balance have distinct advantages over conventional energetic materials.² As a result of these properties, scientists have designed and synthesized energetic azo materials with useful detonation properties. Licht and Ritter^{3,4} reported the synthesis of $2,4,6$ -trinitropyridine

Molecular design and properties of bridged energetic pyridines derivatives†

Diandian Zhai[,](http://orcid.org/0000-0002-4189-5520) D Jinpeng Wang, Lina Hao, Congming Ma, D^{*} Peng Ma, D^{*} Yong Pan* and Juncheng Jiang

A series of bridged pyridine-based energetic derivatives were designed and their geometrical structures, electronic structures, heats of formation, detonation properties, thermal stabilities, thermodynamic properties and electrostatic potential were fully investigated using density functional theory. The results show that the steric hindrance effect is a decisive factor for structural stability, and the formation of intramolecular or intermolecular hydrogen bonds doesn't provide advantages to stabilize molecular structure, which was demonstrated by insertion of 3,4,5-trinitro-1H-pyrazole, 3,4-dinitro-1H-pyrazol-5 amine, 3,5-dinitro-1H-pyrazol-4-amine and 3-nitro-1H-1,2,4-triazol-5-amine. The azide group and azo bridge play an important role in improving the heats of formation of energetic pyridine-based materials. All designed molecules were found to have values of density ranging from 1.70 g cm⁻³ (E6, F6) to 2.11 g cm⁻³ (D3), values of detonation velocity ranging from 7.1 km s⁻¹ (F1) to 9.77 km s⁻¹ (D8), and values of detonation pressure ranging from 21.5 GPa (F1) to 46.0 GPa (D8). When a $p-\pi$ conjugation formed between the nitrogen atom and pyridine ring, the bond between nitrogen and hydrogen atoms may be broken as the trigger bond. PAPER
 (A) Check for updates

Check for the chec

(TNPy), 2,4,6-trinitropydine-1-oxide (TNPyO) and 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO) in the twentieth century, illustrating that the density and thermal stability increase with an alternating array of amino- and nitro-groups. Zhao⁵ reported two promising heat-resistant energetic materials based on the pyridine and tetrazole ring were synthesized with a high decomposition temperature in excess of 300 $^{\circ}$ C. Recently, a kind of azo-bridged pyridine precursor was synthesized for the first time to develop new energetic pyridine-based compounds.⁶ Thus, this lead to the attempt to design and calculate bridged energetic pyridines derivatives (Scheme 1).

YAL SOCIETY
CHEMISTRY

In this study, a systematic research on electronic structures, heats of formation (HOF), detonation properties, thermal stabilities and thermodynamic properties of bridged energetic pyridines derivatives (such as $-C=C-$, $-NH-NH-$ and $-N=N-$)

Scheme 1 Template reactions of energetic pyridine molecules.

College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, CN 211800, China. E-mail: maming1306@126.com; mpcctv@163.com; lh1083517594@gmail.com

[†] Electronic supplementary information (ESI) available: Computational methods, DFT/B3LYP/6-311G(d,p) optimized geometries of B9, B10, B11 and B12; the specific data of bond order for all designed compounds. See DOI: 10.1039/c9ra07087g

Scheme 2 Designed energetic molecules based on bridged pyridines.

with various energetic groups (such as -CN, $-N_3$, $-NF_2$, $-NH_2$, -NHNO₂, -NHNH₂, -CH(NO₂)₂, -C(NO₂)₃)⁷ or common energetic materials containing active hydrogen atoms (such as 3,4,5-trinitro-1H-pyrazole, 3,4-dinitro-1H-pyrazol-5-amine, 3,5 dinitro-1H-pyrazol-4-amine, and 3-nitro-1H-1,2,4-triazol-5 amine) were investigated (Scheme 2, series A–F). It is certain that all results will provide useful information for a better understanding of the physical and chemical properties of energetic pyridines.

2 Results and discussion

2.1 Electronic structures

The Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), which is called Frontier Molecular Orbital Theory (FMO Theory), has

Fig. 1 The variation trends of $\Delta E_{\text{LUMO-HOMO}}$ of representative designed compounds.

