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3,5-Bis(arylidene)-N-substituted-4-oxo-piperidine-1-carboxamides 24—-51 were synthesized as curcumin
mimics in a facile pathway through reaction of 3,5-bis(arylidene)-4-piperidones with the appropriate
isocyanate in the presence of triethylamine. The 3E,5E’-stereochemical configuration was conclusively
supported by single crystal X-ray studies of compounds 25 and 34. Most of the synthesized
piperidinecarboxamides showed high anti-proliferative properties with potency higher than that of 5-
fluorouracil (clinically approved drug against colon, breast and skin cancers) through in vitro MTT bio-
assay. Some of them revealed anti-proliferative properties at sub-micromolar values (ICsq = 0.56-0.70
uM for compounds 29, 30 and 34-38 against HCT116; and ICso = 0.64 uM for compound 30 against
A431 cell lines) with promising inhibitory properties against human DNA topoisomerase lla. The safe
profile of the anti-proliferative active agents against the RPE1 normal cell line may prove their selectivity
towards carcinoma cells. Robust molecular models (2D-QSAR, 3D-pharmacophore) supported the SAR
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Introduction

Dienone is an attractive chemical motif utilized by many
researchers  for  designing  promising  biologically/
pharmacologically active agents.™ Curcumin 1 is one of the
most famous dietary natural product dienones isolated from
Curcuma longa and used in many Asian countries for its anti-
inflammatory and wound healing properties (Ayurvedic medi-
cine).*” Curcumin analogues exhibit an extensive broad spec-
trum of biological properties such as antibacterial,® anti-
tubercular,® anti-HIV,' antioxidant," antitumor,” and anti-
inflammatory'* activities and exhibit a potential therapeutic
effect on Alzheimer's disease.* Despite the safety profile and
broad spectrum biological properties of curcumin, it could not
be approved as a therapeutic agent due to its high metabolic
instability, low water/plasma solubility and poor systemic
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and validated the observed bio-properties.

bioavailability.**'* The presence of an active methylene group
conjugated with the two B-diketones reduce the stability of
curcumin.”®* Due to these facts, the present study is directed
towards the investigation of novel 4-piperidone-1-carboxamides
as curcumin mimics (Fig. 1). In other words, a slight modifi-
cation of the curcumin pharmacophoric skeleton is considered
utilizing only one ketonic function conjugated with the two
unsaturated olefinic linkages.

Interest in the piperidone ring system originate from the
diverse biological properties showed by 1,3-diarylidene-4-
piperidones as antitumor,*** anti-mycobacterial,®® antima-
larial** and acetylcholinesterase inhibitor suggesting the
usefulness for Alzheimer's disease treatment.”” The promising
properties of  2,4-bis(arylidene)-8-methyl-8-azabicyclo[3.2.1]
octan-3-ones against MCF7 (breast) and HepG2 (liver) carci-
noma cell lines also prompted the present study.*®

Rational for insertion of carboxamide residue at N-1 of the
targeted 3,5-bis(arylidene)-4-piperidones is stemmed from the
fact that many clinically approved cancer drugs possess 1,3-
disubstituted urea function of which, Sorafenib 2, (Nexavar,
Bayer Healthcare Pharmaceuticals Inc.) that was approved by
the U. S. Food and Drug Administration (US-FDA on November
22, 2013) for the treatment of locally recurrent or metastatic,
progressive, differentiated thyroid carcinoma along with its
previous approval for the treatment of advanced renal cell
carcinoma (2005) and advanced hepatocellular carcinoma
(2007).2°** Lenvatinib 3, was approved by US-FDA (2015) for the
treatment of locally recurrent or metastatic, progressive thyroid
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Fig. 1 Rational design of 4-piperidone-1-carboxamides 5 as curccumin mimics.

cancer and recently in 2016 in combination with everolimus for
treatment of advanced renal cancer following one prior anti-
angiogenic therapy.** Regorafenib 4, (Stivarga, Bayer Health-
Care Pharmaceuticals Inc) approved by US-FDA in 2017 for
treatment of hepatocellular carcinoma.*

Generally, rational design of the targeted agents 5 can be
recognized as molecular conjugation of pharmacophoric units
derived from modified curcuminoid scaffold 1 and uranyl
fragment which is the bio-active residue of antitumor drugs
sorafenib 2, lenvatinib 3 and regorafenib 4 (Fig. 1).

The targeted 4-piperidone-1-carboxamides 5 are screened
against colon, breast and skin human carcinoma cell lines. 5-
Fluorouracil (injection) is approved by FDA for clinical treat-
ment of colorectal and breast cancer and topically for skin
(basal cell) cancer.**** Additionally, pyrimidine scaffold of 5-
fluorouracil can be recognized as bio-isosteric form to the tar-
geted skeleton/ring system (piperidine).***” For these reasons,
5-fluorouracil is considered as a positive control in the present
study.

Results and discussion
Chemistry

The synthetic pathway for the targeted 3,5-bis(arylidene)-N-
substituted-4-oxo-piperidine-1-carboxamides 24-51 is depicted
in Scheme 1, through reaction of the appropriate 3,5-
bis(arylidene)-4-piperidone 13-18 with the corresponding
isocyanate 19-23 in N,N-dimethylformamide (DMF) in the
presence of quantitative amount of triethylamine. Spectro-
scopic (IR, 'H-NMR and "C-NMR; ESI Fig. S1-S841) and
elemental analysis data support the structure. IR spectrum of
compound 24 (representative of the synthesized family),
exhibits the ketonic and amidic carbonyls at v = 1666,
1651 cm ™, respectively. The piperidinyl methylene protons are
observed as singlet signal at 6y = 4.88 in "H-NMR spectrum.
The exocyclic olefinic protons are revealed as singlet signal at 0y
= 7.69 supporting the presence of E, E’-configuration.®® *C-
NMR spectrum of compound 24 shows the amidic and
ketonic carbonyl carbons at 6c = 155.1 and 186.8, respectively in
addition to the piperidinyl methylene carbon at dc = 45.5.
Single crystal X-ray studies of compounds 25 and 34 add
conclusive support for the structure.
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Scheme 1 Synthetic route towards 3,5-bis(arylidene)-4-piperidone-
1-carboxamides 24-51.

X-ray crystallography

Compounds 25 and 34 are presented in ESI Fig. S85 and S86,7
respectively (ORTEP preview). The two compounds were found to
be crystallized in the monoclinic system with space group C2/c
for compound 25 and P2,/n for compound 34 and with one
molecule per asymmetric unit cell. The structures are central 4-
oxopiperidine-1-carboxamide heterocycle attached at C17 and
C19 to two benzylidenes in compound 25 and two 4-fluo-
robenzylidines in compound 34 forming E,E'-configuration. The
carboxamide group is connected to 4-chlorophenyl and phenyl in

This journal is © The Royal Society of Chemistry 2019
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compound 25 and 34, respectively. The geometrical parameters
of the two compounds were found to be comparable to each other
and with similar reported structures.*** All aryl rings in both
compounds are planar as expected. The piperidine ring adopts
a half-chair configuration with maximum deviation of 0.379 (3),
0.373 (2) A at atom N, for compounds 25 and 34, respectively
(puckering parameters, Q = 0.556 (3), 0.539 (2) A, ® = 115.6 (3),
116.1 (3)° and @ = 166.0 (4), 171.1 (2)° for compounds 25 and 34,
respectively). In compound 25, the dihedral angles between the
least-square plane of the central piperidinyl heterocycle and the
phenyl rings (C1-C6, C10-C15 and C21-C26) are 51.89 (13), 47.92
(12) and 26.65 (14)°, respectively, and for compound 34, these
dihedral angles are 54.23 (12), 38.27 (12) and 21.31 (14)°,
respectively. Molecules in compound 25 are forming a supramo-
lecular chain via intermolecular C26-H261---O1 interaction (ESI
Fig. S87 and Table S1t). Similar supramolecular assembly is
formed in compound 34 via intermolecular C23-H23:--O1
interaction (ESI Fig. S88 and Table S27).

Structure optimization studies

The computational studies in the current study are directed to
determine the difference(s) between optimized geometric
parameters (utilizing DFT, dentistry function theory technique
by B3LYP method with 3-21G* basis set, ESI Fig. S89 and S907)
for compounds 25 and 34 and those experimentally observed
(single crystal X-ray data). This will identify the effect(s) of
lattice form (solid state) on these parameters.*®** The optimized
structures of compounds 25 and 34 reveal bond distances and
angles comparable to the experimental values (ESI Tables S3
and S4t1). The maximum difference in bond lengths and angles
are 0.036 A, 3.9° and 0.052 A, 4.2° for compounds 25 and 34,
respectively. The root-mean square errors (RMSE) in bond
lengths and angles for compounds 25 and 34 are 0.018, 1.602;
0.022 and 1.493, respectively. The central piperidinyl hetero-
cycle of the structures obtained theoretically and experimentally
have been superimposed in order to globally compare their
conformations (ESI Fig. S91 and S$92%). The difference(s) in
alignment observed can be explained in terms of crystal packing
effects in the solid state which are not present in the gaseous
state considered by DFT optimization.

