

Cite this: RSC Adv., 2019, 9, 25703

 Received 15th July 2019
 Accepted 5th August 2019

 DOI: 10.1039/c9ra05423e
rsc.li/rsc-advances

Halide exchange studies of novel Pd(II) NNN-pincer complexes†

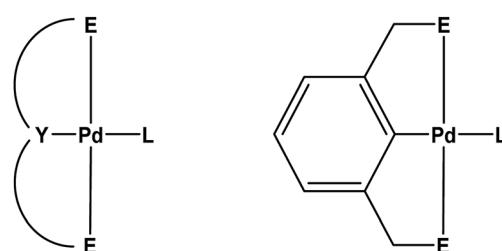
 Seher Kuyuldar, ^{ab} Clemens Burda, ^{*b} and William B. Connick, ^{‡a}

Palladium(II) complexes with an NNN type pincer ligand (pip_2NNN = 2,6-bis(piperidyl-methyl)pyridine) are synthesized and characterized. Electronic and ^1H NMR spectra point to decreasing filled/filled repulsions between the $d\pi(\text{Pd})$ orbitals and the halide lone pair orbitals along the $\text{Cl}^- < \text{Br}^- < \text{I}^-$ series. For all complexes, the most downfield α -piperidyl resonance of the pip_2NNN ligand is sensitive to changes in the coordinated halide while the *meta*-pyridyl and benzylic resonances are sensitive to changes in the counter anion. This sensitivity is utilized to study halide association and exchange at the fourth coordination site. Conductivity and ^1H NMR spectroscopy confirm the interaction between the exogenous anion (Cl^- , Br^- , BF_4^-) and $\text{Pd}(\text{pip}_2\text{NNN})\text{X}^+$ ($\text{X} = \text{Cl}^-$, Br^-).

Introduction

Pincer metal complexes in which three donor sites of the ligand stabilize a planar metal center have been studied extensively. Variations to the so-called ECE type ligand (Chart 1) where E symbolizes coordination through flanking NR_2 , PR_2 , SR , SeR or OR groups afford complexes with applications especially in catalysis^{1–8} but also in other fields including sensing,^{6,9–12} materials science^{13–19} and medicinal chemistry.^{18,20} Among various metals, palladium is one of the most studied owing mainly to its importance in organic synthesis. While formation of a carbon–palladium bond provides stability, replacing carbon with other elements such as Si, P, N have been shown to lead to significant changes in reactivity and lead to significant developments in catalysis^{4,8,21–27} and cytotoxicity studies.^{18,20,28–32}

A key factor in reactivity is the general lability of the fourth coordination site. For instance, the nature of the monodentate ligand (L) at the fourth coordination site has been shown to provide remarkable control over the electronic structures of palladium and platinum complexes with NCN pincer ligands.^{33–37}


This article presents palladium(II) complexes with the NNN analog of the pip_2NCN ligand. The neutral pip_2NNN pincer ligand (2,6-bis(piperidyl-methyl)pyridine) shown in Scheme 1 was used to prepare a series of $[\text{Pd}(\text{pip}_2\text{NNN})\text{X}]^+$ complexes with

various anions (Cl^- , Br^- , I^- , BF_4^-) and study the effect of the coordinating halide and the counter-anion by ^1H NMR spectroscopy. We will be able to investigate halide exchange at the fourth coordination site because pip_2NNN is sensitive to the kind of halide and mode of interaction. Understanding the role of coordinated halide *versus* the anion has the potential to shed light into competing metal site interactions in catalytic systems with square planar geometries, especially platinum and palladium catalysts.

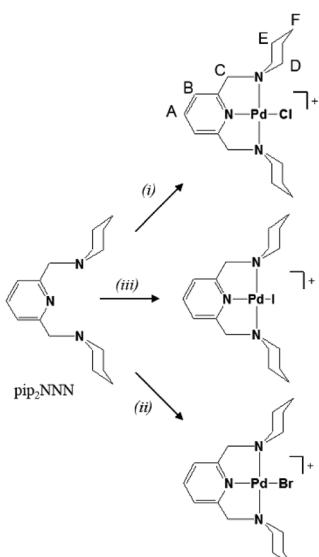
Results and discussion

Synthesis of $\text{Pd}(\text{pip}_2\text{NNN})\text{X}^+$ salts

Salts of $\text{Pd}(\text{pip}_2\text{NNN})\text{X}^+$ ($\text{X} = \text{Cl}^-$, Br^- , I^-), hereafter referred to as $[\text{X}]^+$, are readily prepared by stirring either PdX_2 or $\text{Pd}(\text{COD})\text{X}_2$ ($\text{COD} = 1,5\text{-cyclooctadiene}$) in acetonitrile solution of pip_2NNN (Scheme 1). Depending on the reaction conditions, salts with

$\text{Y} = \text{C, N, P, Si}$
 $\text{E} = \text{NR}_2, \text{PR}_2, \text{OR, SR, SeR}$
 $\text{L} = \text{monodentate ligands}$

Chart 1 General depiction of palladium pincer complexes.


^aDepartment of Chemistry, University of Cincinnati, 2600 Clifton Ave., Cincinnati, OH 44221, USA

^bDepartment of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA. E-mail: burda@case.edu

† Electronic supplementary information (ESI) available: Experimental section. Synthesis, UV visible absorption spectra and positive and negative ion spectra for the PdX_4^{2-} and/or $\text{Pd}_2\text{X}_6^{2-}$ salts. See DOI: 10.1039/c9ra05423e

‡ William B. Connick passed away in 2018.

Scheme 1 Synthesis of $\text{Pd}(\text{pip}_2\text{NNN})\text{X}^+$ ($\text{X} = \text{Cl}, \text{Br}, \text{I}$) salts. (i) $\text{Pd}(\text{COD})\text{Cl}_2$ or PdCl_2 , acetonitrile, 40°C . (ii) $\text{Pd}(\text{COD})\text{Br}_2$ or PdBr_2 , acetonitrile, RT. (iii) PdI_2 , acetonitrile, 50°C . The unequal protons are labelled (A–F) on $\text{Pd}(\text{pip}_2\text{NNN})\text{Cl}^+$.

X^- , PdX_4^{2-} and/or $\text{Pd}_2\text{X}_6^{2-}$ counter anions are obtained. More information about the synthesis, isolation, elemental analyses, UV-visible absorption spectroscopy, and positive and negative mass spectroscopy of the PdX_4^{2-} and/or $\text{Pd}_2\text{X}_6^{2-}$ salts are provided in the ESI.† Briefly, the X^- , PdX_4^{2-} and/or $\text{Pd}_2\text{X}_6^{2-}$ salts have nearly identical ^1H NMR spectra in acetonitrile, but are readily distinguished by their colors, solubilities, negative anion mass spectra, electronic absorption spectra, and elemental analyses. The Cl^- , Br^- and I^- salts are obtained as pure compounds, whereas samples containing PdX_4^{2-} or $\text{Pd}_2\text{X}_6^{2-}$ are usually mixed with one or both of the other two anions. The halide salts form yellow to orange solutions, whereas salts containing $\text{Pd}_n\text{X}_{2n+2}^{2-}$ anions ($n = 1, 2$) are only weakly soluble in acetonitrile and give yellow solutions in the case of $\text{X} = \text{Cl}, \text{Br}$ and red-brown solutions in the case of $\text{X} = \text{I}$. ^1H NMR and mass spectra, as well as elemental analyses, confirm that the yellow/orange major products isolated from the filtrates are the halide salts of $[\text{X}]^+$. In contrast, for each reaction, the elemental analysis of the less soluble minor product is consistent with having PdX_4^{2-} and/or $\text{Pd}_2\text{X}_6^{2-}$ as counter anions.

Electronic spectroscopy

To better understand the electronic structures of the complexes with the pip_2NNN ligand, absorption spectra of acetonitrile solutions of the halide salts of $[\text{X}]^+$ were recorded. The data are collected in Table 1 and the spectra are shown in Fig. 1.