Fig. 2 Spatial structures of representative compounds B9–B12.

crucial effects on reaction mechanisms. Particularly, their energy gap can provide many useful information on optical polarizability, kinetic stability and chemical reactivity.⁸ The frontier molecular orbital energies and their energy gaps $(\Delta E_{\rm LUMO-HOMO})$ for designed compounds were listed in Table 1. For homologous bridged pyridine derivatives, it is found that HOMO energy levels increase evidently while $-NH₂$ and $-NHNH₂$ groups are introduced to the pyridine ring, so as LUMO energy levels. Oppositely, HOMO energy levels decrease when –CN, –CH($NO₂$)₂, –C($NO₂$)₃ or 3,4,5trinitro-1H-pyrazole are attached, so as LUMO energy levels. Furthermore, HOMO and LUMO energy levels present no regularity when different bridges (such as -CH=CH-, -NH- $NH-$ and $-N=N-)$ are incorporated.

Fig. 1 (the HOMO–LUMO pictures are in ESI Table S1†) displays the variation trends of highest occupied orbital, lowest unoccupied molecular orbital energy levels and energy gaps of representative designed compounds B1, B2, B3, B4, B5, B8, B9, B12. It reveals that $\Delta E_{\rm LUMO-HOMO}$ decreases evidently while $3,4$ -dinitro-1H-pyrazol-5-amine $(10), 3,5$ dinitro-1H-pyrazol-4-amine (11), and 3-nitro-1H-1,2,4-triazol-5-amine (12) are incorporated for series A–F, whereas the addition of other groups or energetic compounds makes similar contributions to $\Delta E_{\rm LUMO-HOMO}$. Surprisingly, $\Delta E_{\text{LUMO-HOMO}}$ is demonstrated to be much higher when 3,4,5trinitro-1H-pyrazole (9) was incorporated than that of other three energetic compounds (10–12), convincing that steric hindrance effect is a decisive factor for structural stability caused by a combination of amino and nitro groups (Fig. 2, see ESI Table S2†). In general, $\Delta E_{\rm LUMO-HOMO}$ increases gradually as different bridges incorporated in order of $-N=$ N-, -NH-NH-, -CH=CH-. In view of all designed compounds, compound F3 has the highest $\Delta E_{\text{LUMO-HOMO}}$ of 4.61 eV while compounds B12 has the smallest $\Delta E_{\rm LUMO-HOMO}$ of 2.06 eV, showing that F3 is the most inactive and B12 is the most active under external stimulus. BSC Advances

Consider the molecular constitution on the molecular constitution of the molecular constitution on the molecular common

Properties molecular molecular commons are the molecular commons are commons and the m

> $CH_3CH(NO_2)_2 + 2CH_4 \longrightarrow CH_3CH_3 + 2CH_3NO_2$ $CH_3C(NO_2)_3 + 3CH_4 \longrightarrow CH_3CH_3 + 3CH_3NO_2$

Scheme 3 Isodesmic reactions for polynitromethane

 a Calculated at the G4 level. b Obtained from http://webbook.nist.gov. c Obtained by isodesmic reaction.

2.2 Heat of formation

Heat of formation (HOF), calculated by atomization reaction or isodesmic reaction, is an important parameter in predicting detonation properties of energetic materials. Compounds $CH_3CH(NO_2)_2$ and $CH_3C(NO_2)_3$ were calculated *via* isodesmic reactions (Scheme 3) at G4 level (Table 2). Total energies, zero-point energies, and thermal corrections for the reference compounds using the isodesmic reactions (Scheme S1, see ESI†) are listed in Table 3.

Table 4 presents the $\Delta H_{\rm f,gas}, A, v, {\sigma_{\rm tot}}^2, \Delta H_{\rm sub}$ and $\Delta H_{\rm f, solid}$ of bridged pyridine derivatives. It is seen that all compounds have positive $\Delta H_{\text{f,gas}}$ range from to 142.8 (F4) to 1876.9 kJ mol⁻¹ (B2). It reveals that energetic materials attached with $-N_3$ group often have the highest $\Delta H_{\text{f},\text{solid}}$, while –NH₂, –CH(NO₂)₂, –NHNO₂ groups are not conducive to improvement of $\Delta H_{\text{f},\text{solid}}$. For each series **F**, the influence of different energetic groups on $\Delta H_{\rm f, solid}$ can be described as the following order: $-N_3 > -CN > 3,4,5\text{-}trimitro-1H-pyrazole > 3$ nitro-1H-1,2,4-triazol-5-amine > 3,5-dinitro-1H-pyrazol-4 amine > 3,4-dinitro-1H-pyrazol-5-amine > $-NHNH_2$ > $-NF_2$ > $-C(NO₂)₃ > -NHNO₂ > -CH(NO₂)₂ > -NH₂$. Meanwhile, azo bridged pyridine derivatives usually have better HOFs than