Anti-proliferative activity

Anti-proliferative properties of the synthesized piper-
idinecarboxamides 24-51 were investigated against HCT116
(colon), MCF7 (breast) and A431 (squamous skin) carcinoma
cell lines by the standard MTT bio-assay utilizing 5-fluorouracil
as a reference standard.”® From the results observed (Table 1,
ESI Fig. S93-S957), it has been noticed that most of the
synthesized piperidinecarboxamides show potent anti-
proliferative properties higher than that of 5-fluorouracil (clin-
ically approved drug against colon, breast and skin cancers***?)
and curcumin (mimic scaffold). Some of the synthesized
compounds reveal anti-proliferative properties at sub-
micromolar values (ICs, = 0.56-0.70 uM for compounds 29,
30 and 34-38 against HCT116; and ICs, = 0.64 puM for
compound 30 against A431 cell lines). Based on the anti-

This journal is © The Royal Society of Chemistry 2019
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proliferative properties observed, structure-activity relation-
ships (SAR) could be attained. Attachment of electron-
withdrawing function (e.g. chlorine or fluorine) to the phenyl
ring of exocyclic olefinic linkages oriented at C-3 and C-5 of
piperidinecarboxamides, enhances the anti-proliferative prop-
erties relative to the electron-donating functions (methyl or
methoxy). Insertion of benzylidene fragment at C-3 and C-5 of
the targeted piperidones is important for developing antitumor
active agents compared to the 2-thienylidene residue. Fluorine
containing-compounds reveal higher anti-proliferative efficacy
than the chlorine analogues against HCT116 cell line. Mean-
while, better antitumor properties were shown by the chlorine
substituted-compounds compared to their fluorine analogues
against MCF7 and A431 cell lines [compound 32 (ICso = 2.35
uM) is an exception, exhibiting potency close to the corre-
sponding analogue 37 (IC5, = 2.32 uM) against MCF7 cell line.
The same observations for compounds 29 and 34 (ICs, = 1.29,
1.27 uM, respectively) against A431 cell line].

Screening the synthesized piperidinecarboxamides 24-51
against normal (non-cancer) RPE1 (human immortalized
retinal pigment epithelial cell line) can prove the selectivity
towards carcinoma cells. From the results obtained (Table 1, ESI
Fig. S961), it has been noticed that the promising anti-
proliferative agents synthesized have ICs, towards RPE1 7-32,
4-11 and 5-14 folds relative to that of HCT116, MCF7 and A431
cell lines, respectively. Additionally, it has been noticed that
most of the synthesized agents with methyl/methoxy benzyli-
denes have high selectivity towards the cancer cell lines relative
to the normal/non-cancer cell (therapeutic index).

Molecular modeling

2D-QSAR study. Correlation between the biological proper-
ties and chemical structures can be identified by QSAR (quan-
titative structure-activity relationship) modeling in terms of
physico-chemical parameters (descriptors). QSAR modeling is
widely utilized by medicinal chemistry researchers for
understanding/determining the rules governing the biological
properties, validating the biological observations and predi-
cating promising hits/leads.*

2D-QSAR modelling. The synthesized 3,5-bis(arylidene)-N-
substituted-4-oxo-piperidine-1-carboxamides 24-47 revealing
variable anti-proliferative properties were employed for QSAR
modeling (CODESSA-Pro software). Promising three descriptor
BMLR-QSAR models were obtained with R* (squared correlation
coefficient) = 0.934, 0.951, 0.901 for HCT116, MCF7 and A431
cell lines, respectively (ESI Tables S5-S7,1 Fig. S97-S991).

HCT116 cell line 2D-QSAR modelling. Total molecular 1-
center E-E repulsion/# of atoms is the first semi-empirical
descriptor of the HCT116 2D-QSAR model (¢-criterion =
15.070). The descriptor positively participates in the QSAR model
determining 1/ICs, value in other words, the high descriptor
value observes high potent agent as exhibited in compounds 35
and 41 [with descriptor values = 68.54209, 47.42904, respectively
(ESI Table S87)] that reveal estimated ICs, values 0.53 and 3.71
uM, respectively (Table 2). Total molecular one-center electron-
electron repulsion energy is determined by eqn (1).*

RSC Adv., 2019, 9, 33761-33774 | 33763
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Table 1 Anti-proliferative properties of the synthesized compounds

ICs0% uM + SD (therapeutic index)?
D Compd HCT116 MCF7 A431 RPE1
1 24 1.08 + 0.18 (15.40) 1.83 £ 0.14 (9.09) 2.49 + 0.31 (6.68) 16.63 + 1.57
2 25 1.03 + 0.29 (21.43) 2.09 + 0.26 (10.56) 2.51 + 0.24 (8.79) 22.07 + 2.06
3 26 1.43 + 0.20 (12.39) 2.48 £ 0.31 (7.15) 2.83 =+ 0.36 (6.26) 17.72 + 1.98
4 27 1.61 4 0.14 (<31.06) 2.95 + 0.24 (<16.95) 2.56 + 0.29 (<19.53) >50.00 + 3.02
5 28 1.31 £ 0.22 (9.13) 2.58 + 0.30 (4.64) 2.58 £ 0.27 (4.64) 11.96 + 1.76
6 29 0.70 + 0.06 (13.81) 1.33 4 0.24 (7.27) 1.29 + 0.15 (7.50) 9.67 +2.03
7 30 0.58 =+ 0.07 (8.43) 1.13 £ 0.29 (4.33) 0.64 =+ 0.08 (7.64) 4.89 4+ 1.97
8 31 1.03 £ 0.13 (7.28) 1.44 + 0.19 (5.21) 1.24 + 0.14 (6.05) 7.50 + 1.75
9 32 1.04 £ 0.11 (11.61) 2.35 £ 0.23 (5.14) 1.31 £ 0.09 (9.21) 12.07 + 1.76
10 33 1.13 4 0.19 (10.10) 2.14 + 0.26 (5.33) 1.45 + 0.12 (7.87) 11.41 + 1.68
11 34 0.56 + 0.04 (31.25) 2.34 £ 0.29 (7.48) 1.27 £ 0.09 (13.78) 17.50 + 2.16
12 35 0.56 £+ 0.06 (14.75) 1.36 £ 0.17 (6.07) 1.20 £ 0.14 (6.88) 8.26 + 2.33
13 36 0.62 =+ 0.05 (15.26) 1.71 £ 0.12 (5.53) 1.31 + 0.08 (7.22) 9.46 + 1.86
14 37 0.57 + 0.07 (17.16) 2.32 + 0.30 (4.22) 1.18 + 0.11 (8.29) 9.78 + 1.53
15 38 0.56 + 0.03 (19.41) 2.16 + 0.15 (5.03) 1.33 £ 0.17 (8.17) 10.87 + 1.42
16 39 1.44 £ 0.17 (<34.72) 3.96 + 0.29 (<12.63) 2.57 £ 0.15 (<19.46) >50.00 £ 3.16
17 40 2.73 £ 0.20 (<18.32) 5.10 =+ 0.30 (<9.80) 4.90 + 0.34 (<10.20) >50.00 + 2.96
18 41 2.26 + 0.23 (8.37) 4.58 + 0.28 (4.13) 2.64 £+ 0.27 (7.16) 18.91 + 1.33
19 42 22.98 + 1.82 (2.04) 4.90 + 0.26 (9.58) 8.75 =+ 0.40 (5.37) 46.96 + 2.17
20 43 1.23 £ 0.15 (<40.65) 3.96 + 0.23 (<12.63) 2.72 + 0.20 (<18.38) >50.00 + 3.43
21 44 1.11 + 0.09 (<45.05) 417 £ 0.27 (<11.99) 2.85 + 0.16 (<17.54) >50.00 + 2.76
22 45 1.38 £ 0.15 (<36.23) 5.85 + 0.31 (<8.55) 11.35 £ 1.10 (<4.41) >50.00 £ 3.76
23 46 1.50 + 0.14 (31.81) 5.73 + 0.33 (8.33) 8.83 + 1.26 (5.40) 47.72 + 3.05
24 47 1.29 + 0.19 (<38.76) 4.89 + 0.25 (<10.22) 7.98 £ 1.34 (<6.27) >50.00 + 3.99
25 48 >50.00 + 1.01 (—) 33.72 + 1.38 (<1.48) >50.00 + 3.65 (—) >50.00 + 4.16
26 49 40.83 £+ 2.61 (<1.22) 24.68 £ 1.99 (<2.03) >50.00 + 2.08 (—) >50.00 £ 4.22
27 50 20.09 + 2.44 (2.36) 21.67 £ 2.78 (2.19) 40.63 + 2.88 (1.17) 47.39 + 2.66
28 51 >50.00 + 2.90 (—) >50.00 + 3.01 (—) >50.00 + 2.38 (—) >50.00 £ 2.34
29 5-FU° 20.43 + 1.99 3.15 + 0.44 23.44 + 2.09 NT¢
30 Curcumin 38.25 + 2.36 16.00 + 2.04 NT? NT?

“ ICsy is the concentration producing 50% inhibition of cell growth relative to the control + standard deviation (SD). ? Therapeutic index is the ICs,

in normal cell (RPE1)/ICs, in cancer cell.  5-FU is 5-fluorouracil (standard reference). ¢ NT is not tested.

Ee(tot) = ZEee (A) 1)
y

where, A is a given atomic species. E..(A) is the electron—elec-
tron repulsion energy for atom A.

