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Various mechanisms of different designs have emerged for the purpose of microparticle separation and cell
sorting. The main goals behind such designs are to create high throughput and high purity sample isolation.
In this study, high efficiency, high throughput and precise separation of microparticles under inertial lift and
drag forces induced by trapezoidal curvilinear channels are reported. This work is the first to focus and

recover 2 from 5 pm and 2 from 10 um particles in spiral channels in a sheath-less flow device, which
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reduces the overall complexity of the system and allows for higher throughput. The new microfluidic

chip design is fabricated in glass using femtosecond laser ablation. In addition, mathematical force
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Introduction

Size-based microparticle separation has drawn a lot of interest
due to its applications in biomedical and biological
research.'® Conventional separation techniques such as
centrifugation, filtration, and sedimentation are associated
with wearing and clogging, which affect their efficiency and
reliability.” Processing biological samples through micro-
fluidic devices like focusing,® on-chip labelling,® separa-
tion,'™"" mixing'*® and diagnostics'® is an area of high
relevance to the life science community. Several methods have
been developed to address this matter, which can be classified
as active or passive." The active methods rely on external
forces to manipulate the microparticle's position, such as
dielectrophoretic (DEP)** and magnetic forces.'® On the
contrary, passive methods do not require any kind of external
forces and separate microparticles based on physical proper-
ties such as channel geometry, particle size, and the charac-
teristics of the fluid medium. Pinched flow fractionation,”
deterministic lateral displacement'® and inertial migration®
are well-known passive techniques, they depend on inertial
forces inside the fluid that can typically be neglected in
microfluidics when operating at low Reynolds numbers in the
Stokes regime. In straight microfluidic channels,
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calculations were conducted during the design phase of the microfluidic channels and compared with
experiments. The results show a close prediction of the equilibrium position of the tested microparticles.

microparticles are driven away from the walls due to the
asymmetric wake that forms when a particle is close to the
wall,*® while the parabolic velocity profile in the Poiseuille flow
induces an opposing shear gradient lift force by which the
particles migrate towards the channel walls. To achieve high
purity microparticle separation, the minimum number of
force equilibrium positions for each particle size has to be
obtained. In square microchannels (2/w = 1), four streamlines
of particles form close to the channel's center where the wall
and shear gradient lift forces are balanced, whereas in rect-
angular channels with (h/w < 1), two symmetric focusing
positions result around the channel's center. Complex
secondary flows are induced by using curved channel
arrangements as in spiral microfluidics,* or by forcing the
fluid to follow a curved path as in contraction-expansion arrays
(CEAs).”” In either method, two counter-rotating vortices
(Dean vortices) develop at the upper and lower halves of the
channel's cross-section due to the shift of the maximum
velocity point towards the outer wall,>® which enhances
particle focusing and adds an additional force that induces
particle migration in a lateral direction across the channel's
width.>* Spiral microchannels consist of a multi-turn loop; the
side walls of the channels are referred to as the inner and outer
walls, depending on which is closer to the spiral center. Given
certain channel dimensions, larger particles experience higher
lift forces and, therefore, have the tendency to migrate towards
the inner wall. Moreover, drag forces are dominant on smaller
particles, which re-circulate them to eventually settle in their
equilibrium position* where its location depends on the
Reynolds number and the ratio of inertial lift forces to Dean
drag force.>® Microparticle separation requires particles to
focus in different positions to be selectively isolated through
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separate outlets; however, in a Dean flow fractionation device
with a rectangular cross-section, the distance between the
particles' focusing position is minimal because the centers of
the Dean vortices are located at the center of the channel's
cross-section. Therefore, spiral channels with trapezoidal
cross-sections®”*® are used to shift the centers of vortices
towards the deepest wall, creating a wider distance between
focused particles of different sizes. Recently, multiple inertial
mechanisms besides spiral microfluidics have been developed
to separate smaller microparticles. Wang et al.?* demonstrated
an asymmetric serpentine microfluidic channel of 20 pm x 10
pm (width x height) to focus 2 pm particles and 10 pm x 5 pm
for 0.92 um. Since the channels are small, a high-pressure
syringe pump was needed to allow for high flow rates up to
1400 pL min~' to increase the channel's throughput. Also,
Cruz et al* presented a method to focus 0.5 and 0.7 um
particles and separate 1 and 2 um particles with two curves
connected with a small turn; the channel was 20 um in width
and 10 um in depth to match Fp and Fy, within the range of
available flow rates provided by the pump. Cruz et al.*° turned
to a high-performance liquid chromatography (HPLC) pump
to achieve high pressure values, which is uncommon to the
microfluidics community.