For $[\text{X}]^+$, the UV region is dominated by intense absorptions between 200 and 280 nm (Fig. 1). Since the free ligand absorbs moderately in this region ($265 \text{ nm}, 3800 \text{ cm}^{-1} \text{ M}^{-1}$), these bands most likely have some contribution from ligand-based transitions. There is a moderately intense shoulder at 297 nm

($5600 \text{ cm}^{-1} \text{ M}^{-1}$) in the $[\text{I}]^+$ spectrum. $\text{Pd}(\text{pip}_2\text{NCN})\text{X}$ ($\text{X} = \text{Cl}, \text{Br}, \text{I}$) complexes exhibit slightly weaker absorption bands at shorter wavelengths ($265\text{--}285 \text{ nm}, 2000\text{--}4000 \text{ cm}^{-1} \text{ M}^{-1}$) that have been assigned as having significant MLCT character involving the pip_2NCN^- ligand.³⁸ The MLCT transitions of the pip_2NNN complexes are expected to occur at longer wavelengths because the greater π -acceptor capability of pip_2NNN . Therefore, this band is tentatively assigned as having significant MLCT character involving pip_2NNN . The transition is anticipated to be shifted to shorter wavelengths in the spectra of the $[\text{Cl}]^+$ and $[\text{Br}]^+$ complexes, and hence obscured by other transitions. In support of this assignment, it is noteworthy that the lowest spin-allowed MLCT transition of $\text{Pd}(4\text{-mbpy})\text{I}_2$ ($4\text{-mbpy} = 4,4'\text{-dimethyl-2,2'-bipyridine}$) occurs near 306 nm ($18\ 400 \text{ cm}^{-1} \text{ M}^{-1}$, in DMF).³⁹

A broad charge transfer feature appears at longer wavelengths in the spectrum of each halide complex, $[\text{Cl}]^+$ ($362 \text{ nm}, 1000 \text{ cm}^{-1} \text{ M}^{-1}$, FWHM = 2100 cm^{-1}); $[\text{Br}]^+$ ($376 \text{ nm}, 850 \text{ cm}^{-1} \text{ M}^{-1}$, FWHM = 2250 cm^{-1}) and $[\text{I}]^+$ ($421\text{sh nm}, 800 \text{ cm}^{-1} \text{ M}^{-1}$, FWHM = 2300 cm^{-1}). A comparison to related complexes suggests that this band is unlikely to have MLCT character. For example, the lowest spin-allowed metal-to-ligand(pyridyl) charge-transfer band of $\text{Pt}(2,6\text{-bis(aminomethyl)pyridine})(\text{OH})^+$ in aqueous solution is shifted to the blue of 320 nm,⁴⁰ and the corresponding transition for the palladium(II) analog is expected to occur at even shorter wavelengths.

Similarly, the lowest spin-allowed metal-to-ligand(bpy) charge-transfer transition of $\text{Pd}(\text{bpy})\text{Cl}_2$ (bpy = 2,2'-bipyridine) occurs near 320 nm in aqueous solution;⁴¹ the MLCT transition of $[\text{X}]^+$ is expected to occur at shorter wavelengths because of the stabilization of the unoccupied $\pi^*(\text{bpy})$ level relative to the $\pi^*(\text{pip}_2\text{NNN})$ level. On the other hand, there are several examples of palladium(II) complexes that are believed to exhibit LMCT transitions in the $>300 \text{ nm}$ region,⁴²⁻⁴⁴ including *trans*- $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$ (CH_2Cl_2 : $345 \text{ nm}, 20\ 135 \text{ cm}^{-1} \text{ M}^{-1}$, FWHM $\sim 3000 \text{ cm}^{-1}$),^{45,46} *cis*- $\text{Pd}(\text{dbcpe})\text{Br}_2$ (CH_3CN : $354 \text{ nm}, 14\ 600 \text{ cm}^{-1} \text{ M}^{-1}$), *cis*- $\text{Pd}(\text{dbcpe})\text{I}_2$ (CH_3CN : $396 \text{ nm}, 6300 \text{ cm}^{-1} \text{ M}^{-1}$)⁴⁷ and $\text{Pd}(\text{TPA})\text{Cl}^+$ (DMSO : $338 \text{ nm}, 485 \text{ cm}^{-1} \text{ M}^{-1}$; $380 \text{ nm}, 416 \text{ cm}^{-1} \text{ M}^{-1}$)⁴⁸ ($\text{dbcpe} = 1,2\text{-bis[di(benzo-15-crown-5)phosphino]ethane}$ ligand; TPA = tris(2-pyridylmethyl)amine). By analogy, the long wavelength band in the spectra of $[\text{X}]^+$ is tentatively assigned to a transition having significant $\text{p}\pi(\text{X}^-) \rightarrow \text{d}_{x^2-y^2}(\text{Pd})$ charge-transfer character. There is considerable variability in the intensities of reported long wavelength LMCT transitions of palladium(II) complexes. The comparatively low intensities of the bands in the spectra of $[\text{X}]^+$ may be a consequence of spin-forbidden character. An alternative explanation is that these bands arise from a ligand field transition. The red shift of this band along the halide series $\text{Cl} < \text{Br} < \text{I}$ is in accord with either assignment.

The $\sim 1000 \text{ cm}^{-1}$ red shift from Cl to Br and the $\sim 2800 \text{ cm}^{-1}$ red shift from Br to I fall within the range of shifts in LMCT bands reported for square planar d^8 complexes such as $\text{Pd}(\text{dbcpe})\text{X}_2$ ($800, 3000 \text{ cm}^{-1}$),⁴⁷ *trans*- $[\text{Pd}_2(\text{P}(\text{Et})_2\text{CH}_2\text{P}(\text{Et})_2)_2\text{X}_4]$ ($\text{Cl-Br}, 1690 \text{ cm}^{-1}$)⁴⁹ and $\text{Ni}(\text{Cynp}_3)^+$ ($700, 3000 \text{ cm}^{-1}$, $\text{Cynp}_3 = \text{tris}(2\text{-dicyclohexylphosphinoethyl)amine}$).⁵⁰

Table 1 UV-vis absorption data for $[\text{Pd}(\text{pip}_2\text{NNN})\text{Cl}]\text{Cl}$, $[\text{Pd}(\text{pip}_2\text{NNN})\text{Br}]\text{Br}$, and $[\text{Pd}(\text{pip}_2\text{NNN})\text{I}]\text{I}$

Compound	$\lambda_{\text{max}}/\text{nm} (\varepsilon/\text{cm}^{-1} \text{M}^{-1})$
$[\text{Pd}(\text{pip}_2\text{NNN})\text{Cl}]\text{Cl}$	209 (34 200), 252 (13 150), 277sh (4300), 362 (1000)
$[\text{Pd}(\text{pip}_2\text{NNN})\text{Br}]\text{Br}$	218 (29 300), 266sh (10 200), 277sh (6700), 376 (850)
$[\text{Pd}(\text{pip}_2\text{NNN})\text{I}]\text{I}$	205 (32 700), 249 (29 600), 277sh (11 400), 297sh (5600), 421 (800)

¹H NMR spectroscopy

A general labeling scheme for inequivalent protons is shown in Scheme 1 for $[\text{Pd}(\text{pip}_2\text{NNN})\text{Cl}]^+$. The ¹H NMR spectra of $[\text{X}]^+$ ($\text{X} = \text{Cl}, \text{Br}, \text{I}$) in acetonitrile exhibit patterns consistent with C_2 symmetry and are qualitatively similar to those of their pip_2NCN^- palladium and platinum analogs.^{33,37} A triplet and a doublet due to the *para* and *meta* protons of the pyridyl ring (A, B) occur between 7.4 and 8.15 ppm (Fig. 2). The benzylic protons (C) give rise to a singlet near 4.6 ppm, suggesting a relatively low barrier to move the benzylic groups in and out of the coordination plane. For $[\text{Cl}]^+$, the α -piperidyl proton resonance at 3.29 ppm (D'') has the appearance of a doublet and is assigned accordingly to the equatorial proton; the resonance at 4.02 ppm (D') has the appearance of a triplet and is assigned to the axial proton. These assignments reflect the expectation of strong coupling between the axial α - and β -protons.⁵¹ The remaining aliphatic proton resonances (E, F) appear as complex multiplets further up field (1.4–1.9 ppm). As expected, the spectra of the complexes with X^- and $\text{Pd}_{n}\text{X}_{2n+2}^{2-}$ counter-anions are essentially identical in CD_3CN .