Minimum 1-electron reaction index for atom O is an atomic
type descriptor (¢-criterion = —4.497) participating negatively in
the QSAR model (coefficient = —88.6353). Because most of the
descriptor values for the tested compounds are with negative
sign, the low descriptor value reveals potent anti-proliferative
agent as shown for compounds 35 and 41 (descriptor values =
—0.00024, —0.00261, respectively). Fukui atomic one-electron
reactivity index can be calculated by eqn (2).**

Ra = ZZCiHOMOCjLUMO/ (eLumo — eromo) 2)

€A jeA

where, cinomo stands for the highest occupied molecular orbital
(HOMO) coefficients. ¢;;ymo is the lowest unoccupied molecular
orbital (LUMO) coefficients. eymo is the LUMO energy and
enomo is for the HOMO energy.

Average information content (order 0) is a topological
descriptor. Mean information content index can be calculated
by eqn (3).*
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k
k _ n; n;
IC=— izgl ; 10g2 ; (3)

where, n; is the number of atoms in the i class. 7 is the total
number of atoms in the molecule. k is the number of atomic
layers in the coordination sphere around a given atom that are
accounted for.

MCF7 cell line 2D-QSAR modelling. FPSA-2 Fractional PPSA
(PPSA-2/TMSA) (MOPAC PC) is a geometrical descriptor (¢-
criterion = 16.432) positively participated in the 2D-QSAR
model expressing the ICs, values ie., the high descriptor
value describes the low potent anti-proliferative agent as shown
in compounds 30 and 45 [descriptor values = 1.3958, 2.85685
(ESI Table S9f) for estimated ICs, values 0.89, 5.82 uM,
respectively (Table 2)]. Fractional total charge weighted partial
positive surface area determines by eqn (4).*

PPSA2

FPSA2 = ot (4)

where, PPSA2 is the total weighed partial positively charged
molecular surface area. TMSA is the total molecular surface
area.

This journal is © The Royal Society of Chemistry 2019
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Table 2 Observed and estimated anti-proliferative activity values for the tested piperidinecarboxamides 24—-47 according to the BMLR-QSAR

models

HCT116 MCF7

A431

Observed IC5,, Estimated ICs,,

Observed ICs,

Estimated ICs, Observed IC5,, Estimated ICs,

Entry Compd pM uM Error® pM uM Error® pM uM Error®
1 24 1.08 1.17 —0.09 1.83 1.39 0.44 2.49 1.94 0.55
2 25 1.03 0.95 0.08 2.09 2.50 —0.41 2.51 2.21 0.30
3 26 1.43 1.39 0.04 2.48 2.50 —0.02 2.83 2.80 0.03
4 27 1.61 1.29 0.32 2.95 2.62 0.33 2.56 4.25 —1.69
5 28 1.31 1.60 —0.29 2.58 2.51 0.07 2.58 2.65 —0.07
6 29 0.70 0.72 —0.02 1.33 1.58 —0.25 1.29 1.08 0.21
7 30 0.58 0.60 —0.02 1.13 0.89 0.24 0.64 0.92 —0.28
8 31 1.03 0.88 0.15 1.44 1.54 —0.10 1.24 1.81 —0.57
9 32 1.04 0.91 0.13 2.35 2.12 0.23 1.31 1.39 —0.08
10 33 1.13 0.93 0.20 2.14 2.00 0.14 1.45 1.76 —0.31
11 34 0.56 0.59 —0.03 2.34 2.07 0.27 1.27 1.00 0.27
12 35 0.56 0.53 0.03 1.36 1.46 —0.10 1.20 1.07 0.13
13 36 0.62 0.69 —-0.07 1.71 2.18 —0.47 1.31 0.98 0.33
14 37 0.57 0.63 —0.06 2.32 2.51 —-0.19 1.18 1.03 0.15
15 38 0.56 0.56 0.00 2.16 2.53 —0.37 1.33 1.38 —0.05
16 39 1.44 1.36 0.08 3.96 4.46 —0.50 2.57 2.79 —0.22
17 40 2.73 2.87 —0.14 5.10 4.52 0.58 4.90 6.04 —1.14
18 41 2.26 3.71 —1.45 4.58 4.87 —0.29 2.64 3.32 —0.68
19 42 22.98 3.43 19.55 4.90 5.10 —0.20 8.75 6.78 1.97
20 43 1.23 1.29 —0.06 3.96 4.38 —0.42 2.72 3.09 —-0.37
21 14 1.11 0.94 0.17 4.17 3.94 0.23 2.85 3.18 —0.33
22 45 1.38 1.55 —0.17 5.85 5.82 0.03 11.35 10.62 0.73
23 46 1.50 1.71 —0.21 5.73 5.13 0.60 8.83 5.63 3.20
24 47 1.29 1.72 —0.43 4.89 4.74 0.15 7.98 6.53 1.45

“ Error is the difference between the observed and estimated bio-activity values.

HA dependent HDSA-1 (Zefirov PC) is a charge-related
descriptor has a mild power in the QSAR model due to its
lowest coefficient value (—0.0318232) among all the descriptors
of the attained model. This observation is consistent with the
assigned SAR where, attachment of the benzylidene fragment
oriented at the C-3 and C-5 of the constructed piperidones with
electron-donating function (methyl or methoxy) decreases the
anti-proliferative properties (ICs, of compounds 39-47 = 3.96-
5.85 uM) relative to the electron-withdrawing function (ICs, of
compounds 29-38 with chlorine or fluorine atoms = 1.13-2.35
uM). Hydrogen bonding donor ability of the molecule (HDSA1)
can be calculated by eqn (5).*

HDSAI - ZSD De HH—donor (5)
D

where, Sp, is the solvent accessible surface area of H-bonding
donor H atoms.

Partial charged surface area (MOPAC PC) for atom C is also
a charge-related descriptor. Although this descriptor has the
lowest value among all the descriptors of the 2D-QSAR model
attained, it observes high effect to the estimated anti-
proliferative properties due to its high coefficient value
(—866.471) as shown in compounds 30 and 45 (descriptor
values = 0.00317, 0.00256, respectively). Atomic charge
weighted partial positively charged surface area and atomic

This journal is © The Royal Society of Chemistry 2019

charge weighted partial negatively charged surface area can be
calculated by eqn (6) and (7), respectively.*

PPSA3 = gaSa Ae{on>0} (6)
A

Where, S, is the positively charged solvent-accessible atomic
surface area and g,is the atomic partial charge.

PNSA3 = ) "gaSa Ae{da <0} )
A

where, S, is the negatively charged solvent-accessible atomic
surface area and g,is the atomic partial charge.

A431 cell line 2D-QSAR modelling. Count of H-donors sites
(MOPAC PC) is a charge-related descriptor with the highest level
of significance (¢-criterion = 10.621) among all the QSAR model
descriptors. Although, this descriptor has the lowest coefficient
value among all the descriptors of the model (coefficient =
0.068221), it seems one of the most important effective
parameters controlling the estimated biological properties as
shown by compounds 36 and 45 [descriptor values = 10, 16 (ESI
Table S10%) for estimated ICs, values 0.98, 10.62 uM, respec-
tively (Table 2)]. This descriptor supports the SAR assumptions
regarding the effect of electron-donating groups (methyl or
methoxy) versus electron-withdrawing elements (fluorine or
chlorine) attaching to the exocyclic benzylidene residue of the
synthesized piperidones.
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Table 3 Best fit values and estimated anti-proliferative activity values for the tested piperidinecarboxamides 24—47 according to the 3D-

pharmacophore modeling

HCT116 MCF7

A431

Observed IC5,, Estimated ICs,

Observed IC5,, Estimated ICs,

Observed IC5,, Estimated ICs,

Entry Compd pM uM Fit value puM uM Fit value puM uM Fit value
1 24 1.08 0.86 6.951 1.83 2.25 6.069 2.49 3.77 7.029
2 25 1.03 1.03 6.874 2.09 2.80 5.975 2.51 1.25 7.508
3 26 1.43 1.00 6.885 2.48 2.62 6.002 2.83 1.21 7.524
4 27 1.61 0.69 7.043 2.95 2.64 5.999 2.56 2.58 7.194
5 28 1.31 1.43 6.731 2.58 2.19 6.082 2.58 3.74 7.032
6 29 0.70 0.93 6.917 1.33 2.93 5.954 1.29 2.31 7.242
7 30 0.58 0.72 7.029 1.13 2.59 6.008 0.64 1.56 7.412
8 31 1.03 1.75 6.643 1.44 2.89 5.960 1.24 2.02 7.300
9 32 1.04 2.31 6.521 2.35 3.14 5.924 1.31 1.65 7.387
10 33 1.13 1.27 6.780 2.14 3.08 5.933 1.45 3.86 7.019
11 34 0.56 0.88 6.942 2.34 2.03 6.114 1.27 2.42 7.221
12 35 0.56 0.70 7.040 1.36 1.82 6.162 1.2 1.46 7.442
13 36 0.62 0.62 7.094 1.71 1.84 6.156 1.31 1.84 7.341
14 37 0.57 0.49 7.198 2.32 2.21 6.077 1.18 1.62 7.396
15 38 0.56 0.48 7.203 2.16 2.46 6.030 1.33 1.46 7.440
16 39 1.44 2.05 6.574 3.96 3.74 5.848 2.57 3.62 7.046
17 40 2.73 1.43 6.730 5.1 3.04 5.939 4.9 1.87 7.333
18 41 2.26 2.02 6.581 4.58 3.85 5.836 2.64 3.58 7.052
19 42 22.98 11.50 5.824 4.9 3.21 5.914 8.75 5.18 6.891
20 43 1.23 1.18 6.814 3.96 2.76 5.981 2.72 2.61 7.189
21 44 1.11 2.43 6.500 4.17 3.45 5.883 2.85 1.60 7.401
22 45 1.38 1.19 6.808 5.85 3.10 5.929 11.35 5.11 6.897
23 46 1.50 1.24 6.791 5.73 3.65 5.859 8.83 5.26 6.885
24 47 1.29 2.98 6.411 4.89 3.72 5.850 7.98 3.07 7.118

Minimum resonance energy for bond H-C is a semi-
empirical descriptor can be calculated by eqn (8).*

Er(AB) =" P8, (8)

neApueB

Where, A is a given atomic species. B is another atomic species.
P, is the density matrix elements over atomic basis {ur}. 8, is
the resonance integrals on atomic basis {ur}.

