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A formation model of O2c
� produced in TiO2 photocatalysis was established, and then a custom built

continuous flow chemiluminescence (CFCL) system was used to confirm the model's reliability by

monitoring the O2c
� formation process. This model may give deeper insights into O2c

� formation for

TiO2 and other photocatalysts.
In photocatalytic reactions, such as TiO2, it is generally accepted
that O2c

� is produced from the reduction of adsorbed oxygen by
photogenerated electrons on the TiO2 surface.1–5 O2c

� formation
is a rate-limiting process in TiO2 photocatalytic reactions,6 and
thus determines the efficiency of TiO2 photocatalytic reactions
by promoting the separation of photogenerated electrons and
holes. Moreover, O2c

� is an intriguing active species, attracting
a great deal of attention in recent years due to its unique role.
Previous studies have conrmed that O2c

� plays an essential
role in the photodegradation of pollutants.7,8 Therefore,
probing the dynamic formation of O2c

� over the course of time
under UV irradiation is conducive to better understanding TiO2

photocatalytic reactions. We have successfully identied
surface long-lived O2c

� photogenerated on TiO2 surface,9

however, the dynamic details of O2c
� formation in TiO2 pho-

tocatalytic reactions still remain to be solved.
In photocatalytic reactions, O2c

� is continuously undergoing
the processes of formation and deactivation simultaneously.
Many methods have been developed to determine the O2c

�,
including electron spin resonance (ESR),10 spectrophotometric
assays,11–13 and uorescence assays,14,15 but the O2c

� could only
be detected at discrete times, and thus the total quantity could
only be given within the irradiation duration. Given these
limitations, O2c

� dynamic monitoring is a great challenge.
Chemiluminescence (CL) is inherently sensitive and rapid due
to the relative ease with which light emission is instantly
generated through a chemical reaction when two or more
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reactants are mixed. These qualities of CL make it suitable for
the dynamic study of O2c

�, despite its characteristic instability.
In a previous study, we were able to successfully develop
a continuous ow chemiluminescence (CFCL) method for
dynamic monitoring of the formation process of O2c

� in TiO2

photocatalytic reactions.16

For the formation mechanism of O2c
� in TiO2 photocatalytic

reactions, it is generally accepted that O2c
� formation occurs on

TiO2 surfaces by the following scheme:

O2 þ S )*
k1

k�1
O2;s !

kf
O2;s

�� !kd O2;H2O2

where O2 denotes the dissolved oxygen (DO) in solution, S
denotes the oxygen adsorption site on TiO2 surface, k1 and k�1

denote the adsorption/desorption rate constant of O2 respec-
tively, O2,s denotes the adsorbed oxygen on TiO2 surface, kf
denotes the formation rate constant of O2c

�, O2,sc
� denotes the

O2c
� formed on TiO2 surface, and kd denotes the rate constant

of O2c
� decomposition. It was reported that DO was rst

adsorbed on the site of TiO2 surface following the Langmuir
isotherm,6 and then the adsorbed O2 was reduced to O2c

� by
photogenerated electrons under UV irradiation. Meanwhile, the
formed O2c

� was transformed into other species by side reac-
tions, such as H2O2 or 1O2 which deactivated to O2 quickly.
Specically, it is suggested by some research that O2c

� could be
produced from the oxidation of H2O2 by valence-band hole (h+)
or hydroxyl radical ($OH) in solution, where H2O2 is produced
by the two-step oxidation of water or the two-electron reduction
of O2.17 It is insignicant in this study because the O2c

� detected
by CFCL method is the long-lived superoxide adsorbed on TiO2

surface which is produced from the reduction of O2 by photo-
generated electrons, not in solution according to our previous
study.9 The process of O2c

� formation was illustrated concretely
as follows: when TiO2 semiconductor is irradiated, the photo-
generated electrons transferring to the TiO2 surface are
captured by ve-coordinated surface Ti4+ to form the Ti3+ (eqn
RSC Adv., 2019, 9, 29429–29432 | 29429
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(1)). Then the O2 adsorbed on TiO2 surface react with Ti3+ to
form O2c

� (eqn (2)).1,2,18

–Ti4+–OH + e / –Ti3+ + OH� (1)

–Ti3+ + O2,s / –Ti4+/OOc� (2)

O2c
� + h+/$OH / 1O2 (3)