With the exception of the axial α -piperidyl proton resonances (D') each of the pip_2NNN resonances is shifted downfield from that observed for the corresponding $\text{Pd}(\text{pip}_2\text{NCN})\text{X}$ complex. For example, in CD_3CN the *para*- and *meta*-pyridyl proton resonances (A/B) are shifted downfield by ~ 1 ppm ($[\text{Cl}]^+$, 1.12/0.74; $[\text{Br}]^+$, 1.13/0.75; $[\text{I}]^+$, 1.1/0.72 ppm) from those of $\text{Pd}(\text{pip}_2\text{NCN})\text{X}$. The shifts are smaller for the benzylic protons, C ($[\text{Cl}]^+$,

0.37 ppm; $[\text{Br}]^+$, 0.37 ppm; $[\text{I}]^+$, 0.36 ppm) and the equatorial α -piperidyl proton, D'' ($[\text{Cl}]^+$, 0.15 ppm; $[\text{Br}]^+$, 0.12 ppm; $[\text{I}]^+$, 0.12 ppm). By contrast, the axial α -piperidyl proton resonance, D', is shifted upfield by 0.19 and 0.14 ppm in the spectra of $[\text{Cl}]^+$ and $[\text{Br}]^+$, respectively, and downfield by 0.05 ppm in the spectrum of $[\text{I}]^+$. Thus, the gap between D' and D'' resonances (D'–D''): $[\text{Cl}] \text{Cl}$, 0.36; $[\text{Br}] \text{Br}$, 0.47; $[\text{I}] \text{I}$, 0.67 ppm) is smaller than observed for $\text{Pd}(\text{pip}_2\text{NCN})\text{X}$ ($\text{X} = \text{Cl}$, 0.67; Br , 0.74; I , 0.76 ppm) and increases along the series $\text{Cl} < \text{Br} < \text{I}$ (Cl , 0.33; Br , 0.48; I , 0.69 ppm). When $[\text{X}]^+$ is treated with AgBF_4 to give $\text{Pd}(\text{pip}_2\text{NNN})$ (solvent)⁺, the α -piperidyl protons appear as a singlet at 3.37 ppm, indicating that $\text{Pd}-\text{N}(\text{piperidyl})$ bond cleavage and ring inversion are fast on the NMR timescale.

As noted for the $\text{M}(\text{pip}_2\text{NCN})\text{X}$ ($\text{M} = \text{Pd}, \text{Pt}; \text{X} = \text{Cl}, \text{Br}, \text{I}$) series,^{33,37} the ¹H NMR resonances for $[\text{X}]^+$ undergo a slight downfield shift along the $\text{Cl} < \text{Br} < \text{I}$ series (Fig. 2). The deshielding effect going from the chloro to iodo complex is greatest (0.40 ppm) for the piperidyl axial α -proton resonance (D'), exceeding shifts observed for the analogous $\text{M}(\text{pip}_2\text{NCN})\text{X}$ complexes (Pt , 0.30; Pd , 0.16 ppm).⁵² The sensitivity of the axial proton resonances is consistent with crystal structure data for $[\text{Cl}] \text{Cl}$ and $[\text{Br}] \text{BF}_4$ showing that the axial protons are 0.8–1.0 Å closer to the halide ligand than the equatorial protons when the Pd center is at the equatorial position of the piperidyl N atom. The sensitivity of the remaining resonances to halide ligand substitution decreases along the A > D'' > C > B series, which can be rationalized in terms of through-bond and through-space interactions. The trend along the $\text{Cl} < \text{Br} < \text{I}$ series opposes the relative electronegativities of the halogen groups, as well as patterns in ¹⁹⁵Pt NMR experimental and computational results.⁵³ However, this behavior has been noted for related compounds⁵⁴ and is consistent with structural, spectroscopic and reactivity patterns of many transition metal complexes.⁵⁵ Antipin, Grushin and coworkers have argued that similar trends in crystallographic and NMR data for *trans*- $\text{Pd}(\text{PPh}_3)_2(\text{Ph})\text{X}$ ($\text{X} =$

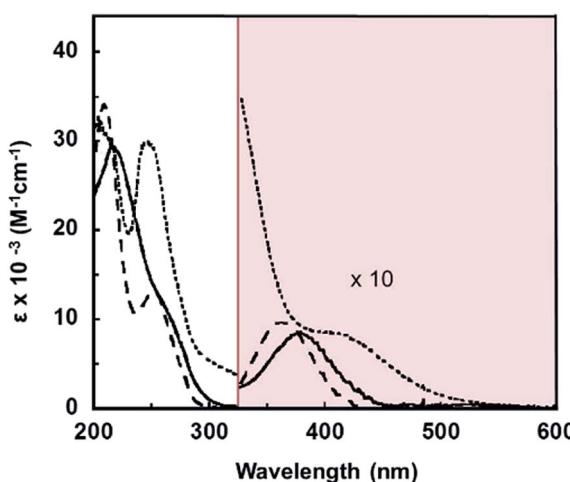


Fig. 1 UV-visible absorption spectra of $[\text{Pd}(\text{pip}_2\text{NNN})\text{Cl}]\text{Cl}$ (—), $[\text{Pd}(\text{pip}_2\text{NNN})\text{Br}]\text{Br}$ (—) and $[\text{Pd}(\text{pip}_2\text{NNN})\text{I}]\text{I}$ (···) in acetonitrile. The shaded area depicts tenfold magnification of the measured spectra.

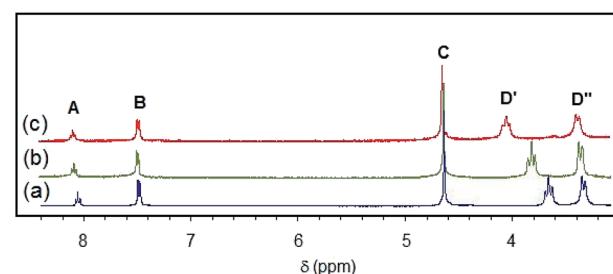


Fig. 2 ¹H NMR spectra of (a) $[\text{Pd}(\text{pip}_2\text{NNN})\text{Cl}]\text{Cl}$, (b) $[\text{Pd}(\text{pip}_2\text{NNN})\text{Br}]\text{Br}$, (c) $[\text{Pd}(\text{pip}_2\text{NNN})\text{I}]\text{I}$ in CD_3CN .

F, Cl, Br, I) can be understood in terms of filled/filled repulsions between the $d\pi$ orbitals of the metal center and the lone pair orbitals of the halide ligands. Infrared studies of five-coordinate $\text{RuHX}(\text{CO})(\text{P}(\text{CMe}_3)_2\text{Me})_2$ ($X = F, Cl, Br, I$) have established that the carbonyl stretching frequency increases along the $F < Cl < Br < I$ series, indicating that filled/filled repulsions decrease along this series.^{54,55} The deshielding of the pip_2NNN ligand resonances along the $Cl < Br < I$ series is likewise consistent with decreasing filled/filled repulsions and electron releasing properties of the Pd-X unit.