Minimum e-n attraction for atom N is also a semi-empirical
descriptor. Nuclear-electron attraction energy for a given atomic
species can be determined by eqn (9).*

') ©)

Zy
ulAB) = 3 S P2
nre A
Where, A is a given atomic species, B other atoms. P,,is the
density matrix elements over atomic basis {ur}. Zg is the charge
of atomic nucleus B. R; is the distance between the electron

. Z .
and atomic nucleus B. (,u|R—B|V) is the electron-nuclear attrac-
i

tion integrals on atomic basis {uv}.

Validation of QSAR models. Internal validation technique is
the most appropriate for the QSAR studies due to the short data
set utilized.*” Reliability of the 2D-QSAR models is achieved
based on the statistical parameters observed (R* = 0.934, 0.951,
0.901; R%cvOO = 0.905, 0.931, 0.859; R%cvMO = 0.909, 0.933,
0.861 for HCT116, MCF7 and A431 carcinoma cell lines,
respectively). High value differences between Fisher criteria (F)

33766 | RSC Adv., 2019, 9, 33761-33774

and standard deviation (s*) are also good indications for the
goodness of QSAR models (F = 93.751, 130.382, 60.784; s* =
0.019, 0.125, 0.012 for HCT116, MCF7 and A431 carcinoma cell

Table 4 Inhibitory properties of human DNA topoisomerase lla for the
tested piperidinecarboxamides, Methotrexate and Combretastatin

Entry Compound ICso (1M % SD)*
1 27 33.64 +1.30
2 29 28.97 £ 1.39
3 30 41.79 £+ 2.42
4 34 30.69 £+ 1.32
5 35 26.39 + 1.61
6 36 23.04 £ 1.37
7 37 27.23 £1.72
8 38 35.01 £+ 2.08
9 39 41.30 + 1.60
10 40 40.35 £ 1.56
11 41 50.17 £ 1.94
12 42 31.49 £ 1.22
13 43 28.30 + 1.09
14 44 46.18 + 1.79
15 45 39.31 £ 1.52
16 46 56.23 £ 2.18
17 47 33.01 +1.28
18 Methotrexate (Met) 23.25 + 1.31
19 Combretastatin A-4 (CA-4) 22.02 £ 0.85

% 1ICso is the concentration producing 50% inhibition of the tested
enzyme, SD is the standard division.

This journal is © The Royal Society of Chemistry 2019
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lines, respectively). Additionally, most of the estimated/
predicted biological properties are close to the experimentally
observed values (Table 2) including the potent, mild and weak
anti-proliferative agents tested.

3D-Pharmacophore modeling. Discovery Studio 2.5 software
was utilized for 3D-pharmacophore modeling. 3D-
Pharmacophore modeling is an important computational
technique used intensively in medicinal chemistry research to
explore the parameters controlling biological properties in
terms of interaction taking place between variable pharmaco-
phoric features (e.g. hydrogen bonding acceptor/donor, hydro-
phobic, positive/negative ionizable... etc.) with functional
groups or elemental of bio-active molecules.** Piper-
idinecarboxamides 24-47 exhibiting variable anti-proliferative
properties against the tested cell lines were employed for 3D-
pharmacophore modeling. 3D-pharmacophore modeling of
the tested compounds 24-47 against HCT116 (colon) carcinoma
cell line shows HYPOGEN with 3D-array of four chemical
features [three hydrophobics (H-1, H-2, H-3) and one hydrogen
bonding acceptor (HBA)] (ESI Fig. S100 and S101t). Typical
alignments were observed by all the tested compounds 24-47 in
the hypothesized 3D-pharmacophore. The aryl groups of

View Article Online
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5 are aligned with hydrophobics H-2 and H-3. However, the
amidic carbonyl oxygen and the substituent of amidic group are
aligned with hydrogen bonding acceptor (HBA) and hydro-
phobic H-1, respectively (ESI Fig. 1027).

Pharmacophoric model of the anti-proliferative active agents
24-47 against breast (MCF7) carcinoma cell line shows three
chemical features [two hydrophobics (H-1, H-2) and one
hydrogen bonding acceptor (HBA)] (ESI Fig. S103 and S1047).
The substituent of the amidic fragment and aryl group of
exocyclic olefinic linkage are fitted with hydrophobics H-1 and
H-2, respectively. While the ketonic oxygen gives interaction
with HBA for all the tested compounds (ESI Fig. $105%).

Two hydrogen bonding acceptors (HBA-1, HBA-2) and two
hydrophobics (H-1, H-2) were viewed by the 3D-pharmacophore
of the tested compounds 24-47 against squamous skin (A431)
carcinoma cell line (ESI Fig. S106 and S107t). Ketonic and
amidic oxygens are fitted with HBA-1 and HBA-2, respectively.
However, the exocyclic olefinic linkage and substituent of the
amidic fragment are fitted with hydrophobics H-1 and H-2,
respectively for all the tested agents (ESI Fig. S1087).

Most of the estimated biological data are correlated with the
experimental observations (Table 3). It has been also noticed

exocyclic olefinic linkages attached to the piperidinyl C-3 and C- that all the functions/elements interacted with the
TOPO IIa Met cpd27 cpd 29 cpd3e cpd34
- + 100 50 25 12.5 6.3 100 50 25 6 100 50 25 12.5 6.3 100 50 25 12.5 100 50 25 12.5 6.3 uM
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Fig. 2 Gel assay for human DNA Topo lle inhibition by the tested piperidinecarboxamides, Methotrexate (Met) and Combretastatin A4 (CA4).
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pharmacophoric features for all the tested HCT116, MCF7 or
A431 cell lines are the controlling parameters governing bio-
observations mentioned in SAR. This does not only support
the mentioned SAR but also strengthen the assumptions for
optimizing more potent anti-proliferative active hits.

Human DNA topoisomerase Ila inhibitory properties. DNA
topoisomerases are the enzymes regulate DNA replication,
transcription and repair. Inhibitors of topoisomerases I and II
(Topo I, II) are effectively used as anticancer agents.* The
inhibitory properties of the promising anti-proliferative agents
synthesized (29, 30 and 34-38) and those exhibited high safety
profile against RPE1 (non-cancer cell line) relative to the tested
cancer cell (27, 39-47), against human DNA topoisomerase Ila
were investigated. Reports described the topoisomerase Ila
inhibitory properties of 1,3-ylidene-4-piperidones encouraged
these studies.*"** From the results obtained (Table 4 and Fig. 2),
it has been noticed that compound 36 reveals inhibitory prop-
erties against the tested enzyme with potency comparable to
that of the standard references used (ICs, = 23.04, 22.02, 23.25
uM for compound 36, Combretastatin A-4 and Methotrexate,
respectively). Promising inhibitory properties were also revealed
by compounds 35, 37, 43 and 29 relative to the standard used
(ICs0 = 26.39, 27.23, 28.30, 28.97 uM, respectively). The slight
differences shown due to the anti-proliferative properties of the
tested compounds relative to their topoisomerase Il inhibitory
properties (Table 1 and 4) can be attributed to the fact that some
tested analogues may have functional activities than the adop-
ted topoisomerase Ila inhibitory activity considered in the
current study. Generally, the topoisomerase Ila. inhibitory
properties of the tested compounds support the anti-
proliferative properties observed with good sign indication for
their mode of action that may assist in developing better hits/
leads.

Conclusion

(3E,5E)-3,5-Bis(arylidene)-N-substituted-4-oxo-piperidine-1-
carboxamides 24-51 were synthesized in excellent yield (80-
98%) through reaction of the appropriate 3,5-bis(arylidene)-4-
piperidone 13-18 with the corresponding isocyanate 19-23 in
DMF in the presence of triethylamine. Single crystal X-ray
studies of compounds 25, 34 add good support for the
geometrical stereoisomerism. Most of the synthesized piper-
idinecarboxamides show potent anti-proliferative properties
higher than that of 5-fluorouracil (standard reference) through
in vitro MTT testing against HCT116 (colon), MCF7 (breast) and
A431 (squamous skin) carcinoma cell lines. Promising inhibi-
tory properties were observed against DNA topoisomerase Ilo by
the tested anti-proliferative agents synthesized. Robust 2D-
QSAR and 3D-pharmacophore modeling support the observed
anti-proliferative properties. Eventually, it can be concluded
that, the series of synthesized compounds may be considered
a promising starting point for design of novel highly effective
anti-proliferative small molecules based on the high biological
activity exhibited towards cancer cells and safety profile against
normal cell studied.
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Experimental section

Melting points were recorded on a Stuart SMP3 melting point
apparatus. IR spectra (KBr) were recorded on a Shimadzu FT-IR
84008 spectrophotometer. NMR spectra (DMSO-dg) were taken
in a Bruker 500 ("H: 500, °C: 125 MHz) spectrometer. The
starting compounds 13-18 ***” were prepared according to the
reported procedures.