Table 3 Calculated total energies (E_0) , zero-point energies (ZPE), thermal corrections (H_T) and heats of formation (HOFs) of the reference compounds

Compd	E_0^a (a.u.)	ZPE^b $(kJ \text{ mol}^{-1})$	$H_{\rm T}{}^b$ $(kJ \text{ mol}^{-1})$	$\Delta H_{\rm f,gas}$ $(kJ \mod 1})$	
CH ₄	-40.541022	115.8	10.1	-74.6^{c}	
NH ₃	-56.589815	89.1	10.1	-45.9^{c}	
CH ₃ NO ₂	-245.127760	128.9	11.7	-81.0^{c}	
CH ₃ CN	-132.816078	117.4	12.0	74.0 ^c	
CH_3N_3	-204.186410	130.3	14.3	293.4	
				(ref. 9)	
CH ₃ NF ₂	-294.351870	121.4	13.7	$-98.0d$	
CH ₃ NH ₂	-95.908614	165.7	11.5	-23.5^{c}	
CH_3NHNO_2	-300.491413	174.6	16.1	-73.2	
				(ref. 10)	
CH_3NHNH_2	-151.253386	211.3	13.5	94.5 ^c	
$CH_3CH(NO_2)_2$	-489.043812	210.0	23.0	-105.1^e	
$CH_3C(NO_2)_3$	-693.610990	213.7	29.4	-73.9^{e}	
$CH_3N=NCH_3$	-189.363781	218.2	16.1	146.0^{d}	
CH ₃ NHNHCH ₃	-190.578383	282.9	17.1	90.0	
				(ref. 11)	
$CH3CH=CHCH3$	-157.306017	278.9	17.0	-10.8^{c}	
	-248.398244	229.8	13.8	140.6 (ref. 12)	
$N-NH$	-226.304546	184.6	12.4	177.4 (ref. 12)	
$N-NH$	-242.358564	155.0	11.9	192.7 (ref. 13)	

 a Calculated at the B3LYP/def2-TZVPP level. b Calculated at the B3LYP/ $\,$ 6-311G(d,p) level, and the scaling factor is 0.9888 for ZPE and 1.0062 for H_{T}^{14} ^c Obtained from http://webbook.nist.gov. ^d Calculated at G4 level.
^e Obtained by isodesmic reaction.

hydrazine or vinyl bridged compounds. This phenomenon may be caused by π – π conjugated system and large amount of nitrogen content. Besides, these high positive HOFs make great contribution to increasing detonation properties such as detonation velocities and detonation pressures.

2.3 Detonation property

Detonation properties that related to oxygen balance (OB), density (ρ) , heat of detonation (Q) , detonation velocity (D) and detonation pressure (P) are summarized in Table 5. For a comparison, detonation properties of two well-known explosives 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7 tetranitro-1,3,5,7-tetrazocane (HMX) were also presented. It is seen that most of the designed compounds have negative OB, and energetic materials attached with $-C(NO₂)₃$ group

always have OB of nearly zero, proving that polynitro compounds contribute to good values of OB. Meanwhile, energetic materials attached with -CN, -NH₂, or -NHNH₂ group always have dissatisfied OB, proving that cyano and amino compounds are not conducive to good oxygen balance. Bridged pyridine derivatives with different substituents were also found to have different ρ , Q , D and P values: values of ρ range from 1.70 (E6, F6) to 2.11 g cm⁻³ (D3); values of Q range from 1090.5 (D4) to 1769.2 cal g^{-1} (B3). Compound F1 has the smallest value of detonation velocity (7.1 km s^{-1}) and detonation pressure (21.5 GPa), while Compound D8 has the highest value of detonation velocity (9.77 km $\rm s^{-1})$ and detonation pressure (46.0 GPa), which is also better than that of RDX and HMX.