O2c
� + e + H+ / H2O2 (4)

O2c
� + O2c

� + H+ / H2O2 + O2 (5)

Meanwhile, O2c
� formed also undergoes a decaying process

possibly via the following three pathways (eqn (3)–(5)): (1)
oxidation by h+ or $OH, (2) further reduction by e, or (3) self-
disproportionation in solution. Therefore, the number of O2c

�

determined in photocatalytic reactions at any irradiation time
(t) is what the total quantity of formed O2c

� subtract those
decomposed via the aforementioned side reactions from t0 s to
t s upon irradiation. The formula can be expressed as follows:

�
O2

���
t
¼

ðt
t0

d
�
O2

���
f

.
dt�

ðt
t0

d
�
O2

���
d

�
dt (6)

In this equation, the t0 and t of the lower and upper limit of the
denite integral represent the starting and ending time of UV
irradiation respectively. Based on the formation process of O2c

�

mentioned above, the net rate of O2c
� formation at any time in

photocatalytic reactions can be obtained as shown in eqn (7.1).
The rst term of the right side of the eqn (7.1) represents the
formation rate of O2c

�, and it is a second-order reaction with
respect to the concentration of –Ti3+([Ti3+]) and adsorbed
oxygen (O2,s). kf is a second-order formation rate constant. The
second term (eqn (7.1)) represents the decay rate of O2c

�, among
which kd is a second-order decay rate constant, [X] represents
the concentration of e, h+, $OH or O2c

� in terms of eqn (3)–(5). It
is generally believed to contain the aforementioned three
pathways. We have previously conrmed that the O2c

� adsorbed
on TiO2 surface is thermodynamically favored.9 Therefore, the
two former pathways (eqn (3) and (4)) dominated the decay
process under UV irradiation. These processes were considered
to be pseudo-rst-order due to the constant of h+, $OH and e
under steady-state irradiation. So k0dðk0d ¼ kd � ½X�Þ is the
pseudo-rst-order apparent rate constant (eqn (7.2)). [O2]s is
equal to oxygen coverage on TiO2 surface (q) by the number of
adsorption sites ([S]) according to Langmuir isotherm (eqn
(7.2)), in which q is related to the DO concentration in solution
([O2]), adsorption constant (k1), desorption constant (k�1), and
formation rate constant of O2c

� (kf) (eqn (7.3)).

d
�
O2

���
dt

¼ kf
�
Ti3þ

�½O2�s � kd½X��O2

��� (7.1)

¼ kf
�
Ti3þ

�
q½S� � k0

d

�
O2

��� (7.2)

¼ kf
�
Ti3þ

�½S� k1½O2�
k1½O2� þ k�1 þ kf

� k0
d

�
O2

��� (7.3)
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It has been reported that the electron transfer from TiO2

to O2 is the rate-limiting step in TiO2 photocatalytic reac-
tion.6,19–21 Upon this, kf is far less than k1[O2] and k�1.
Furthermore, the [O2] in solution is low, and thus k1[O2] is
far less than k�1. If such speculation is true, the eqn (7.3)
can be eventually transformed into the following:

d
�
O2

���
dt

¼ kf
�
Ti3þ

�½S�K1½O2� � k0
d

�
O2

��� (8)

where K1 (K1 ¼ k1/k�1) is the adsorption equilibrium constant of
[O2]. Assuming that [O2c

�] ¼ mCL + n, which is a linear rela-
tionship between O2c

� concentration and CL intensity, the eqn
(8) can then be converted into the following:

d½mCLþ n�
dt

¼ kf
�
Ti3þ

�½S�K1½O2� � k0
d½mCLþ n� (9)

Finally, the eqn (10) representing the formation model of
O2c

�, with respect to time as the independent variable and CL
intensity as the dependent variable, would be obtained by
integrating these variables with the eqn (9) from t0 to t:

CL ¼ kfK1½Ti3þ�½S�½O2�
mk0

d

�
1� e�k

0
d
ðt�t0Þ

�
þ n

m
(10)

In eqn (10), kf, K1, k0d; [S], [O2], m, and n are constants under
certain conditions. The coefficient
ððkfK1½Ti3þ�½S�½O2�=ðmk0dÞÞ þ n=mÞ represents the theoretical
maximum CL intensity (CL0) corresponding to the steady-state
concentration of O2c