Anion dependence of the chemical shift

The ^1H NMR spectra of samples of $[\text{X}]^+$ salts dissolved in CDCl_3 are qualitatively similar to those obtained for samples dissolved in CD_3CN with the surprising difference that the chemical shifts of the cation are strongly dependent on the nature of the anion. The influence of the counter anion is strongest for the *meta*-pyridyl and benzylic resonances which is the reverse of the sensitivity of these resonances to changes in the coordinated halide ligand. As shown in Fig. 3(a) and (b), the spectra of $[\text{Cl}]^+\text{BF}_4^-$ and $[\text{Cl}]^+\text{Cl}^-$ in CDCl_3 are distinctly different. The *meta*-pyridyl (B) and benzylic (C) proton resonances of the BF_4^- salt are shifted upfield by 0.27 and 0.23 ppm, respectively. By contrast, the chemical shifts of the remaining resonances are nearly identical to those of the chloride salt. When slightly more than one equivalent of tetrabutylammonium chloride, TBACl , is added to a chloroform solution of $[\text{Cl}]^+\text{BF}_4^-$, the benzylic and *meta*-pyridyl resonances shift back to where they appeared for the $[\text{Cl}]^+\text{Cl}^-$ complex. However, when TBABF_4 is added to a sample of $[\text{Cl}]^+\text{BF}_4^-$, no appreciable change (<0.05 ppm) is observed in the chemical shift of any resonance. Likewise, addition of TBACl to the $[\text{Cl}]^+\text{Cl}^-$ sample does not shift any of the $[\text{Cl}]^+\text{Cl}^-$ resonances significantly.⁵⁷ The strong influence of one equivalent of chloride ion on the NMR spectrum is indicative of an interaction between the cation and exogenous chloride anion.^{58–60} These effects are attenuated in CD_3CN . The ^1H NMR spectra of $[\text{Cl}]^+\text{Cl}^-$ and $[\text{Cl}]^+\text{BF}_4^-$ in CD_3CN are very similar (<0.07 ppm difference), and addition of TBACl does not alter either spectrum. It is

reasonable to expect that Cl^- , as well as $[\text{Cl}]^+$ and BF_4^- , is better solvated in the higher dielectric solvent ($\epsilon: \text{CH}_3\text{CN}, 37.5; \text{CHCl}_3, 5.5$). In keeping with this interpretation, addition of one equivalent of TBABF_4 to a CDCl_3 solution of the $[\text{Cl}]^+\text{Cl}^-$ modestly shifts the resonances toward their positions in the $[\text{Cl}]^+\text{BF}_4^-$ spectrum; for example, the benzylic resonance C shifts upfield by 0.09 ppm. These observations are consistent with decreasing cation/halide interaction with increasing ionic strength.

Conductivity measurements in acetonitrile confirm that $[\text{Cl}]^+\text{BF}_4^-$ and $[\text{Cl}]^+\text{Cl}^-$ are essentially 1 : 1 electrolytes (0.12 mM $[\text{Cl}]^+\text{Cl}^-$, $138 \text{ S cm}^2 \text{ mol}^{-1}$; 0.12 mM $[\text{Cl}]^+\text{BF}_4^-$, $155 \text{ S cm}^2 \text{ mol}^{-1}$). Interestingly, even in dilute chloroform solution, both salts are essentially non-electrolytes (0.12 mM $[\text{Cl}]^+\text{Cl}^-$, $<2 \text{ S cm}^2 \text{ mol}^{-1}$; 0.12 mM $[\text{Cl}]^+\text{BF}_4^-$, $<2 \text{ S cm}^2 \text{ mol}^{-1}$). This observation and the aforementioned ^1H NMR data indicate that the cation–anion interaction for $[\text{Cl}]^+\text{Cl}^-$ in CDCl_3 is stronger than for $[\text{Cl}]^+\text{BF}_4^-$ and places the metal complex in a significantly different chemical environment than for $[\text{Cl}]^+\text{BF}_4^-$. The similarity between the spectra of $[\text{Cl}]^+\text{BF}_4^-$ in CDCl_3 and CD_3CN , as well as the weak Lewis basicity of BF_4^- , are consistent with conventional ion-pairing. On the other hand, the cation–anion interaction for $[\text{Cl}]^+\text{Cl}^-$ in CDCl_3 causes a more significant perturbation of the NMR spectrum, possibly because the chloride counterion is engaged in an inner-sphere interaction with the metal to form a five-coordinate complex. Such a structure must be fluxional or symmetric such that the equivalency of the piperidyl groups is preserved on the NMR timescale.

The sensitivity of certain resonances to substitution of the halide ligand or the counter-anion is convenient for investigations of the influence of halide anion in mixtures. For example, when one equivalent of TBABr was added to a CDCl_3 solution of $[\text{Cl}]^+\text{BF}_4^-$ (Fig. 3(d)), each resonance (except D') appears at chemical shifts that are close to the average values for pure $[\text{Cl}]^+\text{BF}_4^-$ and $[\text{Br}]^+\text{Br}^-$ solutions (e.g., C: 4.79 ppm ($4.65 + 4.89)/2 = 4.77$ ppm; B: 7.75 ppm ($7.83 + 7.61)/2 = 7.72$ ppm). Although the solution is a mixture of several species (i.e., $[\text{X}]^+\text{BF}_4^-$ and $[\text{X}]^+\text{X}^-$ where $\text{X} = \text{Cl}, \text{Br}$), the coordinated halide has little effect on the chemical shifts and consequently they are close to the averaged values. The D' protons give rise to two distinct resonances in a 3 : 1 intensity ratio (Fig. 3(d)). The less intense resonance (3.92 ppm) is nearly coincident with that of the equatorial α -piperidyl proton resonance of $[\text{Br}]^+\text{Br}^-$ (3.93 ppm), whereas the more intense resonance (3.75 ppm) is coincident with the α -piperidyl proton resonance of $[\text{Cl}]^+\text{Cl}^-$ (3.75 ppm). Thus, only about 25% of the chloride ligand is replaced by bromide confirming the preference for chloride over bromide discussed previously. Assuming that the coordinated halide does not influence the chemical shifts of B and C (i.e., $\delta([\text{Cl}]^+\text{BF}_4^-) = \delta([\text{Br}]^+\text{BF}_4^-)$; $\delta([\text{Cl}]^+\text{Br}^-) = \delta([\text{Br}]^+\text{Br}^-)$; $\delta([\text{Br}]^+\text{Cl}^-) = \delta([\text{Cl}]^+\text{Cl}^-)$) and that the $[\text{Cl}]^+\text{X}^- : [\text{Br}]^+\text{X}^-$ ratio is 3 : 1 (i.e., the $[\text{X}]^+\text{Cl}^- : [\text{X}]^+\text{Br}^-$ ratio is 1 : 3; $\text{X} = \text{Cl}, \text{Br}$), we estimate from the observed chemical shift that in a 1 : 1 $[\text{Cl}]^+\text{BF}_4^- : \text{TBABr}$ mixture, the BF_4^- ion pair and the halide adduct $[\text{X}]^+\text{X}^-$ are in a 9 : 10 ratio. This implies that the interaction strengths of BF_4^- and Br^- are similar. Furthermore, making similar assumptions about a 1 : 1 $[\text{Cl}]^+\text{BF}_4^- : \text{TBACl}$ mixture leads to the conclusion that the BF_4^- ion pair and the Cl^- adduct $[\text{Cl}]^+\text{Cl}^-$ are in a 2 : 5

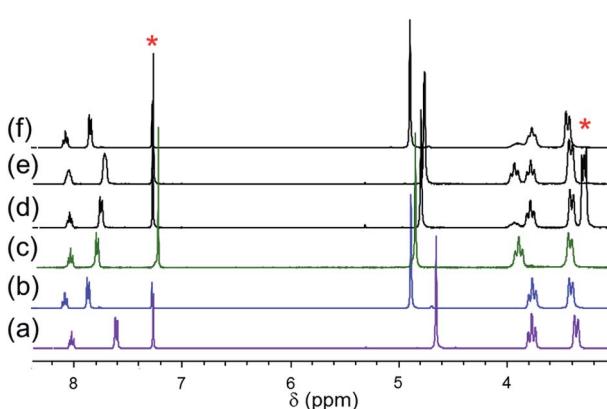


Fig. 3 ^1H NMR spectra of (a) $[\text{Cl}]^+\text{BF}_4^-$, (b) $[\text{Cl}]^+\text{Cl}^-$, (c) $[\text{Br}]^+\text{Br}^-$, (d) 1 : 1 $[\text{Cl}]^+\text{BF}_4^- : \text{TBABr}$, (e) 1 : 1 $[\text{Cl}]^+\text{BF}_4^- : [\text{Br}]^+\text{Br}^-$, (f) 1 : 1 $[\text{Cl}]^+\text{Cl}^- : [\text{Br}]^+\text{Br}^-$ in CDCl_3 . * denotes solvent residual resonance and TBABr resonance.

ratio, confirming that association with Cl^- is stronger than with BF_4^- .