Fig. 3 displays variation trends of ρ , O, D and P of designed compounds, in which Fig. 3a shows the influence of different energetic groups on density. It can be seen that

 a Calculated at the B3LYP/def2-TZVPP level. b Calculated at the B3LYP/6-311G(d,p) level, and the scaling factor is 0.9888 for ZPE and 1.0062 for $H_{\rm T}$. $^{\rm a}$

Table 5 Predicted densities (ρ) , heats of detonation (Q) , detonation velocities (D)

Table 5 Predicted densities (ρ), heats of detonation (Ω), detonation velocities (D)												
Compd	Q (cal g^{-1})	\boldsymbol{D} $(km s^{-1})$	P(GPa)	ρ $(g \text{ cm}^{-3})$	OB(%)	Compd	Q (cal $\mbox{ \rm g} ^{-1})$	D $(km s^{-1})$	P (GPa)	ρ $(g \text{ cm}^{-3})$	OB(%)	
A1	1470.6	7.75	26.3	1.76	-65.7	D2	1483.0	8.55	33.0	1.85	-39.2	
A2	1515.0	8.32	30.8	1.81	-46.6	D ₃	1709.2	8.76	37.2	2.11	-36.5	
A3	1649.6	8.46	33.4	1.97	-44.6	D ₄	1090.5	7.67	25.9	1.78	-63.8	
A4	1321.9	7.89	27.3	1.77	-60.9	D ₅	1428.1	9.05	38.0	1.94	-18.5	
A5	1486.5	8.66	34.0	1.87	-33.0	D ₆	1249.7	7.95	27.6	1.75	-62.5	
A6	1397.7	8.03	28.1	1.75	-60.3	D7	1593.9	9.26	40.0	1.96	-14.3	
А7	1585.6	8.84	35.7	1.89	-28.0	D8	1730.9	9.77	46.0	2.08	5.0	
A8	1684.6	9.44	41.8	1.99	-12.1	D ₉	1624.9	9.18	39.5	1.99	-17.8	
A9	1608.9	8.89	36.5	1.93	-27.1	D10	1402.3	8.54	33.6	1.92	-38.1	
A10	1439.7	8.40	32.1	1.88	-43.0	D ₁₁	1402.4	8.54	33.5	1.92	-38.1	
A11	1444.0	8.39	31.9	1.87	-43.0	D ₁₂	1277.3	8.20	30.5	1.87	-45.7	
A12	1376.6	8.16	29.9	1.83	-49.2	E1	1383.2	7.20	22.3	1.71	-85.4	
B1	1478.0	7.57	25.0	1.75	-68.9	E2	1470.5	7.86	27.1	1.76	-64.8	
B2	1561.2	8.59	33.1	1.84	-36.3	E ₃	1577.0	7.87	28.2	1.89	-62.0	
B ₃	1769.2	8.75	37.1	2.10	-33.8	E4	1237.1	7.32	23.1	1.72	-81.6	
B4	1189.8	7.78	26.7	1.78	-60.3	E5	1409.8	8.17	29.8	1.82	-49.8	
B5	1493.1	9.10	38.3	1.94	-15.9	E6	1327.6	7.51	24.2	1.70	-79.6	
B6	1350.1	8.05	28.1	1.74	-59.5	E7	1521.7	8.43	32.1	1.85	-42.1	
B7	1643.1	9.28	40.1	1.96	-12.3	E8	1626.2	9.04	37.9	1.94	-24.2	
B8	1767.7	9.77	45.9	2.08	6.7	E9	1562.7	8.57	33.5	1.89	-37.7	
B9	1659.0	9.21	39.8	1.99	-16.4	E10	1387.8	8.07	29.3	1.84	-54.5	
B10	1438.7	8.55	33.6	1.91	-36.6	E11	1393.9	8.05	29.1	1.83	-54.5	
B11	1437.7	8.57	33.8	1.92	-36.6	E12	1297.3	7.79	27.0	1.81	-62.3	
B12	1327.0	8.24	30.7	1.86	-44.0	F1	1401.2	7.08	21.5	1.70	-86.5	
C1	1369.9	7.69	26.0	1.77	-69.2	F2	1505.1	8.17	29.5	1.79	-51.7	
C2	1420.3	8.26	30.4	1.82	-50.0	F ₃	1703.3	8.25	32.4	2.04	-48.0	
C ₃	1560.6	8.41	33.1	1.97	-47.8	F4	1099.2	7.23	22.6	1.73	-79.6	
C ₄	1214.7	7.78	26.6	1.78	-64.6	F5	1430.7	8.69	34.5	1.90	-29.2	
C5	1401.6	8.59	33.5	1.87	-36.2	F6	1259.6	7.57	24.5	1.70	-76.3	
C6	1297.3	7.94	27.6	1.76	-63.8	F7	1600.3	9.00	37.4	1.93	-22.6	
C7	1514.9	8.80	35.4	1.90	-30.6	F8	1726.3	9.75	45.4	2.05	-1.7	
C8	1619.5	9.46	42.3	2.01	-14.5	F9	1627.4	8.98	37.6	1.96	-23.3	
C9	1555.1	8.84	36.1	1.93	-29.2	F10	1405.3	8.30	31.4	1.88	-44.3	
C ₁₀	1377.5	8.37	31.9	1.89	-45.2	F11	1402.9	8.32	31.6	1.89	-44.3	
C11	1387.1	8.34	31.5	1.87	-45.2	F12	1277.1	7.97	28.5	1.84	-53.3	
C12	1307.4	8.10	29.5	1.84	-51.6	RDX^{15}	1590.7	8.75	34.0	1.82	-21.6	
D1	1395.1	7.54	25.0	1.77	-72.1	HMX^{15}	1633.9	9.10	39.0	1.91	-21.6	