Several attempts have been made to focus and separate 2 um
in spiral channels, however, most designs used a sheath fluid
and worked at low flow rates due to the high pressure induced
in the small channel geometry as reported by Bhagat et al. and
Lee et al.*>** In a previous work,* 2 um particles were focused by
implementing microchambers along the last turn of a spiral
channel; that design produced thin focusing streams but could
not separate microparticles since all sizes focused near the
inner wall. In this paper, we study the trapezoidal microfluidic
channel's ability to separate small microparticles down to 2 pm
in high throughput without utilizing a high-pressure pump and
without adding a sheath fluid that complicates the testing setup
and might limit its use in low setup areas, achieving a separa-
tion between 2 and 5 pum, and 2 and 10 pm fluorescent
microparticles.

Implementing a sheath-less inertial focusing device
reduces the setup complexity and most importantly, the
number of expensive syringe pumps,** because a pump would
be needed for every buffer inlet. The total flow rate (sample
flow rate + the buffer solution flow rate) that is often used to
describe the focusing flow rate, can be higher than its sheath-
less counterpart; however, unlike sheath-less focusing, the
output fluid of a sheath-based device often has similar or lower
concentration in comparison with the sample fluid, due to the
addition of a buffer solution that dilutes the sample inside the
focusing channels. Therefore, sheath-based focusing would
not be the best choice for use in a particle concentration
device.

Materials and methods
Microfluidic chip design and fabrication

Trapezoidal microfluidic chips with different dimensions were
fabricated and tested for the purpose of high-efficiency

This journal is © The Royal Society of Chemistry 2019

View Article Online

RSC Advances

separation. The microchannels consisted of an 8-turn spiral
with radius increasing from 4.9 to 11.9 mm and an asymmetric
branch at the end of the last turn to isolate the inner and outer
wall fluids. The width of the channel cross-section was 220 pm
and the heights were optimized after a few iterations to be 60
and 40 um at the outer and inner wall, respectively.

Mechanism of operation

Microparticles experience inertial forces when flowing inside
a microfluidic channel, which affect their lateral and axial
positions. In a straight channel, only the wall-induced lift force
(Fuw) and shear-gradient lift force (Fis) are large enough to
induce particle migration. The resultant of these forces is often
referred to as the inertial lift force and can be represented as
follows:*

_2p Uita*

F
L Ds

(1)
where a. is the particle diameter, Uy is the average fluid velocity,
p is the fluid density and Dy, is the channel's hydraulic diameter.
Particle size is the dominant factor; therefore, aiming to focus
on small particles is a challenge when counting only on inertial
forces. On the contrary, the Dean drag force resulting from
a high pressure gradient generated by the sharp velocity
profile***” would be larger than the inertial force when calcu-
lated for smaller particles. The strength of the Dean vortices can
be represented by the dimensionless Dean number D. as

follows:>338
D
D. = Rey/ 2—1: (2)

where R is the radius of curvature and Re is the Reynolds
number. The velocity that the particles experience during lateral
migration is called the Dean velocity and can be calculated as
Upean = 1.8 x 10* D13, The resulting Dean force exerted on
particles passing in a curved channel can be calculated using
Stokes' Law:

Fp = 37‘5,“ UDeanac (3)

where u is the dynamic viscosity of the fluid. The Dean drag
force drives the particles in a direction opposite to the inertial
lift forces and since it is less sensitive (linear dependence) to
particle diameter, smaller particles are more affected and would
be focused near the center of the Dean vortices (outer wall).
Fig. 1(A) shows the used trapezoidal microfluidic chip with one
inlet and two outlets, while Fig. 1(B) illustrates the direction of
inertial and drag forces acting on particles inside the rectan-
gular and trapezoidal microchannels as well as the skewed
velocity profile due to the channel's curvature. The ratio of
inertial lift and drag forces R¢ = Fy /Fp. can be calculated with the
help of eqn (1) and (3). Small values of R¢ indicate the domi-
nance of the Dean drag forces over inertial forces and particles
would more likely be focused near the outer wall. On the other
hand, as R; increases, inertial forces become more dominant
and particles would be focused closer to the inner wall.