Synthesis of 3,5-bis(arylidene)-N-substituted-4-oxo-piperidine-
1-carboxamides 24-51 (general procedure)

A mixture of equimolar amounts of the appropriate 3,5-
bis(arylidene)-4-piperidone 13-18 (2.5 mmol) and the corre-
sponding isocyanate 19-23 in N,N-dimethylformamide (10 ml)
containing triethylamine (2.5 mmol) was stirred at room
temperature (25-30 °C) for the appropriate time (TLC control).
The separated solid upon pouring the reaction mixture into
water (200 ml) containing sodium chloride (1 g) was collected,
washed with water and crystallized from a suitable solvent
affording the corresponding 24-51.

3,5-Di[(E)-benzylidene]-4-oxo-N-phenylpiperidine-1-
carboxamide (24)

Obtained from reaction of 13 and 19. Reaction time 10 h. Yellow
microcrystals from n-butanol, mp 179-181 °C, yield 94% (0.93
2). IR: v /em ™ 1666, 1651, 1605, 1535. "H-NMR 6 (ppm): 4.88
(s, 4H, 2 NCH,), 6.92 (t, J = 7.0 Hz, 1H, arom. H), 7.18 (t, ] =
7.2 Hz, 2H, arom. H), 7.29 (d,J = 7.7 Hz, 2H, arom. H), 7.46-7.53
(m, 6H, arom. H), 7.60 (d,J = 7.1 Hz, 4H, arom. H), 7.69 (s, 2H, 2
olefinic CH), 8.89 (s, 1H, NH). ">*C-NMR ¢ (ppm): 45.5 (NCH,),
119.9,122.1,128.3, 128.8, 129.5, 130.7, 133.1, 134.4, 135.8, 140.0
(arom. C + olefinic C), 155.1 (amidic CO), 186.8 (ketonic CO).
Elemental analysis: C,cH,,N,0, (394.47) required C, 79.17; H,
5.62; N, 7.10, found C, 79.34; H, 5.71; N, 7.29.

3,5-Di[(E)-benzylidene]-N-(4-chlorophenyl)-4-oxopiperidine-1-
carboxamide (25)

Obtained from reaction of 13 and 20. Reaction time 10 h. Yellow
microcrystals from n-butanol, mp 186-188 °C, yield 80% (0.86
). IR: o /em ™" 1674, 1655, 1609, 1578. "H-NMR 6 (ppm): 4.87
(s, 4H, 2 NCH,), 7.22 (d, J = 7.9 Hz, 2H, arom. H), 7.32 (d, ] =
7.8 Hz, 2H, arom. H), 7.46-7.53 (m, 6H, arom. H), 7.59 (d, ] =
7.0 Hz, 4H, arom. H), 7.67 (s, 2H, 2 olefinic CH), 9.01 (s, 1H,
NH). "*C-NMR 6 (ppm): 45.5 (NCH,), 121.3, 125.7, 128.1, 128.8,
129.5, 130.7, 133.0, 134.4, 135.8, 139.0 (arom. C + olefinic C),
154.9 (amidic CO), 186.7 (ketonic CO). Elemental analysis:
C,6H,;CIN,O, (428.92) required C, 72.81; H, 4.94; N, 6.53, found
C, 72.89; H, 5.00; N, 6.64.

3,5-Di[(E)-benzylidene]-N-(4-methoxyphenyl)-4-oxopiperidine-
1-carboxamide (26)

Obtained from reaction of 13 and 21. Reaction time 12 h. Yellow
microcrystals from n-butanol, mp 184-186 °C, yield 94% (1.00
g). IR: v /em ™' 1670, 1624, 1612, 1531. "H-NMR 6 (ppm): 3.67
(s, 3H, OCH3), 4.85 (s, 4H, 2 NCH,), 6.77 (d, J = 7.9 Hz, 2H,

This journal is © The Royal Society of Chemistry 2019
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arom. H), 7.16 (d, J = 8.0 Hz, 2H, arom. H), 7.46-7.53 (m, 6H,
arom. H), 7.59 (d,J = 7.3 Hz, 4H, arom. H), 7.67 (s, 2H, 2 olefinic
CH), 8.71 (s, 1H, NH). C-NMR ¢ (ppm): 45.4 (NCH,), 55.1
(OCHg;), 113.5, 122.0, 128.8, 129.5, 130.7, 132.8, 133.2, 134.4,
135.7, 154.7 (arom. C + olefinic C), 155.3 (amidic CO), 186.9
(ketonic CO). Elemental analysis: C,,;H,,N,053 (424.50) required
C, 76.40; H, 5.70; N, 6.60, found C, 76.63; H, 5.79; N, 6.66.

3,5-Di[(E)-benzylidene]-N-ethyl-4-oxopiperidine-1-
carboxamide (27)

Obtained from reaction of 13 and 22. Reaction time 24 h. Yellow
microcrystals from benzene, mp 172-174 °C, yield 92% (0.80 g).
IR: Upa/cm ! 1674, 1620, 1535, 1447. "H-NMR & (ppm): 0.92 (t, ]
= 6.8 Hz, 3H, CHj,), 2.97 (quintet, ] = 6.4 Hz, 2H, NCH,CHj),
4.71 (s, 4H, 2 NCH,), 6.82 (s, 1H, NH), 7.44-7.52 (m, 6H, arom.
H), 7.57 (d,J = 7.3 Hz, 4H, arom. H), 7.63 (s, 2H, 2 olefinic CH).
BC-NMR 6 (ppm): 15.4 (CH3), 35.0 (NCH,CH3), 45.0 (NCH,),
128.7, 129.4, 130.7, 133.3, 134.5, 135.4 (arom. C + olefinic C),
157.0 (amidic CO), 187.0 (ketonic CO). Elemental analysis:
Cy,H,,N,0, (346.43) required C, 76.28; H, 6.40; N, 8.09, found
C, 76.39; H, 6.54; N, 7.95.

N-Benzyl-3,5-di[(E)-benzylidene]-4-oxopiperidine-1-
carboxamide (28)

Obtained from reaction of 13 and 23. Reaction time 24 h. Pale
yellow microcrystals from benzene, mp 163-165 °C, yield 98%
(1.00 @). IR: vay/cm ™t 1651, 1605, 1574, 1531. *H-NMR 6 (ppm):
4.16 (s, 2H, PhCH,), 4.78 (s, 4H, 2 NCH,), 7.12-7.52 (m, 12H, 11
arom. H + NH), 7.58 (d, J = 7.2 Hz, 4H, arom. H), 7.65 (s, 2H, 2
olefinic CH). ">C-NMR 6 (ppm): 43.4 (PhCH,), 45.2 (NCH,),
126.4,126.8,128.0,128.7, 129.4, 130.7, 133.3, 134.5, 135.6, 140.6
(arom. C + olefinic C), 157.3 (amidic CO), 186.9 (ketonic CO).
Elemental analysis: C,;H,,N,0, (408.50) required C, 79.39; H,
5.92; N, 6.86, found C, 79.59; H, 6.11; N, 7.03.

3,5-Bis[(E)-4-chlorobenzylidene]-4-oxo-N-phenylpiperidine-1-
carboxamide (29)

Obtained from reaction of 14 and 19. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 205-207 °C, yield 85%
(0.99 g). IR: vpa/em ™ 1651, 1605, 1535, 1489. 'H-NMR 6 (ppm):
4.84 (s, 4H, 2 NCH,), 6.92 (t,/ = 7.1 Hz, 1H, arom. H), 7.18 (t,] =
7.4 Hz, 2H, arom. H), 7.28 (d, ] = 7.7 Hz, 2H, arom. H), 7.50-7.65
(m, 10H, 8 arom. H + 2 olefinic CH), 8.87 (s, 1H, NH). >*C-NMR
6 (ppm): 45.5 (NCH,), 120.0, 122.2, 128.3, 128.7, 128.8, 132.2,
132.4, 132.5, 133.3, 133.6, 133.7, 134.2, 134.6, 136.4, 139.9
(arom. C + olefinic C), 155.1 (amidic CO), 186.5 (ketonic CO).
Elemental analysis: C6H,(Cl,N,0, (463.36) required C, 67.40;
H, 4.35; N, 6.05, found C, 67.27; H, 4.28; N, 6.17.

3,5-Bis[(E)-4-chlorobenzylidene]-N-(4-chlorophenyl)-4-
oxopiperidine-1-carboxamide (30)

Obtained from reaction of 14 and 20. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 185-187 °C, yield 87%
(1.08 g). IR: ¥ /em ™' 1655, 1597, 1558, 1516. "H-NMR 6 (ppm):
4.83 (s, 4H, 2 NCH,), 7.23 (d, J = 7.8 Hz, 2H, arom. H), 7.31 (d, J
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= 7.8 Hz, 2H, arom. H), 7.51-7.65 (m, 10H, 8 arom. H + 2
olefinic CH), 9.00 (s, 1H, NH). *C-NMR 6 (ppm): 45.4 (NCH,),
121.3, 125.8, 128.2, 128.7, 128.8, 132.2, 132.36, 132.45, 133.2,
133.5, 133.69, 133.72, 134.2, 134.6, 136.5, 138.9 (arom. C +
olefinic C), 154.9 (amidic CO), 186.4 (ketonic CO). Elemental
analysis: CysH;9CI3N,0, (497.80) required C, 62.73; H, 3.85; N,
5.63, found C, 62.61; H, 3.71; N, 5.47.