compounds substituted by $-NF_2$ group have the highest density while –CN, –NH₂ or –NHNH₂ substituted ones have smaller density. Compounds with different bridged groups have similar values in detonation velocity, detonation pressure and density, indicating that -CH=CH-, -NH-NHand $-N=N-$ bridged groups have little effect in improving the values of ρ , Q , D and P . Fig. 3b shows the influence of different energetic groups on Q. It can be seen that compounds substituted by $-NF_2$ and $-C(NO_2)_3$ group have the highest heat of detonation while $-NH_2$, $-NHNH_2$ and 3nitro-1H-1,2,4-triazol-5-amine substituted ones have smaller heat of detonation. It is clearly seen that different bridged groups have different effects on Q values in the order of -N=N-, -CH=CH-, -CH=CH-.

In view of Fig. 3c and d, it is seen that the influence of different energetic groups on values of D and P were approximately the same throughout all series. The general influence order of different energetic groups on

values of D and P can be described as follows: $-C(NO₂)₃$ > $-CH(NO₂)₂ \approx 3,4,5-trinitro-1H-pyrazole > -NHNO₂ > -NF₂$ \approx -N₃ \approx 3,4-dinitro-1H-pyrazol-5-amine \approx 3,5-dinitro-1H-pyrazol-4-amine > $-NHNH_2$ > $-NH_2$ > $-CN$ while the influence of different bridges on values of D and P can be described in the order of $-N=N- \approx -NH-NH- > -CH=$ CH–. It can be concluded that polynitro groups are the most effective groups in improving D and P values while it is on the opposite side for insertion of $-CN$, $-NH₂$ and $-NHNH₂$.

2.4 Thermal stability

The bond dissociation energies (BDEs) are important in understanding thermal stability and enhancing controllability of kinetic energy release. In general, the smaller the energy is needed for breaking a bond, the weaker the bond is, and thus, this chemical bond may be acted as the trigger bond. The possible trigger bond with the weakest

BDE is selected as the breaking bond based on bond order analyses. The bond order and BDEs (specific data are shown in ESI Table S3†) of all designed compounds were summarized and listed in Table 6. In most cases, the possible trigger bond was likely $C-NO₂$ in 3- or 5-position of the pyridine ring (such as A1, A2, A9). In particular, when trinitromethyl or dinitromethyl was incorporated to the pyridine ring, C–N bond in aliphatic carbon chain was weaker than that of aromatics (such as A7, A8). When N– $NO₂$ or N–NH₂ occurred, they both appeared to be the weakest bond in one curtain designed molecule. The nitrogen atom and fluorine atom both have strong ability to attract electron, making N–F bond broken more easily. It is shocking that N–H bond were known as the trigger bond in compound A4 and B4, for example, which were contradictory with the concept of increasing thermal stability by the use of an alternating array of amino and nitro-groups. The results show that a p- π conjugation effect formed between the nitrogen atom and pyridine ring, revealing that the nitrogen atom has the weaker ability to attract the

hydrogen atom. The ultimate cause of this situation seems to have been the steric hindrance effect between four nitro groups directly attached to the pyridine ring. Besides, incorporating the bridge –N=N– (series A and B) or –CH= CH– (series E and F) leads to the formation of π – π conjugation between double bonds and the pyridine ring, so as to stabilize the bridged atoms.