When $[\text{Cl}] \text{BF}_4$ is mixed with one equivalent of $[\text{Br}] \text{Br}$ at room temperature (22°C), the aromatic and benzylic resonances are broad and appear at average chemical shifts of the corresponding resonances of the pure solutions (Fig. 4(e)). The two D' piperidyl resonances appear in a 1 : 1 intensity ratio and are coincident with the D' resonances in the spectra of $[\text{Cl}] \text{Cl}$ and $[\text{Br}] \text{Br}$, respectively. As the $[\text{Cl}] \text{BF}_4/[\text{Br}] \text{Br}$ mixture is cooled, the aromatic and benzylic resonances split, revealing two sets of nearly overlapping resonances (Fig. 4(c–d)). By contrast, the D' and other piperidyl resonances sharpen (Fig. 4). The coalescence temperatures (T_c) of A, B and C are $\sim 25^\circ\text{C}$. The two D' resonances coalesce at $\sim 60^\circ\text{C}$ but no coalescence is observed for the diastereotopic α -piperidyl resonances, D' and D'', at $\leq 60^\circ\text{C}$ (Fig. 4(f)). The Eyring plot of D' resonance is slightly nonlinear, becoming more shallow at low temperature. This behavior suggests underlying complexity, such as a change in rate-limiting step. Under the assumption of linearity, ΔH^\ddagger and ΔS^\ddagger are estimated to be approximately 11 kcal mol^{-1} and $-0.01 \text{ kcal mol}^{-1} \text{ K}^{-1}$, respectively. These values are in good agreement with those for halide exchange reactions of square planar $\text{Pt}(\text{II})$ ^{61,62} and $\text{Pd}(\text{II})$ ⁶³ complexes with amine ligands (ΔH^\ddagger , 10 to 22 kcal mol^{-1} ; ΔS^\ddagger , -30 to $-16 \text{ cal mol}^{-1} \text{ K}^{-1}$).

Because of the similarities in the spectra of $[\text{Cl}] \text{Cl}$ and $[\text{Br}] \text{Br}$ in CDCl_3 , the changes in chemical shifts are comparatively modest when $[\text{Cl}] \text{Cl}$ is mixed with one equivalent of $[\text{Br}] \text{Br}$ (Fig. 5(e)). As expected, $[\text{Cl}]^+$ is favored over $[\text{Br}]^+$, as indicated by the 3 : 1 intensity ratio of the D' resonances. As the solution is cooled, the aromatic and benzylic resonances, A, B and C, broaden but no splitting is observed at $\geq -15^\circ\text{C}$ (Fig. 5(c–d)). On the other hand, the piperidyl resonances, D' and D'' (and also E and F, not shown here), are sharp at $< 0^\circ\text{C}$. The two D' resonances coalesce at approximately 40°C . At 60°C , the diastereotopic α -piperidyl resonances, D' and D'', are slightly closer to coalescence than in the spectrum of 1 : 1 $[\text{Cl}] \text{BF}_4/[\text{Br}] \text{Br}$ (Fig. 4(f)). The estimation of thermodynamic parameters for the

halide ligand exchange is complicated due to the inequality in the intensity ratio of the two D' resonances.

Additionally, as the D' resonances approach coalescence, the D' and D'' resonances begin to move toward each other (Fig. 5(g)). Consequently, because of the exchange process between D' and D'', the system can no longer be analyzed as two resonances coalescing. Treating the system as an unequally populated two-site exchange system,^{64,65} with a coalescence temperature between 40 – 45°C gives the barrier to halide ligand exchange (ΔG^\ddagger) between 15.7 – $15.9 \text{ kcal mol}^{-1}$. Assuming the same ΔS^\ddagger as the 1 : 1 $[\text{Cl}] \text{BF}_4/[\text{Br}] \text{Br}$ mixture ($-0.01 \text{ kcal mol}^{-1}$), ΔH^\ddagger is calculated to be in the 12.5 – $12.7 \text{ kcal mol}^{-1}$ range. On the other hand, the barrier to exchange for the $[\text{Cl}] \text{BF}_4/[\text{Br}] \text{Br}$ mixture is calculated to be between 16.2 – $16.4 \text{ kcal mol}^{-1}$ and ΔH^\ddagger at a coalescence temperature between 55 – 60°C is in the 12.9 – $13.1 \text{ kcal mol}^{-1}$ range.

For a rate-determining intra-molecular rearrangement (e.g., $[\text{Br}] \text{Cl} \leftrightarrow [\text{Cl}] \text{Br}$), the dynamic process responsible for the coalescence of two different D' resonances, assigned to $[\text{Cl}]^+$ and $[\text{Br}]^+$, is proposed to involve a 5-coordinate transition state. In other words, the barrier to halide ligand exchange likely reflects the instability of a 5-coordinate transition state species relative to $[\text{X}]^+$ or the $[\text{X}]^+$ /anion adduct. Therefore, assuming that the BF_4^- is not directly involved, for both $[\text{Cl}] \text{BF}_4/[\text{Br}] \text{Br}$ and $[\text{Cl}] \text{Cl}/[\text{Br}] \text{Br}$ mixtures, the transition state species is expected to be essentially the same. Apart from the error introduced by the estimation methods, the variation in the barrier to halide ligand exchange values can be attributed to the presence of BF_4^- in one of the mixtures. The facts that the conductivity measurements suggest a strong interaction between the cation and BF_4^- and the mixing experiments show that $[\text{X}] \text{BF}_4$ forms even if there is enough halide to coordinate to all $[\text{X}]^+$ in a solution ($\text{X} = \text{Cl}, \text{Br}$), indicate that displacement of BF_4^- is required before halide ligand exchange can occur. If the displacement of BF_4^- is involved in the rate determining step, the overall reaction

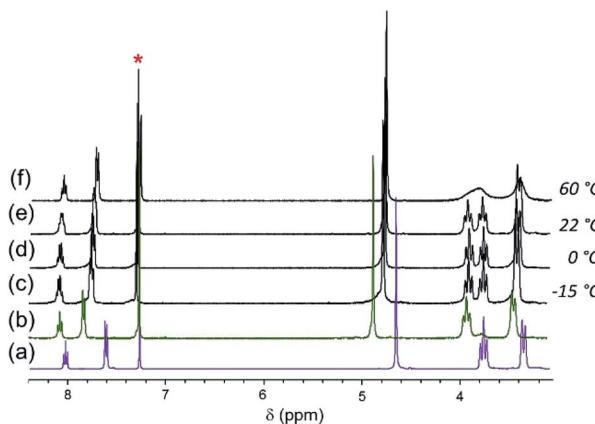


Fig. 4 ^1H NMR spectra of (a) $[\text{Cl}] \text{BF}_4$ and (b) $[\text{Br}] \text{Br}$ in CDCl_3 . Spectra of a 1 : 1 mixture of $[\text{Cl}] \text{BF}_4/[\text{Br}] \text{Br}$ at different temperatures (c)–(f) as shown in the picture. * denotes solvent residual resonance.

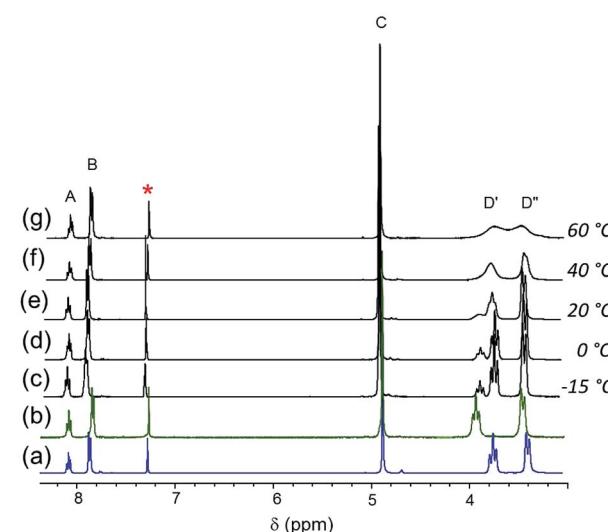


Fig. 5 ^1H NMR spectra of (a) $[\text{Cl}] \text{Cl}$ and (b) $[\text{Br}] \text{Br}$ in CDCl_3 . Spectra of a 1 : 1 mixture of $[\text{Cl}] \text{Cl}/[\text{Br}] \text{Br}$ at different temperatures (c)–(g) as shown in the picture. * denotes solvent residual resonance.

pathway is anticipated to have a higher activation barrier. Another possibility is that the rate determining step is bimolecular, and the rate of exchange and the coalescence temperature depend on halide ion concentration. Since the halide ion concentration is higher for the $[Cl]Cl/[Br]Br$ mixture, a lower barrier is expected, which is qualitatively consistent with what we have observed. It is noteworthy that the ionic strength of the mixture is not expected to have a significant influence since according to conductivity measurements the solutions do not contain many free ions. Although the water resonance shifts upfield as the temperature is raised in both mixtures, this does not influence the chemical shifts of the complexes' resonances measurably.