3,5-Bis[(E)-4-chlorobenzylidene]-N-(4-methoxyphenyl)-4-
oxopiperidine-1-carboxamide (31)

Obtained from reaction of 14 and 21. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 210-212 °C, yield 91%
(1.12 @). IR: v /em ™' 1670, 1636, 1605, 1589. "H-NMR 6 (ppm):
3.67 (s, 3H, OCH3), 4.81 (s, 4H, 2 NCH,), 6.77 (d, /] = 7.9 Hz, 2H,
arom. H), 7.16 (d, J = 7.9 Hz, 2H, arom. H), 7.51-7.64 (m, 10H, 8
arom. H + 2 olefinic CH), 8.69 (s, 1H, NH). ">*C-NMR 4 (ppm):
45.4 (NCH,), 55.1 (OCH,), 113.5, 122.1, 128.7, 128.8, 132.2,
132.4, 132.5, 132.7, 133.3, 133.67, 133.72, 134.2, 134.5, 136.5,
154.8 (arom. C + olefinic C), 155.3 (amidic CO), 186.6 (ketonic
CO). Elemental analysis: C,;H,,Cl,N,03 (493.38) required C,
65.73; H, 4.49; N, 5.68, found C, 65.64; H, 4.38; N, 5.88.

3,5-Bis[(E)-4-chlorobenzylidene]-N-ethyl-4-oxopiperidine-1-
carboxamide (32)

Obtained from reaction of 14 and 22. Reaction time 24 h. Yellow
microcrystals from n-butanol, mp 211-213 °C, yield 88% (0.92
). IR: ¥ /em ™" 1670, 1628, 1612, 1535. "H-NMR 6 (ppm): 0.91
(t,J = 6.7 Hz, 3H, CH,), 2.95 (quintet, ] = 6.0 Hz, 2H, NCH,CH3,),
4.67 (s, 4H, 2 NCH,), 6.80 (s, 1H, NH), 7.55-7.60 (m, 10H, 8
arom. H + 2 olefinic CH). *C-NMR ¢ (ppm): 15.4 (CH3), 34.9
(NCH,CH3;), 44.9 (NCH,), 128.8, 132.4, 133.3, 133.8, 134.1, 134.3
(arom. C + olefinic C), 156.9 (amidic CO), 186.8 (ketonic CO).
Elemental analysis: C»,H,(Cl,N,0, (415.31) required C, 63.62;
H, 4.85; N, 6.75, found C, 63.81; H, 4.93; N, 6.64.

N-Benzyl-3,5-bis[(E)-4-chlorobenzylidene]-4-oxopiperidine-1-
carboxamide (33)

Obtained from reaction of 14 and 23. Reaction time 24 h. Yellow
microcrystals from n-butanol, mp 199-201 °C, yield 92% (1.10
2). IR: va/em ™ 1674, 1628, 1612, 1528. "H-NMR 6 (ppm): 4.15
(s, 2H, PhCH,), 4.74 (s, 4H, 2 NCH,), 7.12 (d, ] = 7.2 Hz, 2H,
arom. H), 7.17 (t,] = 7.0 Hz, 1H, arom. H), 7.24 (t,] = 7.1 Hz, 2H,
arom. H), 7.40 (br s, 1H, NH), 7.54 (d, J = 7.9 Hz, 4H, arom. H),
7.59 (d,J = 7.9 Hz, 4H, arom. H), 7.63 (s, 2H, 2 olefinic CH). **C-
NMR 6 (ppm): 43.4 (PhCH,), 45.2 (NCH,), 126.4, 126.7, 128.0,
128.7,132.4, 133.3, 133.8, 134.1, 134.4, 140.5 (arom. C + olefinic
C), 157.2 (amidic CO), 185.6 (ketonic CO). Elemental analysis:
C,7H,,CLN,0, (477.39) required C, 67.93; H, 4.65; N, 5.87,
found C, 68.00; H, 4.56; N, 5.73.

3,5-Bis[(E)-4-fluorobenzylidene]-4-oxo-N-phenylpiperidine-1-
carboxamide (34)

Obtained from reaction of 15 and 19. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 191-193 °C, yield 87%
(0.94 g). IR: v /em ™ 1651, 1597, 1566, 1535. "H-NMR 6 (ppm):
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4.85 (s, 4H, 2 NCH,), 6.92 (t,/ = 7.0 Hz, 1H, arom. H), 7.18 (t,] =
7.4 Hz, 2H, arom. H), 7.29-7.36 (m, 6H, arom. H), 7.67 (br s, 6H,
4 arom. H + 2 olefinic CH), 8.88 (s, 1H, NH). "*C-NMR 6 (ppm):
45.4 (NCH,), 115.7, 115.9, 120.0, 122.2, 128.3, 131.0, 132.8,
133.0, 133.1, 134.7, 139.9, 161.5, 163.5 (arom. C + olefinic C),
155.1 (amidic CO), 186.6 (ketonic CO). Elemental analysis:
Ca6H,oF,N,0, (430.45) required C, 72.55; H, 4.68; N, 6.51,
found: C, 72.41; H, 4.75; N, 6.59.

N-(4-Chlorophenyl)-3,5-bis[(E)-4-fluorobenzylidene]-4-
oxopiperidine-1-carboxamide (35)

Obtained from reaction of 15 and 20. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 192-194 °C, yield 95%
(1.10 g). IR: vpp/em ™" 1655, 1600, 1574, 1504. "H-NMR 6 (ppm):
4.85 (s, 4H, 2 NCH,), 7.22-7.37 (m, 7H, arom. H), 7.55-7.58 (br d,
2H, arom. H), 7.66 (br s, 5H, 3 arom. H + 2 olefinic CH), 9.00 (s,
1H, NH). ">C-NMR 6 (ppm): 45.4 (NCH,), 115.6, 115.7, 115.9,
119.8, 121.3, 125.7, 128.2, 131.0, 132.6, 132.67, 132.72, 133.1,
134.8,139.0,161.5, 163.5 (arom. C + olefinic C), 154.9 (amidic CO),
186.5 (ketonic CO). Elemental analysis: C,sH;9CIF,N,O, (464.90)
required C, 67.17; H, 4.12; N, 6.03, found C, 67.33; H, 4.17; N, 6.07.

3,5-Bis[(E)-4-fluorobenzylidene]-N-(4-methoxyphenyl)-4-
oxopiperidine-1-carboxamide (36)

Obtained from reaction of 15 and 21. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 189-191 °C, yield 97%
(1.12 @). IR: vay/cm* 1670, 1628, 1597, 1504. *H-NMR 6 (ppm):
3.67 (s, 3H, OCH3), 4.82 (s, 4H, 2 NCH,), 6.78 (d,J = 7.8 Hz, 2H,
arom. H), 7.17 (d, J = 7.8 Hz, 2H, arom. H), 7.34 (t, ] = 8.1 Hz,
4H, arom. H) 7.66 (br s, 6H, 4 arom. H + 2 olefinic CH), 8.71 (s,
1H, NH). *C-NMR 6 (ppm): 45.3 (NCH,), 55.1 (OCHj;), 113.5,
115.7, 115.9, 122.1, 131.02, 131.04, 132.8, 132.9, 133.0, 133.1,
134.6, 154.8, 161.5, 163.5 (arom. C + olefinic C), 155.3 (amidic
CO), 186.7 (ketonic CO). Elemental analysis: for C,,H,,F,N,03
(460.48) required C, 70.43; H, 4.82; N, 6.08, found C, 70.49; H,
4.94; N, 6.01.

N-Ethyl-3,5-bis[(E)-4-fluorobenzylidene]-4-oxopiperidine-1-
carboxamide (37)

Obtained from reaction of 15 and 22. Reaction time 24 h. Pale
yellow microcrystals from benzene, mp 180-182 °C, yield 94%
(0.90 ). IR: ¥ /cm ™' 1674, 1620, 1582, 1543. "H-NMR 6 (ppm):
0.92 (t, J = 6.9 Hz, 3H, CH,), 2.96 (quintet, ] = 6.2 Hz, 2H,
NCH,CH3), 4.68 (s, 4H, 2 NCH,), 6.81 (s, 1H, NH), 7.33 (t, ] =
8.3 Hz, 4H, arom. H) 7.62 (br d, 6H, 4 arom. H + 2 olefinic CH).
3C-NMR ¢ (ppm): 15.4 (CH;), 34.9 (NCH,CHj), 44.9 (NCH,),
115.9, 131.1, 133.0, 134.4, 161.5, 163.5 (arom. C + olefinic C),
156.9 (amidic CO), 186.8 (ketonic CO). Elemental analysis:
Cy,H,0F,N,0, (382.41) required C, 69.10; H, 5.27; N, 7.33, found
C, 69.15; H, 5.36; N, 7.19.

