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A three-unit colorimetric sensor array in aim of detecting heavy metal ions has been constructed with two
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Accepted 23rd August 2019 off-the-shelf dyes. Multivariate data analysis is performed using LDA and HCA to recognize colour change
patterns based on both absorption spectra and RGB values from image scans. The sensor array is able to

DO 10.1039/c9ra05983k differentiate 15 metal ions not only in separate solutions, but also mixtures of 3, 5, and 7 different metal
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Pollution of heavy metal ions in water and soil has become
a worldwide environmental concern, due to their great harm to
animal and human health even at low concentrations. Hence, to
identify and distinguish heavy metal ions both qualitatively and
quantitatively has been a field of constant research interest.
Traditional methods for heavy metal ion detection such as
inductively coupled plasma mass spectrometry (ICP-MS) and
atomic absorption spectroscopy (AAS) are, although accurate
and most common, very unpractical for on-site testing. A more
convenient technique is continuously under demand.

Inspired by mammalian olfactory and gustatory systems,
array-based sensing platforms, which use a series of cross-
reactive sensors instead of specific probes, have emerged as
promising alternatives due to their simple fabrication, flexi-
bility, convenient data collection and analysis. Sensor arrays
have been reported to distinguish combinations of many ana-
lytes and mixtures,"* including physical stimuli (temperature,
humidity, light), volatile organic compounds, explosives, toxic
industrial chemicals, metal ions, flavonoids, biomolecules
(biothiols, phosphates), pesticides, proteins, pathogens (virus,
bacteria, fungi), cells, food and beverages (liquors, teas, milks,
red wines, coffees, whiskies), herbal medicines, and disease
biomarkers.*”

For metal ions discrimination and quantification, there are
different analytical methods to construct response patterns,
including electrochemical methods,® steady-state and time-
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resolved fluorescence spectroscopy,”™* UV-visible absorption
spectroscopy,”*® and digital imaging and colour calibra-
tion.”* Although most reported work successfully distin-
guished samples of single metal ions or mixtures of up to 3
metal ions, applicable methods for analysis of mixtures con-
sisting of more than 3 metal ions as well as real water samples
are still of great challenge.

Herein, we developed a simple and cost-effective three-unit
colorimetric sensor array (Scheme 1) using dithizone in two
solvent conditions and resazurin (structures shown in Fig. 1), to
distinguish 15 different metal ions, their mixtures, as well as
real water samples. Pattern recognition based on data from
absorption spectra as well as scanned-images was realized using
linear discriminant analysis (LDA) and hierarchical clustering
analysis (HCA).

Dithizone was reported to show different colour responses
towards diverse metal ions, including Co*", Ni**, Cu®*, zn*",
Mn*" Ag®, Cd**, and Hg>*.>>** Yet its application as a practical
sensing molecule for metal ions is limited by its poor solubility
in aqueous solution. CTAB was found to improve dithizone's
sensitivity for metal ions detection by favouring dissolution and
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Scheme 1 Schematic illustration of colorimetric
detection of metal ions.
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Fig. 1 Structures of the two off-the-shelf dyes used in our sensor
array.

interaction of dithizone with metal ions.>*** Moreover, the pH
value of the solution was also reported to influence the property
of dithizone, which causes distinct absorption spectral change
and colour alteration.?” Thus, we introduced NaOH to the
second unit to generate multidimensional information. These
different solvent conditions were screened with varying
amounts of the surfactant CTAB and NaOH in HEPES for the
optimization of dithizone sensing. Based on the results of
preliminary experiments (Fig. S17), dithizone/CTAB (unit 1: 30
uM of dithizone and 90 uM of CTAB in HEPES buffer) and
dithizone/CTAB/NaOH (unit 2: 30 uM of dithizone, 10 mM of
CTAB, and 6 mM of NaOH in HEPES buffer) were used as two
sensor units in the array. Resazurin was reported capable of
discriminating different metal ions based on its voltammetric
behaviour.”® Thus we also included it in our sensor array as unit
3 (unit 3: 24.5 uM of resazurin in water).

To test the proof-of-concept of the proposed three-unit
sensor array, 15 metal ions (Pb*", Ag*, Cr**, Cd*", Fe**, As(m),
Zn**, Ni**, cu®*, Mn*", Ba>", AI**, Co**, Sn>*, Hg>", each at 5
uM), were selected as analytes. In our study, data were acquired
by two different methods, using microplate reader to generate
absorption spectral measurement, as well as using flatbed
scanner to obtain RGB values in images. Compared to common
colorimetric methods which require complex instrumentation,
the latter method above demonstrated its convenience by its
simple operation, straightforward visualization effect, and good
sensitivity. Firstly, the real digital images of the three-unit
sensor array upon adding single metal ions at the concentra-
tion of 5 uM were recorded by a commercially available and
cheap flatbed scanner (Fig. 2A). For each well on the plate, the
red, green, and blue (RGB) values from the centre were extracted
using our program written in Python (version 3.7.3). The
changes of RGB values with and without metal ions, AR, AG,
and AB, were used to generate the false-colour images (Fig. 2B)
and the corresponding heat map (Fig. 2C). Obvious colour
change can be seen in the presence of Ni**, As(m), Hg”*, Co™",
Cu**, zn**, Fe**, Cr*", while only subtle changes take place in
the presence of Sn**, AI**, Cd**, Ba®". These different responses
presumably result from the different interactions between the
sensor units and metal ions.