There is precedent for the interaction of four-coordinate palladium(II) complexes with exogenous halide anions.^{66,67} For example, the conductivity measurements and NMR spectroscopy show that five coordinate $Pd(N^{\wedge}N^{\wedge}N)(CH_3)Cl$ ($N^{\wedge}N^{\wedge}N = 2$ -((2'-pyridylmethylene)amino)ethyl)pyridine) is favored at low temperatures in chlorinated solvents, whereas a square planar geometry with Cl^- as the counter anion is observed in acetonitrile. At higher temperatures, the neutral species with bidentate $N^{\wedge}N^{\wedge}N$ ligand forms regardless of the solvent.⁶⁶ Not surprisingly, the flexibility of the $N^{\wedge}N^{\wedge}N$ ligand stabilizes the five coordinate species at low temperatures in non-coordinating solvents. A similar $Pd(II)$ complex with a phosphorus-bis(nitrogen) ligand, $[Pd(\eta^3\text{-PNN})CH_3]Cl$ (PNN = N -(2-(diphenylphosphino)benzylidene)(2-((2-pyridyl)ethyl)amine)) is reported to be ionic in acetonitrile and molecular in chloroform as indicated by conductivity measurements.⁶⁷ Compared to the $N^{\wedge}N^{\wedge}N$ and PNN ligands, the pip₂NNN ligand is more rigid, and regardless of solvent or temperature no evidence of asymmetric or bi-dentate coordination is observed by 1H NMR spectroscopy. The preservation of symmetry in the 1H NMR spectra could be due to fast exchange, ion pairing or formation of an adduct that preserves the mirror plane symmetry. In the latter case, one possibility is to position the pip₂NNN and the two halide ligands in the same coordination plane. A more likely possibility is the preservation of the C_{2v} symmetry by positioning the halide ligands above and below the plane defined by pip₂NNN.

To assess the strength of the association between the halide counterion and the palladium cation, 1H NMR spectra were recorded of a chloroform solution of $[Cl]Cl$ at different concentrations. The effective association constant was estimated⁶⁸ to be $\sim 10^4\text{ M}^{-1}$ from variations in the *meta*-pyridyl resonance shifts, indicating strong binding of the counter halide (Fig. 6). The fact that $[Cl]Cl$ solutions are nonconductive even at low concentrations supports the notion that the interaction between the $[Cl]^+$ and Cl^- is strong. The red curve represents the fitting carried out with the assumption that there are only two species in solution, namely one with a specific interaction between the cation and the anion and the other fully dissociated. The species with a specific interaction is represented by the $[Cl]Cl$ chemical shift and the fully dissociated species, $[Cl]^+Cl^-$, is represented by the $[Cl]BF_4$ chemical shift. Two factors are considered for the poor fit of the red curve. First is the presence of a third form of the complex, $[Cl]^+/Cl^-$, in which the cation and the anion are paired in a non-specific

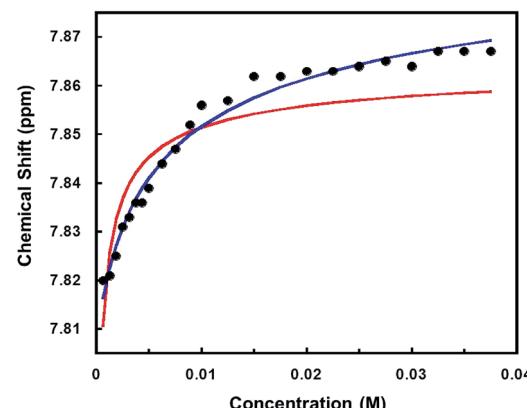
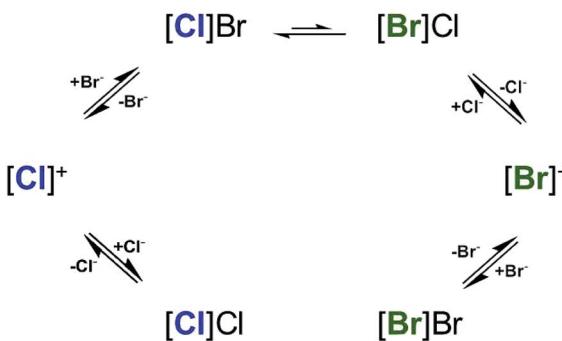



Fig. 6 The chemical shifts of *meta* CH protons vs. concentration of $[Cl]Cl$ (0.0006–0.04 M) in $CDCl_3$. The red and blue curves illustrate the best-fit curves according to: $\delta = \delta_{[Cl]Cl} + ((\delta_{[Cl]Cl} - \delta_{[Cl]^+X^-})/2C)(K_d + 2C - [(K_d + 2C)^2 - 4C^2]^{1/2})$, where C is the concentration of $[Cl]^+$. For the red curve, $X = BF_4$, $K_a = 1/K_d = 2.4 \times 10^4\text{ M}^{-1}$, the chemical shift at infinite dilution ($\delta_{[Cl]^+X^-}$) is assumed to be that of a solution of $[Cl]BF_4$ (7.618 ppm) and the chemical shift of the fully associated species ($\delta_{[Cl]Cl}$) is assumed to be that of a solution of $[Cl]Cl$ (7.867 ppm). For the blue curve, the chemical shifts at infinite dilution and full association are optimized to obtain the best fit, $X = Cl$, $K_a = 194\text{ M}^{-1}$, $\delta_{[Cl]^+X^-} = 7.808\text{ ppm}$, $\delta_{[Cl]Cl} = 7.897\text{ ppm}$.

manner. The second reason is that the $[Cl]BF_4$ chemical shift is not a good representative for the chemical shift of the fully dissociated $[Cl]^+Cl^-$ species. On the contrary, the lack of conductivity and 1H NMR spectroscopy suggest an interaction between the $[Cl]^+$ cation and the BF_4^- counter anion. Thus, the $[Cl]BF_4$ spectrum may resemble more to the spectrum of the ion paired species. However, it is not expected to be the same since the interaction of Cl^- with the cation is stronger than BF_4^- .

When the chemical shifts of the two limiting species are assumed to be different than the ones of $[Cl]Cl$ and $[Cl]BF_4$ and allowed to be varied along with K_a , a better fit is obtained (Fig. 6, blue curve). In this case, the calculated chemical shifts of the species at full association (7.897 ppm) and infinite dilution (7.808 ppm) are higher than the chemical shifts of $[Cl]Cl$ (7.867 ppm) and $[Cl]BF_4$ (7.618 ppm), respectively, whereas the K_a ($\sim 10^2$) is two orders of magnitudes lower. Since conductometry does not support a high degree of dissociation at low concentrations, it is probable that the chemical shift calculated for the species at infinite dilution is actually that of the ion paired species ($[Cl]^+/Cl^-$). It should be added that unlike other $Pd(II)$ complexes,⁵⁸ significant formation of charged aggregates at high concentrations is not supported by conductometry. No appreciable change in the conductivity with concentration increase was recorded when the concentration of the $[Cl]Cl$ solution was raised to 0.01 M.

An associative mechanism is favored for ligand exchange reactions of related $Pd(II)$ pincer ligand complexes,^{69,70} as in the case of insertion of CO into the Pd–C bond of $Pd(Me_4NNN)R^+$ type cations ($Me_4NNN = 2,6\text{-bis(dimethylamine-methyl)-pyridine}$; R = methyl, phenyl, naphthyl). In that case, the transient species were modeled as Pd being coordinated by the Me_4NNN ligand in a bidentate fashion along with the R and CO

Scheme 2 Suggested mechanism of halide exchange in CDCl_3 based on the ^1H NMR data (Fig. 5). $[\text{X}]X$ represents $[\text{Pd}(\text{pip}_2\text{NNN})(\text{X})]^+$ associated with X^- ($\text{X} = \text{Cl}, \text{Br}$).

groups. Interestingly, although a five-coordinate structure was not energetically favored; the transition state was found to be stabilized by an interaction between the non-coordinated amine and the Pd center. In general, a five-coordinate intermediate(s) and/or a transition state(s) with either square pyramidal or trigonal bipyramidal geometries are proposed for square planar Pd(II) complexes. As illustrated in Scheme 2, the accumulated data are consistent with association of the cation and halide anion prior to halide exchange, which is suggested to involve a five-coordinated intermediate.