N-Benzyl-3,5-bis[(E)-4-fluorobenzylidene]-4-oxopiperidine-1-
carboxamide (38)

Obtained from reaction of 15 and 23. Reaction time 24 h. Pale
yellow microcrystals from n-butanol, mp 178-180 °C, yield 97%
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(1.02 g). IR: ¥pa/em ' 1674, 1606, 1582, 1543. "H-NMR 6 (ppm):
4.17 (s, 2H, PhCH,), 4.75 (s, 4H, 2 NCH,), 7.13 (d, ] = 7.2 Hz, 2H,
arom. H), 7.17 (t,/ = 7.1 Hz, 1H, arom. H), 7.24 (t,] = 7.2 Hz, 2H,
arom. H), 7.33 (t,J = 8.3 Hz, 4H, arom. H), 7.41 (br s, 1H, NH),
7.64 (br s, 6H, 4 arom. H + 2 olefinic CH). *C-NMR ¢ (ppm): 43.4
(PhCH,), 45.1 (NCH,), 115.7, 115.8, 126.4, 126.8, 128.0, 131.0,
131.1, 132.99, 133.0, 133.04, 133.1, 134.5, 140.6, 161.5, 163.5
(arom. C + olefinic C), 157.2 (amidic CO), 186.7 (ketonic CO).
Elemental analysis: C,,H,,F,N,0, (444.48) required C, 72.96; H,
4.99; N, 6.30, found C, 73.12; H, 4.92; N, 6.10.

3,5-Bis[(E)-4-methylbenzylidene]-4-oxo-N-phenylpiperidine-1-
carboxamide (39)

Obtained from reaction of 16 and 19. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 221-223 °C, yield 87%
(0.92 ). IR: ¥y /em ™ ' 1670, 1643, 1601, 1535. "H-NMR § (ppm):
2.37 (s, 6H, 2 ArCHj), 4.85 (s, 4H, 2 NCH,), 6.91 (t, J = 7.1 Hz,
1H, arom. H), 7.18 (t,J = 7.3 Hz, 2H, arom. H), 7.28-7.33 (m, 6H,
arom. H), 7.49 (d, J = 7.5 Hz, 4H, arom. H), 7.64 (s, 2H, olefinic
CH), 8.88 (s, 1H, NH). *C-NMR ¢ (ppm): 21.0 (ArCHj;), 45.5
(NCH,), 119.9, 122.1, 128.3, 129.4, 130.8, 131.7, 132.3, 135.7,
139.4, 140.0 (arom. C + olefinic C), 155.1 (amidic CO), 186.6
(ketonic CO). Elemental analysis: C,gH,6N,0, (422.53) required
C, 79.59; H, 6.20; N, 6.63, found C, 79.66; H, 6.31; N, 6.60.

N-(4-Methoxyphenyl)-3,5-bis[(E)-4-methylbenzylidene]-4-
oxopiperidine-1-carboxamide (40)

Obtained from reaction of 16 and 21. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 230-232 °C, yield 98%
(1.11 g). IR: vya/em ™" 1674, 1628, 1605, 1582. "H-NMR 6 (ppm):
2.36 (s, 6H, 2 ArCH3), 3.67 (s, 3H, OCH3), 4.83 (s, 4H, 2 NCH,),
6.77 (d,J = 7.7 Hz, 2H, arom. H), 7.18 (d, J/ = 7.7 Hz, 2H, arom.
H), 7.31(d,J = 7.0 Hz, 4H, arom. H) 7.48 (d, J = 7.1 Hz, 4H, rom.
H), 7.63 (s, 2H, 2 olefinic CH), 8.71 (s, 1H, NH). "*C-NMR
6 (ppm): 21.0 (ArCHj;), 45.5 (NCH,), 55.1 (OCHj,), 113.5, 122.0,
129.4, 130.8, 131.7, 132.4, 132.9, 135.6, 139.4, 154.7 (arom. C +
olefinic C), 155.3 (amidic CO), 186.7 (ketonic CO). Elemental
analysis: CyoH,gN,05 (452.55) required C, 76.97; H, 6.24; N,
6.19, found C, 76.81; H, 6.05; N, 6.10.

N-Ethyl-3,5-bis[(E)-4-methylbenzylidene]-4-oxopiperidine-1-
carboxamide (41)

Obtained from reaction of 16 and 22. Reaction time 24 h. Yellow
microcrystals from benzene, mp 174-176 °C, yield 88% (0.82 g).
IR: Vax/cm ™ ' 1670, 1628, 1605, 1535. "H-NMR 6 (ppm): 0.92 (t, ]
= 6.6 Hz, 3H, CH;), 2.37 (s, 6H, 2 ArCH;), 2.96 (quintet, J =
6.3 Hz, 2H, NCH,CHj,), 4.68 (s, 4H, 2 NCH,), 6.79 (s, 1H, NH),
7.31 (d, J = 7.2 Hz, 4H, arom. H) 7.45 (d, ] = 7.3 Hz, 4H, arom.
H), 7.58 (s, 2H, 2 olefinic CH). >C-NMR ¢ (ppm): 15.4
(NCH,CHj), 21.0 (ArCH;), 34.9 (NCH,CHj), 45.0 (NCH,), 129.4,
130.8, 131.8, 132.5, 135.4, 139.3 (arom. C + olefinic C), 157.0
(amidic CO), 186.9 (ketonic CO). Elemental analysis:
C,4H,6N,0, (374.48) required C, 76.98; H, 7.00; N, 7.48, found
C, 77.06; H, 6.94; N, 7.60.

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra05661k

Open Access Article. Published on 21 October 2019. Downloaded on 11/8/2025 11:33:51 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

N-Benzyl-3,5-bis[(E)-4-methylbenzylidene]-4-oxopiperidine-1-
carboxamide (42)

Obtained from reaction of 16 and 23. Reaction time 24 h. Yellow
microcrystals from methanol, mp 166-168 °C, yield 92% (1.00
g). IR: va/em ™ 1651, 1601, 1566, 1512. "H-NMR 6 (ppm): 2.36
(s, 6H, 2 ArCH3;), 4.17 (s, 2H, PhCHS,), 4.75 (s, 4H, 2 NCH,), 7.14
(d,J = 7.2 Hz, 2H, arom. H), 7.17 (d, J = 7.1 Hz, 1H, arom. H),
7.24 (t, ] = 7.2 Hz, 2H, arom. H), 7.31 (d, J = 7.5 Hz, 4H, arom.
H), 7.40 (br s, 1H, NH), 7.46 (d, ] = 7.5 Hz, 4H, arom. H), 7.62 (s,
2H, 2 olefinic CH). >C-NMR 6 (ppm): 21.0 (ArCHj), 43.5
(PhCH,), 45.2 (NCH,), 126.4, 126.8, 128.0, 129.4, 130.8, 131.7,
132.5, 135.5, 139.3, 140.6 (arom. C + olefinic C), 157.2 (amidic
CO), 186.7 (ketonic CO). Elemental analysis: CyoHysN,O,
(436.56) required C, 79.79; H, 6.47; N, 6.42, found C, 79.92; H,
6.61; N, 6.48.

3,5-Bis[(E)-4-methoxybenzylidene]-4-oxo-N-phenylpiperidine-
1-carboxamide (43)

Obtained from reaction of 17 and 19. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 190-192 °C, yield 93%
(1.05 ). IR: ¥ /ecm ™' 1670, 1643, 1597, 1558. "H-NMR 6 (ppm):
3.83 (s, 6H, 2 OCHj,), 4.84 (s, 4H, 2 NCH,), 6.91 (t, ] = 6.5 Hz, 1H,
arom. H), 7.07 (d, J = 7.6 Hz, 4H, arom. H), 7.18 (t,/ = 7.0 Hz,
2H, arom. H), 7.30 (d, J = 7.7 Hz, 2H, arom. H), 7.56 (d, ] =
7.7 Hz, 4H, arom. H), 7.62 (s, 2H, olefinic CH), 8.88 (s, 1H, NH).
3C-NMR ¢ (ppm): 45.5 (NCH,), 55.4 (OCH3), 114.4, 119.9, 122.1,
127.1,128.3,131.0, 132.7, 135.4, 140.1, 160.3 (arom. C + olefinic
C), 155.2 (amidic CO), 186.4 (ketonic CO). Elemental analysis:
CysH,6N,0,4 (454.53) required C, 73.99; H, 5.77; N, 6.16, found
C, 73.80; H, 5.82; N, 6.19.

N-(4-Chlorophenyl)-3,5-bis[(E)-4-methoxybenzylidene]-4-
oxopiperidine-1-carboxamide (44)

Obtained from reaction of 17 and 20. Reaction time 12 h. Pale
yellow microcrystals from n-butanol, mp 185-187 °C, yield 84%
(1.02 g). IR: v /em ' 1663, 1636, 1597, 1566. "H-NMR 6 (ppm):
3.83 (s, 6H, 2 OCH}), 4.84 (s, 4H, 2 NCH,), 7.07 (br d, 4H, arom.
H), 7.24 (br s, 2H, arom. H), 7.34 (br s, 2H, arom. H) 7.55 (br s,
4H, rom. H), 7.62 (s, 2H, 2 olefinic CH), 9.01 (s, 1H, NH). *C-
NMR 6 (ppm): 45.5 (NCH,), 55.3 (OCH,), 114.4, 121.3, 125.6,
127.1,128.1, 130.8, 132.7, 135.5, 139.1, 160.3 (arom. C + olefinic
C), 154.9 (amidic CO), 186.3 (ketonic CO). Elemental analysis:
C,sH,5CIN,0, (488.97) required C, 68.78; H, 5.15; N, 5.73, found
C, 68.89; H, 5.07; N, 5.92.