2.5 Thermal dynamic properties

As the main contents of thermal dynamic parameters, standard molar heat capacity ($C_{\rm p,m}^{\rm \theta}$), standard molar entropy (S_m^{θ}) and standard molar enthalpy (H_m^{θ}) can provide useful information in state equation, macroscopic properties and chemical reactions of energetic materials.¹⁶ The variation trends of $C_{\rm p,m}^{\rm \theta},\;S_{\rm m}^{\rm \theta}$ and $H_{\rm m}^{\rm \theta}$ of designed compounds at different temperatures (every 10 K from 200 K to 600 K, specific data are shown in ESI Table $S4\dagger$) were investigated. The related equation for these parameters at different temperatures can be written in the following form:

Table 6 Bond dissociation energies (BDE, kJ mol $^{-1}$) for the weakest bonds

$$
X = a + bT + \text{dis } cT^2 \ (X = C_{p,m}^{\theta}, S_m^{\theta} \text{ and } H_m^{\theta})
$$

where a , b and c were constant and summarized in Table 7. Take compound A1 and A2 for example, as can be seen from Fig. 4, $C_{\rm p,m}^0$, $S_{\rm m}^{\rm \theta}$ and $H_{\rm m}^{\rm \theta}$ of all designed compounds improved as the temperature increasing. However, there exists differences in the growth rates of these parameters. The case is that the growth rates $C_{\rm p,m}^{\rm \theta},\,S_{\rm m}^{\rm \theta}$ decreased evidently as the temperature increasing while growth rate of H_{m}^{θ} increased. The reason is that the translations and rotations of chemical bonds were the main influencing factors at a low while vibrational movement occurred and intensified at a high temperature. At certain temperature, it is also found that the values of these thermal dynamic parameters increase as the volume of energetic groups increasing. This phenomenon may be caused by the strong space steric effects of energetic groups. For example, the $C_{\rm p,m}^0,$ $S_{\rm m}^0$ and $H_{\rm m}^0$ of compound <code>A7</code> and A8 are 382.2 J mol⁻¹ K⁻¹, 746.8 J mol⁻¹ K⁻¹,

68.8 kJ mol⁻¹ and 406.2 J mol⁻¹ K⁻¹, 782.6 J mol⁻¹ K⁻¹, 73.2 k J mol^{-1} , respectively (300k). Obviously, $C_{p,m}^{\theta}$, S_m^{θ} and H_m^{θ} of compound A7 are lower than those of compound A8.

The scaling factor is 0.9888 for ZPE, 1.0062 for variation of enthalpy from 0 K to T and 1.0104 for entropy.¹⁴

2.6 Electrostatic potential

Electrostatic potential (ESP), which provides meaningful insight into charge distributions and intermolecular interaction on the molecular surface of designed compounds were fully investigated. The ESP mapped surfaces and the surface areas of designed compounds were plotted in Fig. 5, where significant surface local minima and maxima of ESP are represented in blue and red, respectively. From Fig. 5, it is found that the positive potential (red areas) mainly concentrates on the parent skeleton while the negative

potential (blue areas) distributed mostly on the nitro groups and difluoramino groups, especially on the fluorine atom, which mainly due to its higher electronegativity. The positive areas of compounds B1, B2, B3, B4, B5, B8, B9 and B12 were calculated as 248 A^2 (ratio 61%), 251 A^2 (ratio 57%), 218 A^2 (ratio 56%), 180 \AA^2 (ratio 51%), 272 \AA^2 (ratio 58%), 398 \AA^2 (ratio 63%), 549 A^2 (ratio 65%), 426 A^2 (ratio 62%) respectively. As we can see that the positive regions are larger but also stronger in magnitude than the negative ones, which is consistent with Murray's research.¹⁷ Generally speaking, for organic molecules the negative regions cover a smaller portion of the total surface area but are significantly stronger (in terms of average magnitudes) than the positive ones. However, in the case of energetic molecules, the positive regions are not only larger but also stronger than the negative ones. From Table 6, the h_{50} values of compounds **B1**, **B2**, B3, B4, B5, B8, B9 and B12 were calculated as 24.7 J, 54.1 J, 29.4 J, 53.9 J, 27.8 J, 3.9 J, 12.4 J, 42.6 J respectively. It is interesting to find that the surface electrostatic potentials of the less sensitive molecules do not differ dramatically from those of the others. The delocalization of the π electronic

charge that is such an important factor in stabilizing aromatic systems is counteracted in the nitroaromatics by the strongly electron-withdrawing effect of $NO₂$ groups, which is reflected in the surface electrostatic potentials being positive rather than negative above the rings and in high degrees of internal charge separation.¹⁸ As a result, positive areas of designed compounds were higher than negative areas which may stabilize the molecular structure.