There is considerable evidence that the equilibrium lies toward the Cl^- coordination. A reaction profile for the top portion of the scheme describing Cl/Br exchange is shown in Scheme 3. The reaction profile takes shape depending on the nature of the leaving and the entering ligands. When the leaving group, Cl^- , is bonded more strongly to Pd than the entering group, Br^- , the transition state is anticipated to have more Pd...Cl bond dissociation character. It is noteworthy that, since in most cases Br^- bonds more tightly to Pd(II) than Cl^- , a reaction profile in which the transition state with more Pd...Br bond dissociation character is more commonly encountered. In the present case, the size of the Cl^- ligand and the filled/filled

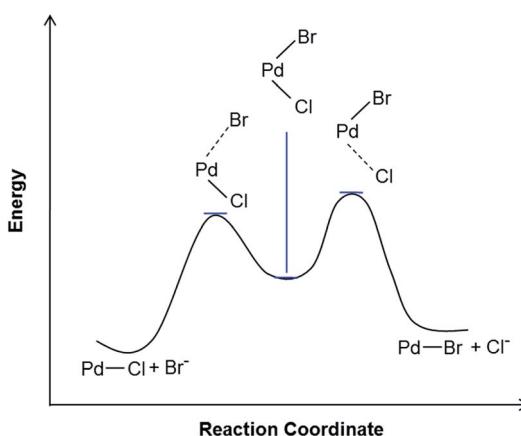
repulsions between the $d\pi$ orbitals of the metal center and the lone pair orbitals of the halide ligand are anticipated to contribute to the preference for Cl^- over Br^- coordination.

Conclusions

Although palladium complexes with ECE type pincer ligands have been studied extensively, neutral NNN pincer ligands with pyridine central moieties have not been explored as much. New square planar palladium(II) complexes with pip₂NNN pincer ligand have been prepared: $[\text{Pd}(\text{pip}_2\text{NNN})\text{X}]X$ ($\text{X} = \text{Br}, \text{I}$). Unlike the NCN pincer analogue, formation of bridged $\text{Pd}_2\text{X}_6^{2-}$ or single PdX_4^{2-} anions ($\text{X} = \text{Cl}, \text{Br}, \text{I}$) from the same reaction set up is observed.

^1H NMR spectra of $[\text{Pd}(\text{pip}_2\text{NNN})\text{X}]X$ show that the presence of the halide anion has the strongest influence on the benzylic and *meta*-CH resonances, whereas variations in the halide ligand have the strongest influence on the furthest downfield α -piperidyl resonance. This difference in sensitivity is used to study halide association. The difficulty in determination of the chemical shifts of the fully associated and fully dissociated species in a mixed anion solution lead to a somewhat broad estimation of the effective association constant ($\sim 10^4 \text{ M}^{-1}$ to 10^{-2} M^{-1}). An associative mechanism where the transition state has more Pd...Cl dissociation character is anticipated which indicates preference of Cl *versus* Br coordination due to the smaller size of Cl and the stronger filled/filled repulsions between Pd $d\pi$ orbitals the Cl lone pair orbitals. The importance of exogenous halide anions on the kinetics of outer-sphere two-electron transfer has been noted for 5-coordinate palladium(II) complexes.^{71,72} The solvent and anion dependence of the interaction between the exogenous anion ($\text{Cl}^-, \text{Br}^-, \text{BF}_4^-$) and the palladium cation ($[\text{Pd}(\text{pip}_2\text{NNN})\text{X}]^+$, $\text{X} = \text{Cl}, \text{Br}$) open possibilities for further studies.

Conflicts of interest


There are no conflicts to declare.

Acknowledgements

The authors would like to express their gratitude to Dr Janette Krause for help with characterization. We thank the National Science Foundation (Grant CHE0134975) and the Arnold and Mabel Beckman Foundation for support. We also thank CWRU for support of the Center for Chemical Dynamics.

References

- 1 K. J. Szabó, *Synlett*, 2006, 811–824.
- 2 L. González-Sebastián and D. Morales-Morales, *J. Organomet. Chem.*, 2019, **893**, 39–51.
- 3 M. R. Eberhard, *Org. Lett.*, 2004, **6**, 2125–2128.
- 4 N. Selander and K. J. Szabó, *Chem. Rev.*, 2011, **111**, 2048–2076.

Scheme 3 Proposed reaction profile for the halide exchange reaction: $[\text{Cl}]^+ + \text{Br}^- \rightarrow [\text{Br}]^+ + \text{Cl}^-$. The transition state is proposed to have more Pd...Cl bond dissociation character.

5 M. Q. Slagt, D. A. P. van Zwieten, A. J. C. M. Moerkerk, R. J. M. K. Gebbink and G. van Koten, *Coord. Chem. Rev.*, 2004, **248**, 2275–2282.

6 M. Albrecht and G. van Koten, *Angew. Chem., Int. Ed.*, 2001, **40**, 3750–3781.

7 D. Morales-Morales and C. M. Jensen, *The Chemistry of Pincer Compounds*, Elsevier, 1st edn, 2007.

8 D. Morales-Morales, *Pincer Compounds*, Elsevier, 2018.

9 P. O'Leary, C. A. van Walree, N. C. Mehendale, J. Sumerel, D. E. Morse, W. C. Kaska, G. van Koten and R. J. M. K. Gebbink, *Dalton Trans.*, 2009, 4289–4291.

10 M. Albrecht, R. A. Gossage, G. van Koten and A. L. Spek, *Chem. Commun.*, 1998, 1003–1004.

11 M. Albrecht, N. J. Hovestad, J. Boersma and G. van Koten, *Chem.-Eur. J.*, 2001, **7**, 1289–1294.

12 M. Albrecht, M. Lutz, A. L. Spek and G. van Koten, *Nature*, 2000, **406**, 970–974.

13 W. W. Gerhardt, A. J. Zuccheri, J. N. Wilson, C. R. South, U. H. F. Bunz and M. Week, *Chem. Commun.*, 2006, 2141–2143.

14 J. He, A. M. Bohnsack, N. W. Waggoner, S. G. Dunning, V. M. Lynch, W. C. Kaska and S. M. Humphrey, *Polyhedron*, 2018, **143**, 149–156.

15 G. Rodríguez, M. Albrecht, J. Schoenmaker, A. Ford, M. Lutz, A. L. Spek and G. van Koten, *J. Am. Chem. Soc.*, 2002, **124**, 5127–5138.

16 M. T. Johnson, Z. Džolić, M. Cetina, M. Lahtinen, M. S. G. Ahlquist, K. Rissanen, L. Öhrström and O. F. Wendt, *Dalton Trans.*, 2013, **42**, 8484–8491.

17 I. Davidi, D. Hermida-Merino, K. Keinan-Adamsky, G. Portale, G. Goobes and R. Shenhav, *Chem.-Eur. J.*, 2014, **20**, 6951–6959.

18 S. G. Churusova, D. V. Aleksanyan, A. A. Vasil'ev, E. Y. Rybalkina, O. Y. Susova, Z. S. Klemenkova, R. R. Aysin, Y. V. Nelyubina and V. A. Kozlov, *Appl. Organomet. Chem.*, 2018, **32**, e4360.

19 S. A. Burgess, A. Kassie, S. A. Baranowski, K. J. Fritzsching, K. Schmidt-Rohr, C. M. Brown and C. R. Wade, *J. Am. Chem. Soc.*, 2016, **138**, 1780–1783.

20 N. Cutillas, G. S. Yello, C. de Haro, C. Vicente, V. Rodríguez and J. Ruiz, *Coord. Chem. Rev.*, 2013, **257**, 2784–2797.