LDA was then applied to further digitize and visualize the
colour change patterns. LDA is a statistical analysis method that
can visually differentiate two or more kinds of objects or events
based on their linear combination of features, selected so as to
maximize the ratio of inter-class variance to intra-class variance.
All metal ions at the concentration of 5 uM were tested using
four replicate measurements to provide a training matrix of
sixteen samples (fifteen metal ions + one control) x three
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Fig. 2 Performance of sensor array to 15 metal ions single solutions
based on colour image change pattern (A) colour image of sensor
array recorded by flatbed scanner upon addition of metal ions. (B)
Colour difference map of the sensor array. For purposes of visualiza-
tion, the colour range of the difference map was expanded from 4 to 8
bits per colour (RGB range of 0-58 expanded to 0—-255). (C) Heatmap
derived from the difference map. (D) LDA 2D plot and (E) HCA
dendrogram derived from the colour response pattern of sensor array.
Concentration of all used metal ions is 5 uM.

sensors x three colour channels x four replicates. The result-
ing training data were analysed and processed through LDA
using Sci-kit learn package (version 0.21.2) in Python and
transformed into nine canonical scores, which account for
58.23%, 21.32%, 15.40%, 3.53%, 0.82%, 0.38%, 0.16%, 0.10%,
0.04% of variations, respectively. The first two factors accounted
for 79.55% of the total variance and were used to construct the
two-dimensional (2-D) discrimination plot (Fig. 2D). All the
metal ions can be separately grouped with clarity, despite the
relatively close between clusters of AI’*, Sn**, Fe** and the high
proximity between clusters of Pb>* and Ba®>" (as shown in the
magnified inset of Fig. 2D).

HCA is a common method to build a hierarchy of clusters
according to their similarity characterized by the Euclidean
distance. Unlike LDA, in which only a few most significant
factors are used to do the visualization (in this case, the first

This journal is © The Royal Society of Chemistry 2019
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three factors accounted for the 91.12% variance of the total),
HCA takes all the features into consideration when computing
the Euclidean distance among samples. As shown in Fig. 2E,
HCA resulted in clear discrimination of 15 metal ions and the
control with no misclassification, confirming that the proposed
sensor array has strong discrimination ability of these 15 metal
ions.

Then “leave-one-out” cross-validation was used to evaluate
the prediction ability of the LDA classifier. The training set was
prepared by removing each sample one at a time, and the LDA
model was built on the “leave-one-out” training set. Then the
removed sample was reclassified using the LDA model.
According to the classification result, the percentage of correct
classification by the LDA model would be calculated. In this
study, leave-one-out cross-validation for the LDA classification
mode showed 100% accuracy for prediction of 15 metal ions at
the concentration of 5 uM.

As a comparison, UV-vis absorption spectra of the array upon
adding these metal ions at the same concentrations were
measured using a microplate reader and the response patterns
were analysed as well. The patterns of the absorbance change
were obtained as (4, — A)/A, in which A, and A are the absor-
bance without and with metal ions, respectively, in the
following equation in specific wavelength range for each sensor
unit. As shown in Fig. S2,f three units responded differently to
addition of different metal ions. In order to maximize the
spectral information as well as minimize the influence of noise,
61 wavelengths (350-650 nm, every 5 nm) of the first unit, and
55 wavelengths (350-620 nm, every 5 nm) of the other two units
were selected for further analysis respectively. Similarly, LDA,
“leave-one-out” cross validation, and HCA were applied to
characterize the absorbance change patterns. All samples were
completely separated into different clusters (Fig. S37), including
the clusters of Pb>" and Ba”", which were in high proximity in
the RGB data analysis. The improved classification performance
presumably arose from the higher sensitivity of the microplate
reader than that of ordinary flatbed scanner. The image analysis
makes a practical alternative to the absorption analysis, with
100% accuracy in both “leave-one-out” cross-validation and
HCA in our study. To the best of our knowledge, this three-unit
sensor array is by far the simplest one, which is able to
discriminate 15 metal ions at such a low concentration. In
addition, to evaluate the robustness of our proposed array,
double-blind test was carried out to identify 30 unknown metal
ion samples. The results (Table S11) showed that identification
accuracy of 93.33% was achieved, which confirms the feasibility
of this sensor array to identify unknown metal ions.