� when t is innite in irradiated TiO2

suspensions. Herein t0 is the time when irradiation starts for
50 s, due to the disturbance of background signal within the
rst 50 s of irradiation. According to eqn (10), given that kf, K1,
and kd are determined by the intrinsic property of TiO2 photo-
catalyst regardless of experimental conditions, CL0 is depen-
dent on [Ti3+], [S], [O2] and [X], which are closely related to
experimental conditions. In photocatalytic reactions, [Ti3+]
relies on the number of photogenerated electrons highly
dependent on I; [S] is the total surface area of TiO2 in suspen-
sion, closely related to [TiO2]; [O2] is dependent on [DO] in TiO2

suspensions; [X], the aforementioned concentration of h+, $OH
and e, is also dependent on I.

In order to verify the formation model of O2c
�, we t the

different CL curves with eqn (10) by changing [TiO2], I, and
[DO]. As shown in Fig. 1(a–i), the CL curves from different
[TiO2], I and [DO] were well-t by eqn (10) with high corre-
lation coefficients (R2 > 0.99), indicating that the model
could simulate dynamic process of O2c

� formation.
Furthermore, according to the O2c

� formation model (eqn
(10)), CL intensity is linearly correlated to [S], [Ti3+], and
[O2], indicating that CL intensity could increase linearly
with the increase of [TiO2], I and [DO] within set limits. In
order to verify this assumption, CL intensity at 300 s, 600 s,
900 s, 1200 s and +N under different [TiO2], I and [DO]
conditions in TiO2 suspensions was calculated by eqn (10)
(Table S1†). Then the CL intensity from different [TiO2], I
and [DO] at different time points were linearly t (Fig. S1–
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 CL curves of luminol (50 mM) with photo-irradiated TiO2 suspensions (pH ¼ 11) under different experimental conditions: TiO2 concen-
tration (a–c), irradiation intensity (d–f), DO concentration (g–i). The black lines represent experimentally measured values and the red lines are
the fitted values.
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3†), and the R square values were calculated and summa-
rized in Table 1. For instance, the CL intensity with TiO2

concentration of 0.02 mg mL�1, 0.05 mg mL�1 and 0.1 mg
mL�1 at 300 s, 600 s, 900 s, 1200 s and +N, respectively, had
good linear t with high correlation coefficients (R2 > 0.99),
except at +N (R2 ¼ 0.903), conrming that CL intensity
increased linearly with the increase of [S] as indicated by
eqn (10). There was also a good linear relationship between
CL intensity and I with high correlation coefficients (R2 >
0.9), except at +N (R2 ¼ 0.821), indicating that CL intensity
increased linearly with the increase of [Ti3+]. At different
[DO], the corresponding R2 values were also high (R2 > 0.95),
indicating that CL intensity was also linearly dependent on
[O2]. Overall, the formation model of O2c

� could adequately
describe the dynamic process of O2c

� formation in photo-
irradiated TiO2 suspensions.
Table 1 The calculated value of R square upon different experimental c

Time (s) TiO2 concentration (mg mL�1)

300 0.998
600 0.999
900 0.998
1200 0.994
+N 0.903

This journal is © The Royal Society of Chemistry 2019
In the present work, a formation model of O2c
� in TiO2

photocatalytic reactions was established. According to the
model, the O2c

� formation was closely related with [TiO2],
[DO] and I, under which the dynamic process of O2c

�

formation was successfully simulated by the model with
high correlation coefficients (R2 > 0.9), thereby conrming
the model validity. This model can explicitly provide details
on O2c

� formation which determines the photocatalytic
efficiency in TiO2 photocatalytic reactions, and give deeper
insights into designing high-efficiency TiO2 photocatalysts.
In accordance with this model, Feng et al. reported the self-
doped Ti3+ enhanced TiO2 photocatalyst for hydrogen
production through the reduction of the TiO2 surface using
a one-step combustion method.22 Furthermore, this model
may have signicant implications for other photocatalysts
with respect to O2c

� formation.
onditions at different irradiation time

Irradiation intensity
(mW cm�2)

DO concentration
(mg mL�1)

0.921 0.999
0.946 0.982
0.960 0.971
0.972 0.968
0.821 0.977

RSC Adv., 2019, 9, 29429–29432 | 29431
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