RSC Adv, 2019, 9, 41970-41976 | 41971
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Fig. 1 Trapezoidal microfluidic chip representation. (A) Fabricated
spiral microfluidic chip with one inlet and two outlets, the micro-
channels are filled with red dye for better contrast. (B) Illustration of the
spiral channel principle of operation showing a comparison between
Dean vortices in rectangular and trapezoidal channel cross-sections.

Chip fabrication

A laser workstation (microSTRUCT-C, 3D-Micromac, Chemnitz,
Germany) equipped with a Yb:KGW solid-state femtosecond
laser (Pharos, Light Conversion, Vilnius, Lithuania) was used to
engrave the microchannels on a glass wafer. The machine's
software offered two options for importing the drawings one
method was to convert DXF files created on AutoCAD (AutoCAD
2018, Autodesk, San Rafael, CA, USA) into a machine-readable
graphics file with certain filling strategies that define the lines
through which the laser will pass when ablation is initiated.
This method is versatile and simple but it produces large files
leading to long ablation times. An alternative method is given
by writing a Visual Basic for Applications (VBA) script that draws
the required laser path (see Fig. 2(B)), where tighter lines
produce a larger depth. Both methods were used to fabricate the
spiral chip; the VBA script, described in previous work,** to draw
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Fig. 2 The fabricated trapezoidal channel investigated by 3D
microscopy. (A) Three-dimensional reconstruction of the trapezoidal
microchannel showing the inner and outer walls. (B) Top view of the
branch at the end of the spiral shape where the red lines indicate the
paths generated by the VB script to produce trapezoidal channels. (C)
Channel cross-section profile as referenced in (B), showing the depth
at each wall.
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Fig. 3 Fluorescent green light intensity line profile (across the outlet
channel) for 5 um particles with 0.0125% (w/v) and 0.0025% (w/v)
suspension concentration at 0.7 mL min~t. Higher concentration
values may increase the number of equilibrium positions.

the spiral shape with multi-pitch strategy, and the filling
strategy for the branch and holes. After laser ablation, the
engraved glass wafer (BOROFLOAT®, Schott AG, Mainz, Ger-
many) was dipped in glass etching solution (phosphoric acid,
hydrofluoric acid and water, 20 : 6 : 9)*** for 90 s then rinsed
with DI water to smoothen the ablated surface and remove any
residual glass particles resulting from the engraving process. A
wafer-cleaning machine (Fairchild Convac, Neuenstadt, Ger-
many) was used to clean the wafer before it was bonded to
a blank wafer by placing it in a muffle furnace at 620 °C for 6
hours. During the laser process development, a 3D microscope
(Keyence VHX 5000, Japan-imported through Keyence Germany)
was used to evaluate the ablated surface's shape as shown in
Fig. 2(A), and to accurately measure the dimensions to finally
produce a 220, 60 pm x 40 pm (w, hy X h,) trapezoidal channel
(see Fig. 2(C)).

Particle solution preparation

Fluorescent polystyrene microparticles of 2 pm and 10 um (exc./
emm.: 468/508 nm, 1% solids concentration, Fluoro-Max,
Thermo Fisher Scientific, Massachusetts, USA) and 5 pm (exc./
emm.: 502/518 nm, 2.5% solids concentration, microParticles
GmbH, Berlin, Germany) were used in this work. For the 2 pm
and 10 pm particles, 50 pL of particles solution were diluted in
10 mL DI water resulting in a 0.005% (w/v) suspension, while 10
uL of particles solution were diluted in 10 mL DI water for 5 pm
particles, resulting in a 0.0025% (w/v) suspension concentra-
tion, which will be further discussed in a subsequent section.