Further exploration of the potential application of this array
in quantitative analysis was carried out using both image
analysis and absorption analysis. Among these fifteen metal
ions, Ni**, Cu®", Hg”" (Fig. 3) and Co>" (Fig. S41) showed good
correlations in LDA 2-D figures. As shown in Fig. 3(A, C and E)
for Ni**, Cu®>" and Hg**, the 2-D plots using the first two factors
displayed clear separations for different concentrations. Plot-
ting factor 1 (the most significant factor) vs. concentrations of
these three metal ions showed a good correlation, with the
linear detection ranges for Ni**, Cu** and Hg>" at 0-4 uM, 0-8
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Fig. 3 Discrimination of Ni?*, Cu®* and Hg?" at different concentra-
tions. (A, C and E) LDA plots for the detection of metal ions at different
concentrations. (B, D and F) The relationship between factor 1 and
different concentrations of metal ions.

uM and 0.5-3 pM, respectively. The results highly suggest that
our proposed sensor array might find its potential application
in quantitative analysis of some metal ions. Similar results from
absorption spectral data analysis were also obtained with
higher sensitivity (Fig. S51).

Distinguishing mixture samples with different composition
of metal ions is a great challenge for sensor arrays. Inspired by
the strategy of mixture preparation in Bushdid et al. work.> We
prepared 15 pairs of mixtures (referred to as “mixture A” and
“mixture B”) that consist of 3, 5 and 7 components drawn from
the collection of 15 metal ions (Fig. S6 and Table S2t). To
generate each mixture, we combined these components
together at equal ratios. The most apparent difference between
two pairs of mixtures with the same number of components is
the percentage of components they share which varied from 0 to
(N — 1/N) (N represents the number of components of the
mixture pair). The components in each mixture were randomly
selected by a written python program, and the concentration of
each component in all mixtures was fixed at 5 pM. Fig. S7{ and
4(A, C and E) shows that different pairs displayed distinct colour
change patterns, which arose from the different components of
the mixtures. LDA 2-D plots demonstrated that all pairs of

RSC Aadv., 2019, 9, 27583-27587 | 27585
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Fig.4 Colour change profile of mixture A (left) and mixture B (right) of
15 different metal ions mixture pairs including (A) 3 metal ions, (C) 5
metal ions and (E) 7 metal ions. For purposes of visualization, the
colour range of the difference map was expanded from 4 to 8 bits per
colour (RGB range of 0-77 expanded to 0-255). LDA plot of sensor
array against metal ions mixture pairs consists of exactly (B) 3
components, (D) 5 components and (F) 7 components using RGB
channels.

mixtures with the same number of components were completely
separated (Fig. 4B, E and F). The “leave-one-out” cross-
validation reached 100% accuracy and all the samples were
clustered correctly in HCA (Fig. S8t). The discrimination capa-
bility of image analysis was comparable to that of absorption
spectral data analysis (Fig. S91). These results exhibited the
potential of the proposed array as an advanced sensor array
which can provide discrimination of highly similar complex
mixtures.

Detection of metal ions in real environmental water source
are of greater practical significance than lab-prepared samples.

To explore the capacity of our array in practical application,
real water samples were tested in our study. 7 real water samples
including super pure water (SPW), deionized water (DW), tap
water (TW), lake water (LW), artificial lake water (ALW), river
water (RW) and sea water (SW) were collected and directly tested
without intentionally adding any metal ions. LDA 2-D plot
demonstrated that all samples were correctly clustered and
completely separated (Fig. 5A), while HCA showed clear
discrimination of all real water samples with no misclassification
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Fig. 5 Performance of the sensor array on distinguishing real water
samples. (A) 2D LDA plot and (B) HCA dendrogram using RGB change
values.

(Fig. 5B), which was in accordance with the results of absorption
spectral data analysis (Fig. S10t). The successful differentiation
of real water samples revealed the potential for on-site analysis.

In conclusion, we fabricated a new three-unit colorimetric
sensor array using two commercially available low-cost dyes for
detection of heavy metal ions in aqueous solution. In addition
to commonly used absorption spectral measurements, colori-
metric change patterns were also successfully constructed by
imaging analysis of RGB values. LDA and HCA results proved
that this array could achieve 100% accuracy in discriminating
15 metal ions solutions at 5 uM. Quantitative analysis of several
ions was achieved at sub-micromolar range. Mixtures of 3, 5 and
7 metal ions as well as 7 real water samples without additional
spiked metal ions were also accurately differentiated by imaging
analysis, suggesting that this array has potential for on-site
metal ions detection.
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