3,5-Bis[(E)-4-methoxybenzylidene]-N-(4-methoxyphenyl)-4-
oxopiperidine-1-carboxamide (45)

Obtained from reaction of 17 and 21. Reaction time 12 h. Yellow
microcrystals from n-butanol, mp 212-214 °C, yield 80% (0.97
g). IR: v, /em ™ 1670, 1628, 1597, 1558. "H-NMR 6 (ppm): 3.67
(s, 3H, OCH3), 3.83 (s, 6H, 2 OCH3), 4.82 (s, 4H, 2 NCH,), 6.77 (d,
J = 8.0 Hz, 2H, arom. H), 7.06 (d, ] = 7.7 Hz, 4H, arom. H), 7.19
(d,J = 8.1 Hz, 2H, arom. H) 7.56 (d, ] = 8.0 Hz, 4H, rom. H), 7.61
(s, 2H, 2 olefinic CH), 8.71 (s, 1H, NH). *C-NMR 6 (ppm): 45.4
(NCH,), 55.1 (OCH;), 55.3 (OCH;3), 113.5, 114.3, 122.0, 127.1,
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131.0, 132.7, 135.3, 155.3, 160.3 (arom. C + olefinic C), 154.7
(amidic C€O), 186.5 (ketonic CO). Elemental analysis:
C,oH,sN,05 (484.55) required C, 71.88; H, 5.82; N, 5.78, found
C, 71.94; H, 5.95; N, 5.86.

N-Ethyl-3,5-bis[(E)-4-methoxybenzylidene]-4-oxopiperidine-1-
carboxamide (46)

Obtained from reaction of 17 and 22. Reaction time 24 h. Yellow
microcrystals from benzene, mp 173-175 °C, yield 98% (0.99 g).
IR: Vax/cm ™ ' 1665, 1620, 1597, 1566. "H-NMR 6 (ppm): 0.93 (t, ]
= 6.4 Hz, 3H, CH,), 2.98 (br s, 2H, NCH,CH;), 3.82 (s, 6H, 2
OCHj,), 4.67 (s, 4H, 2 NCH,), 6.81 (s, 1H, NH), 7.05 (d,J = 7.9 Hz,
4H, arom. H) 7.52 (d, J = 7.9 Hz, 4H, arom. H), 7.57 (s, 2H, 2
olefinic CH). > C-NMR & (ppm): 15.5 (CH3), 35.0 (NCH,CHj),
44.9 (NCH,), 55.3 (OCH3), 114.3,127.2,131.2,132.7,135.1, 160.2
(arom. C + olefinic C), 157.0 (amidic CO), 186.6 (ketonic CO).
Elemental analysis: C,,H,6N,0, (406.48) required C, 70.92; H,
6.45; N, 6.89, found C, 71.06; H, 6.51; N, 6.92.

N-Benzyl-3,5-bis[(E)-4-methoxybenzylidene]-4-oxopiperidine-
1-carboxamide (47)

Obtained from reaction of 17 and 23. Reaction time 24 h. Yellow
microcrystals from n-butanol, mp 177-179 °C, yield 85% (1.00
g). IR: ¥pa/em ™' 1670, 1628, 1597, 1535. "H-NMR 6 (ppm): 3.82
(s, 6H, 2 OCH3), 4.18 (s, 2H, PhCH,), 4.74 (s, 4H, 2 NCH,), 7.05
(d,J = 7.9 Hz, 4H, arom. H), 7.14-7.18 (m, 3H, arom. H), 7.24 (t,
J = 7.2 Hz, 2H, arom. H), 7.41 (br s, 1H, NH), 7.54 (d, ] = 7.9 Hz,
4H, arom. H), 7.60 (s, 2H, 2 olefinic CH). >*C-NMR 6 (ppm): 43.5
(PhCH,), 45.2 (NCH,), 55.3 (OCH;), 114.3, 126.4, 126.8, 127.1,
128.0, 131.2, 132.7, 135.2, 140.7, 160.2 (arom. C + olefinic C),
157.2 (amidic CO), 186.5 (ketonic CO). Elemental analysis:
C1oH,3N,0, (468.55) required C, 74.34; H, 6.02; N, 5.98, found
C, 74.55; H, 6.06; N, 5.96.

(3E,5E)-4-Ox0-N-phenyl-3,5-bis(thiophen-2-ylmethylene)
piperidine-1-carboxamide (48)

Obtained from reaction of 18 and 19. Reaction time 12 h. Yellow
microcrystals from n-butanol, mp 188-190 °C, yield 87% (0.88
). IR: v /em ' 1670, 1647, 1589, 1535. "H-NMR 6 (ppm): 4.86
(s, 4H, 2 NCH,), 6.94 (t, J = 7.0 Hz, 1H, arom. H), 7.21 (t, ] =
7.4 Hz, 2H, arom. H), 7.29 (br s, 2H, arom. H), 7.36 (d, J = 7.6 Hz,
2H, arom. H), 7.64 (s, 2H, olefinic CH), 7.86 (br s, 2H, arom. H),
7.96 (br s, 2H, arom. H), 9.08 (s, 1H, NH). "*C-NMR ¢ (ppm): 46.0
(NCH,), 120.2, 122.6, 128.4, 128.8, 129.0, 130.3, 132.7, 134.7,
138.2, 140.6 (arom. C + olefinic C), 156.0 (amidic CO), 185.9
(ketonic CO). Elemental analysis: C,,H;gN,0,S, (406.52)
required C, 65.00; H, 4.46; N, 6.89, found C, 64.93; H, 4.56; N,
6.95.

(3E,5E)-N-(4-Methoxyphenyl)-4-ox0-3,5-bis(thiophen-2-
ylmethylene)piperidine-1-carboxamide (49)

Obtained from reaction of 18 and 21. Reaction time 12 h. Yellow
microcrystals from n-butanol, mp 194-196 °C, yield 84% (0.92
g). IR: v /em ™' 1667, 1651, 1593, 1535. "H-NMR 6 (ppm): 3.68
(s, 3H, OCH3), 4.83 (s, 4H, 2 NCH,), 6.80 (d, J = 7.9 Hz, 2H,
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arom. H), 7.24 (d, J = 7.7 Hz, 2H, arom. H), 7.28 (br s, 2H, arom.
H), 7.64 (s, 2H, 2 olefinic CH), 7.84 (br s, 2H, arom. H), 7.96 (br s,
2H, arom. H), 8.90 (s, 1H, NH). ">*C-NMR 6 (ppm): 45.4 (NCH,),
55.1 (OCHj), 113.5, 121.7, 127.9, 128.6, 129.9, 132.2, 133.0,
134.2, 137.7, 154.7 (arom. C + olefinic C), 155.7 (amidic CO),
185.5 (ketonic CO). Elemental analysis: C,3H,oN,05S, (436.54)
required C, 63.28; H, 4.62; N, 6.42, found C, 63.12; H, 4.53; N,
6.56.

(3E,5E)-N-Ethyl-4-0x0-3,5-bis(thiophen-2-ylmethylene)
piperidine-1-carboxamide (50)

Obtained from reaction of 18 and 22. Reaction time 24 h. Yellow
microcrystals from n-butanol, mp 197-199 °C, yield 96% (0.86
g). IR: v /em ™ 1670, 1636, 1589, 1551. "H-NMR 6 (ppm): 0.97
(t,] = 6.5 Hz, 3H, CH,), 3.02 (br s, 2H, NCH,CHj), 4.69 (s, 4H, 2
NCH,), 6.91 (s, 1H, NH), 7.28 (d, J = 3.1 Hz, 2H, arom. H), 7.60
(s, 2H, 2 olefinic CH), 7.79 (br s, 2H, arom. H), 7.95 (br s, 2H,
arom. H). "*C-NMR 6 (ppm): 15.4 (CH,), 35.1 (NCH,CH3), 44.9
(NCHZ), 127.6, 128.5, 130.2, 132.1, 134.0, 137.8 (arom. C +
olefinic C), 157.3 (amidic CO), 185.7 (ketonic CO). Elemental
analysis: C;3H13N,0,S, (358.47) required C, 60.31; H, 5.06; N,
7.81, found C, 60.23; H, 5.21; N, 7.98.

(3E,5E)-N-Benzyl-4-ox0-3,5-bis(thiophen-2-ylmethylene)
piperidine-1-carboxamide (51)

Obtained from reaction of 18 and 23. Reaction time 24 h. Yellow
microcrystals from n-butanol, mp 175-177 °C, yield 95% (1.00
g). IR: v /em ™! 1663, 1620, 1597, 1566. "H-NMR 6 (ppm): 4.24
(s, 2H, PhCH,), 4.76 (s, 4H, 2 NCH,), 7.20-7.28 (m, 7H, arom. H),
7.55 (br s, 1H, NH), 7.61 (s, 2H, 2 olefinic CH), 7.83 (br s, 2H,
arom. H), 7.94 (br s, 2H, arom. H). *C-NMR § (ppm): 43.7
(PhCH,), 45.1 (NCH,), 126.4, 126.9, 127.8, 128.1, 128.5, 130.1,
132.1, 134.0, 137.8, 140.6 (arom. C + olefinic C), 157.5 (amidic
CO), 185.6 (ketonic CO). Elemental analysis: Cy3H,oN,0,S,
(420.55) required C, 65.69; H, 4.79; N, 6.66, found C, 65.81; H,
4.85; N, 6.52.

X-ray crystallography

Experimental part of X-ray crystallography is reported in the
ESL+

In vitro antitumor screening

Experimental part of the in vitro antitumor screening is reported
in the ESL¥

2D-QSAR studies

Experimental part of the 2D-QSAR studies is reported in the
ESLY

Human DNA topoisomerase Il inhibitory properties

Experimental part of the Human DNA topoisomerase Ilo
inhibitory properties determination is reported in the ESLf
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