21 M. Basauri-Molina, S. Hernández-Ortega and D. Morales-Morales, *Eur. J. Inorg. Chem.*, 2014, 4619–4625.

22 J. Takaya and N. Iwasawa, *J. Am. Chem. Soc.*, 2008, **130**, 15254–15255.

23 J. Takaya and N. Iwasawa, *J. Synth. Org. Chem.*, 2013, **71**, 417–424.

24 M. Mazzeo, M. Lamberti, A. Massa, A. Scettri, C. Pellecchia and J. C. Peters, *Organometallics*, 2008, **27**, 5741–5743.

25 N. Solin, J. Kjellgren and K. J. Szabó, *J. Am. Chem. Soc.*, 2004, **126**, 7026–7033.

26 V. Subramaniyan, B. Dutta, A. Govindaraj and G. Mani, *Dalton Trans.*, 2019, **48**, 7203–7210.

27 E. Peris, J. A. Loch, J. Mata and R. H. Crabtree, *Chem. Commun.*, 2001, 201–202.

28 S. G. Churusova, D. V. Aleksanyan, E. Yu. Rybalkina, O. Yu. Susova, V. V. Brunova, R. R. Aysin, Y. V. Nelyubina, A. S. Peregudov, E. I. Gutsul, Z. S. Klemenkova and V. A. Kozlov, *Inorg. Chem.*, 2017, **56**, 9834–9850.

29 S. G. Churusova, D. V. Aleksanyan, E. Yu. Rybalkina, Y. V. Nelyubina, A. S. Peregudov, Z. S. Klemenkova and V. A. Kozlov, *Polyhedron*, 2018, **143**, 70–82.

30 F.-F. Hung, S.-X. Wu, W.-P. To, W.-L. Kwong, X. Guan, W. Lu, K.-H. Low and C.-M. Che, *Chem.-Asian J.*, 2017, **12**, 145–158.

31 T. Thirunavukkarasu, H. A. Sparkes, K. Natarajan and V. G. Gnanasoundari, *Appl. Organomet. Chem.*, 2018, **32**, e4403.

32 J.-Y. Lee, J.-Y. Lee, Y.-Y. Chang, C.-H. Hu, N. M. Wang and H. M. Lee, *Organometallics*, 2015, **34**, 4359–4368.

33 H. Jude, J. A. Krause Bauer and W. B. Connick, *Inorg. Chem.*, 2002, **41**, 2275–2281.

34 S. J. Farley, D. L. Rochester, A. L. Thompson, J. A. K. Howard and J. A. G. Williams, *Inorg. Chem.*, 2005, **44**, 9690–9703.

35 H. Jude, J. A. Krause Bauer and W. B. Connick, *Inorg. Chem.*, 2005, **44**, 1211–1220.

36 L.-L. Shi, Y. Liao, G.-C. Yang, Z.-M. Su and S.-S. Zhao, *Inorg. Chem.*, 2008, **47**, 2347–2355.

37 S. Tastan, J. A. Krause and W. B. Connick, *Inorg. Chim. Acta*, 2006, **359**, 1889–1898.

38 L. F. Olsson, *Inorg. Chem.*, 1986, **25**, 1697–1704.

39 V. Anbalagan, R. Srinivasan and K. S. Pallavi, *Transition Met. Chem.*, 2001, **26**, 603–607.

40 A. Hofmann, D. Jaganyi, O. Q. Munro, G. Liehr and R. van Eldik, *Inorg. Chem.*, 2003, **42**, 1688–1700.

41 P. M. Gidney, R. D. Gillard and B. T. Heaton, *J. Chem. Soc., Dalton Trans.*, 1973, 132–134.

42 F. D. Lewis, G. D. Salvi, D. R. Kanis and M. A. Ratner, *Inorg. Chem.*, 1993, **32**, 1251–1258.

43 W. Zhang, C. Bensimon and R. J. Crutchley, *Inorg. Chem.*, 1993, **32**, 5808–5812.

44 H. Kunkely and A. Vogler, *J. Organomet. Chem.*, 1998, **559**, 215–217.

45 C. L. Choi and D. Phillips, *Mol. Phys.*, 1998, **94**, 547–554.

46 K. H. Leung, W. Szulbinski and D. L. Phillips, *Mol. Phys.*, 2000, **98**, 1323–1330.

47 X.-X. Lu, E. C.-C. Cheng, N. Zhu and V. W.-W. Yam, *Dalton Trans.*, 2006, 1803–1808.

48 Z. Hui Zhang, X. He Bu, Z. Ang Zhu and Y. Ti Chen, *Polyhedron*, 1996, **15**, 2787–2792.

49 C. B. Pamplin, S. J. Rettig, B. O. Patrick and B. R. James, *Inorg. Chem.*, 2003, **42**, 4117–4126.

50 P. Stoppioni, R. Morassi and F. Zanobini, *Inorg. Chim. Acta*, 1981, **52**, 101–106.

51 S. M. Ansari, W. Robien, M. Schleiderer and P. Wolschann, *Monatshefte Chem.*, 1989, **120**, 1003–1014.

52 The chemical shifts for Pt(pip₂NCN)X were determined in CDCl₃.

53 T. M. Gilbert and T. Ziegler, *J. Phys. Chem. A*, 1999, **103**, 7535–7543.

54 J. P. Flemming, M. C. Pilon, O. Y. Borbulevitch, M. Y. Antipin and V. V. Grushin, *Inorg. Chim. Acta*, 1998, **280**, 87–98.

55 K. G. Caulton, *New J. Chem.*, 1994, **18**, 25–41.

56 J. T. Poulton, M. P. Sigalas, K. Folting, W. E. Streib, O. Eisenstein and K. G. Caulton, *Inorg. Chem.*, 1994, **33**, 1476.

57 As expected from the spectrum of TBACl, addition of TBACl shifts the water resonance in the $[\text{Cl}]\text{Cl}$ and $[\text{Cl}]\text{BF}_4^-$ spectra. Nevertheless, when a few equivalents of water are added to either $[\text{Cl}]\text{Cl}$ or $[\text{Cl}]\text{BF}_4^-$, no substantial shift is observed for the $[\text{Cl}]^+$ resonances.

58 B. Crociani, F. di Bianca, A. Giovenco and T. Boschi, *Inorg. Chim. Acta*, 1987, **127**, 169–182.

59 A. Irving, K. R. Koch and M. Matoetoe, *Inorg. Chim. Acta*, 1993, **206**, 193–199.

60 R. Romeo, N. Nastasi, L. M. Scolaro, M. R. Plutino, A. Albinati and A. Macchioni, *Inorg. Chem.*, 1998, **37**, 5460–5466.

61 U. Belluco, R. Ettorre, F. Basolo, R. G. Pearson and A. Turco, *Inorg. Chem.*, 1966, **5**, 591–593.

62 M. A. Tucker, C. B. Colvin and D. S. Martin, *Inorg. Chem.*, 1964, **3**, 1373–1383.

63 R. Roulet and H. B. Gray, *Inorg. Chem.*, 1972, **11**, 2101–2104.

64 H. Shanan-Atidi and K. H. Bar-Eli, *J. Phys. Chem.*, 1970, **74**, 961–963.

65 W. Egan, PhD thesis, Princeton University, 1971.

66 R. E. Rulke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen and K. Vrieze, *Inorg. Chem.*, 1993, **32**, 5769–5778.

67 R. E. Ruelke, V. E. Kaasjager, P. Wehman, C. J. Elsevier, P. W. N. M. van Leeuwen, K. Vrieze, J. Fraanje, K. Goubitz and A. L. Spek, *Organometallics*, 1996, **15**, 3022–3031.

68 C. S. Wilcox, *Frontiers in Supramolecular Organic Chemistry and Photochemistry*, 1991, pp. 123–143.

69 C. H. Langford and H. B. Gray, *Ligand Substitution Processes*, W. A. Benjamin, Inc., Reading, 1966.

70 R. J. Cross, in *Advances in Inorganic Chemistry*, ed. A. G. Sykes, Academic Press, 1989, vol. 34, pp. 219–292.

71 S. Chatterjee, *Cooperative Two-Electron Reagents of Lower Transition Metals of Group 10*, University of Cincinnati, 2009.

72 D. E. Janzen, D. G. VanDerveer, L. F. Mehne, D. A. d. S. Filho, J.-L. Brédas and G. J. Grant, *Dalton Trans.*, 2008, 1872–1882.