Results and discussion

A set of experiments was designed to test the fabricated
microfluidic chip with 2, 5, 10 pm fluorescent microparticles.
The particle solution was filled in a glass syringe (SETonic
GmbH, Ilmenau, Germany) and loaded into the syringe pump
(NEMESYS low pressure module 14:1, Cetoni GmbH,

This journal is © The Royal Society of Chemistry 2019
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Table 1 Dean and lift forces calculations for different flow rates and particle sizes

Particle diameter (um) Flow rate (mL min ") Dean number D, Fy, (pN) Fp (pN) R¢

2 0.1 1.1094 0.11102 4.0265 0.0276
0.5 5.5469 2.7755 55.494 0.0500
1 11.0939 11.102 171.76 0.0646

5 0.1 1.1094 4.3367 10.066 0.4308
0.5 5.5469 108.42 138.74 0.7815
1 11.0939 433.67 429.40 1.0099

10 0.1 1.1094 69.388 20.132 3.4466
0.5 5.5469 1734.7 277.47 6.2518
1 11.0939 6938.8 858.81 8.0795

Korbussen, Germany). Live monitoring of the experiments was
performed with a microscope 0065 camera (XC30) fixed on an
inverted microscope (CKX53, both Olympus, Shinjuku, Tokyo,
Japan) with blue light excitation (460-495 nm) from a mercury
short-arc lamp (USH-103D, Ushio, Marunouchi, Chiyoda-ku,
Tokyo) for particle fluorescence imaging. Force calculations
on various chip designs were conducted during the design
phase. The ratio Ry of inertial lift to drag forces has to be Ry < 1
for the particles to focus near the outer wall, indicating the
dominance of the drag forces. On the contrary, larger values of
Ry >> 1 indicate the dominance of inertial forces. Table 1 shows
detailed force calculations for 2, 5 and 10 um particles for the
final design at various flow rates. The lift forces exceeded the
Dean forces for the 10 um particles, which were, therefore, ex-
pected to focus near the inner wall. The Dean forces were
greater than the lift forces for 2 pm particles, which were ex-
pected to focus near the outer wall. The magnitude of forces is

o ———

10 um

~

o ————— ———

also of great importance because even if the ratio between
forces is significantly smaller or larger than 1, particles will not
focus in a thin line unless the channel can provide enough force
to migrate them. In the case of the 5 um particles, it can be seen
in Table 1 that the ratio R is very close to unity; this indicates
that particles will experience two equilibrium positions on both
ends of the channel, which will be further discussed in
a subsequent section.

The effect of particle concentration

When designing a microfluidic chip for microparticle/cell
separation, one of the aims is to maximize throughput, which
directly relates to the suspension concentration. Some interac-
tions and forces are typically neglected in mathematical models
for particle focusing such as particle—particle interaction, which
is often avoided in experiments by choosing a low particle
fraction.** Higher particle concentration affects the focusing
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Fig.4 The 2, 5and 10 um fluorescent microparticle trajectories at flow rates from 0.1-1.0 mL min~%. The dashed lines represent the channel's

outline.
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Table 2 A review of focusing/separation of 2 um particles from the literature in spiral microchannels

Group Turns Channel geometry Mechanism Width/height(um) Particle sizes (um) Total flow rate

Bhagat et al. 2008*' 5 Rectangular Spiral, sheath flow 100/50 7.32,1.9 20 pL min~ ' 1: 1
sample to sheath ratio

Lee et al. 2019°> 1.5 Rectangular Spiral, sheath flow 50/20 0.81, 2.29, 4.7 78 uLmin"*1:5
sample to sheath ratio

Al-Halhouli et al. 2019** 8 Rectangular Spiral, sheath-less, 200/50 2,5,10 350 uL min "

microchambers focusing only
Current work 8 Trapezoidal Spiral, sheath-less  220/60, 40 2,5,10 600 puL min~" (2, 5 um),

efficiency and, in some cases, results in multiple focusing
positions for the same particle size.** Fig. 3 shows two fluores-
cence intensity plots for the 5 um particle trajectory at 0.7
mL min~ . Once the flow rate has stabilized in the channel and
reached a steady-state, another secondary focusing position
appears at the outer wall, which limits the chip’s operation.

However, reducing the particle suspension concentration
from 0.0125% to 0.0025% (w/v) was able to solve this problem
within the tested range of operation. A critical flow rate at which
the equilibrium positions of particles split into two (0.7
mL min~" in the case of 0.0125% (w/v)) might just shift to
higher flow rate values. It is noticeable in Fig. 3 that the
concentration reduction also shifted the equilibrium position
towards the inner wall. Normally, a small concentration varia-
tion does not notably affect the particle equilibrium position;
however, in this case, the particles were not fully stable in the
first place because the lift and Dean forces were almost identical
at the tested flow rates. Flow rates below 0.7 mL min ' returned
one equilibrium position even for 0.0125% (w/v) concentration,
but when the 2 pm particles were added to test the separation,
a second equilibrium position started to emerge at lower flow
rates.