3 Conclusions

In this work, a series of bridged pyridine energetic derivatives were designed and investigated by density functional theory method at DFT-D3(BJ)/B3LYP/6-311G(d,p) level. The results show that steric hindrance effect is a decisive factor for structural stability, and formation of intramolecular or intermolecular hydrogen bonds doesn't have advantages to stabilize molecular structure. The azide group and azo bridge can improve heats of formation of energetic pyridinebased materials. Compound D8 has the highest value of

Fig. 5 Electrostatic potential of representative designed molecules.

detonation velocity (9.77 km $\rm s^{-1})$ and detonation pressure (46.0 GPa), which is better than that of RDX and HMX, and can be selected as a potential candidate of promising high energy density materials. Analysis of the bond dissociation energies suggests that When a $p-\pi$ conjugation formed between the nitrogen atom and pyridine ring, the bond between nitrogen and hydrogen atoms may be broken as the trigger bond.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 11702129). We are so grateful to the

High Performance Computing Center of Nanjing Tech University for doing the numerical calculations in this paper on its x-Flex enterprise blade cluster system. **SEC**

Articles. Published on 19 November 2019. Download on 19 November 2019. This article is licensed under a common

Super Units are the two metals articles and the common attack the common attack are the common attack a

Notes and references

- 1 P. F. Pagoria, G. S. Lee, A. R. Mitchell and R. D. Schmidt, Thermochim. Acta, 2002, 384, 187–204.
- 2 M. A. Hiskey, N. Goldman and J. R. Stine, J. Energ. Mater., 1998, 16, 119–127.
- 3 H. H. Licht and H. Ritter, Propellants, Explos., Pyrotech., 1988, 13(1), 25–29.
- 4 H. Ritter and H. H. Licht, J. Heterocycl. Chem., 1995, 32, 585– 590.
- 5 K. Zhao, Z. L. Liu and C. M. Ma, Chin. J. Energy Mater., 2015, 23, 1099–1102.
- 6 C.-M. Ma, Z. L. Liu and Q. Z. Yao, Chin. J. Energy Mater., 2015, 23, 1176–1180.
- 7 Y. Chen, H. X. Hao, S. Y. Xu and W. F. Zheng, J. Ordnance Equip. Eng., 2017, 38(6), 125–134.
- 8 A. Stobiecka, M. Sikora, R. Bonikowski and J. Kula, J. Mol. Struct., 2016, 1107, 82–90.
- 9 K. E. Gutowski, R. D. Rogers and D. A. Dixon, J. Phys. Chem. B, 2007, 111, 4788–4800.
- 10 E. A. Miroshnichenko, T. S. Kon'kova and Y. N. Matyushin, Dokl. Phys. Chem., 2003, 392, 253–255.
- 11 A. Furka, *Struct. Chem.*, 2009, 20, 605-616.
- 12 W. N. Hubbard, F. R. Frow and G. Waddington, J. Phys. Chem., 1961, 65, 1326–1328.
- 13 P. Jiménez, M. V. Roux and C. Turrión, *J. Chem. Thermodyn.*, 1989, 21, 759–764.
- 14 J. P. Merrick, D. Moran and L. Radom, J. Phys. Chem. A, 2007, 111, 11683–11700.
- 15 M. B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A. K. Sikder, B. R. Gandhe and A. S. Rao, J. Hazard. Mater., 2009, 161, 589–607.
- 16 J. Zhang and H. Xiao, J. Chem. Phys., 2002, 116, 10674–10683.
- 17 J. S. Murray, P. Lane and P. Politzer, Mol. Phys., 1998, 93, 187–194.
- 18 J. S. Murray, P. Lane and P. Politzer, Mol. Phys., 1995, 85, 1–8.