Microparticle separation

Before injecting the chip with the particle solution, the chip was
primed with DI water for a few minutes to remove air bubbles
and any residual particles. Solutions with 2, 5 and 10 pm
particles were pumped individually at flow rates varying from
0.1-1 mL min ™.

The 2 um particles were recovered from the outer wall at all
tested flow rates, while the 5 pm (0.0025% (w/v) suspension)
particles were focused near the inner wall at flow rates 0.5-1.0
mL min~". The 10 um particles also focused on the inner wall
for flow rates 1.0-1.5 mL min~*. Below 0.3 mL min ", the
focusing position was not stable for all tested particles due to
the low magnitude of inertial forces. The experiments as shown
in Fig. 4 agree with the calculations as summarized in Table 2,
thereby confirming that the 2 um particles experienced higher
Dean forces at all flow rates and consequently focused at the
outer wall, whereas the 5 pm (after suspension concentration
optimization) and 10 um particles experienced higher lift forces
and focused at the inner wall. To verify the separation capa-
bility, mixtures of 2, 5 pm and 2, 10 um particles were prepared

41974 | RSC Adv, 2019, 9, 41970-41976

1000 pL min~* (2, 10 um)

at the same concentrations tested before with monodisperse
suspension (as shown in Fig. 4). The acquired results confirmed
that mixed particle populations allow the successful separation
of 2, 5 and 10 pm particles at different flow rates. As shown in
Fig. 5, the 2 pm and 5 um particles were separated and recov-
ered at 0.6 mL min~", while the 2 um and 10 pm particles were
separated and recovered at 1.0 mL min~'. Furthermore, it is
noticeable that the gap between focusing the streams of 81 um
for the 2 and 5 pm particle separation and 72 pm for the 2 and
10 um particle separation is large enough to provide high purity
separation. These results show the versatility of the fabricated
chip to separate three particle sizes and possibly more if tested
for 15 or 20 pm particles.

Table 2 shows a comparison between earlier designs that
could focus or separate 2 um particles in spiral channels, with
the results obtained in this work. Unlike the current results, it is
evident that all previous designs reported in the literature
separated particles at relatively low flow rates. Since smaller
particles require higher lift force values, smaller channel
dimensions are required to achieve focusing; however, the size
reduction comes at a great cost of high pressure values, even at
low flow rates. Therefore, in addition to the complex setup
needed for sheath-based focusing, expensive syringe pumps
with high linear force are required. Furthermore, particle
separation in a sheath-less device is harder because the oper-
ator only has control over the sample flow rate and there is no
way to actively change the particle position by varying another
input parameter, but once the device is well optimized, it
becomes easier to repeat and use.

Fig.5 The separation of 2 um particles from 10 um (a) at the flow rate
of 1.0 mL min~?, and 2 um particles from 5 um (b) at the flow rate of 0.6

mL min~%.

This journal is © The Royal Society of Chemistry 2019
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Conclusion

It has been shown that trapezoidal spiral channels are able to
focus particles as small as 2 pm due to a secondary flow without
the implementation of a sheath flow. The fluorescent micro-
particle experiments confirmed predictions based on the
calculations of inertial forces, where the expected focusing
position depended on the ratio between the inertial lift and drag
forces and the magnitude of the dominant force. Reducing the
suspension concentration from 0.0125% (w/v) to 0.0025% (w/v)
was essential for 5 pm particles since the ratio of lift to drag
forces was close to unity; therefore, secondary focusing was
expected at high flow rates. As a result, the successful separation
of 2 and 5 um particles, and 2, 10 um particles was achieved
with a spatial separation of 81 um for 2 and 5 pm particles and
72 pm for 2 and 10 pm particles. Recently,**** spiral channels
that were able to focus ~2 pum particles exhibited small
hydraulic diameters and a sheath flow; however, in our design,
the sheath-less bigger channel reduced the complexity of the
microsystem and the required syringe pumps and increased the
throughput. Separation operated at a flow rate of 0.6-1.0
mL min~", while in the literature,?* the flow rate was less than
200 puL min~ "' even in other passive separation mechanisms
besides spiral microfluidic channels.
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