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A study of the microbial metabolomics analysis of
subsurface wastewater infiltration system

Lei Yang, Yinghua Li, ©* Fei Su and Haibo Li

Microbial action in SWIS is one of the main ways to remove contaminants. Studying the metabolic processes

and pathways of microorganisms is helpful to reveal the mechanism of pollutant removal in the "black box”

process of SWIS. In this study, based on metabolomics and UPLC-MS, partial least squares (PLS-DA),
principal component analysis (PCA) pattern recognition and cluster analysis were used to classify the
microbial samples. According to the model's variable importance factor (VIP value) being greater than

1.5, a total of 53 potential biomarkers were screened out. There was a significant correlation between

the microbial metabolites and soil profile. Most microbial metabolites were concentrated in the H2 layer

(subsurface layer of SWIS), while there were relatively few in the H4 and H6 layers (middle and lower

layers of SWIS); organic acids and alcohol metabolites mainly existed in the anoxic environment (H4

layer); antibiotics, growth hormones and pigments and other small molecule metabolites mainly existed

under anaerobic conditions (H6 layer). The results of RDA analysis indicated that environmental factors
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had an effect on the microbial metabolites. With the variation of different height profiles, the metabolites

were significantly affected by ORP and NOsz~, which were negatively correlated. The above conclusions

DOI: 10.1039/c9ra05290a

rsc.li/rsc-advances the stability of SWIS.

1. Introduction

Subsurface Wastewater Infiltration Systems (SWIS) is a multi-
phase coexisting sewage ecological treatment technology
which involves physical, chemical and biological factors. With
a low operating cost, SWIS is easy to maintain and manage to
achieve a better treatment effect and gain ecological benefits."
With water shortage becoming more and more serious and
urgent, the theoretical research and application of SWIS have
received more attention.

In recent years, traditional flat techniques, PCR-DGGE,
TGGE and other traditional bio-techniques, have been widely
used in SWIS microbial population structure analysis. It is
generally believed that it is convincing to use the spatial-
temporal coordination of microorganisms to indicate whether
SWIS is correctly operated or not. It has been widely accepted by
the academic community to determine the microbial collabo-
ration through accurate diagnosis of microbial structure and
abundance.” The microbial spatial distribution can reflect the
microbial community cooperation state for a period of time;
however, the microbial community cannot adjust quickly when
the system deviates from the healthy conditions. Water quality
will not immediately deteriorate.®* Therefore, using DNA
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indicated that metabolomics is a reliable, accurate and effective method to quantitatively characterize

molecular markers, gene sequence analysis and nucleic acid
molecular hybridization to study the structural changes of SWIS
flora is meaningful only for the steady-state. For multi-factor
perturbation systems, the obtained biological information can
be calibrated only for a relatively narrow period of time. Such
methods are necessary but insufficient to characterize system
health.* Wang® and Pan® performed multi-section PCR-DEEG
analysis on SWIS under fluctuating hydraulic loads. It was
found in the study that the acquired microbial spatial structure
data could indicate population characteristics of no more than
24 h under low hydraulic load (8 cm d'). The DNA data of the
same layer changed greatly when the hydraulic load fluctuated
in the range of 2 cm d~ . The results of instantaneous PCR-
DGGE showed that there were some defects in characterizing
the spatial structure of microorganisms under dynamic condi-
tions. Therefore, it is unreasonable to judge the healthy status
of SWIS. Tan” used DNA fingerprint and real-time fluorescence
quantitative techniques to analyze the vertical distribution of
microbial flora in multi-media capillary infiltration system
under 360 d continuous operations. It is shown that dominant
nitrification gene communities such as ANO and gnorB were
concentrated in the ascending zone under steady-state condi-
tions while dominant gene communities such as amoA and
narG were concentrated in the gravity flow zone. When the
disturbance occurred (even if it is not severe), the spatial
distribution of genes in the same flow region were relatively
disordered (amoA appeared in the ascending flow region). The
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research above showed that there was a significant theoretical
defect in characterizing SWIS health by using the response
relationship between microbial structure and water quality.

Microbial metabolomics is a technique of functional geno-
mics that is essential for understanding cellular functions.
Metabolomics not only reflect the physiological state of cells but
also indicate soil microbial diversity in details. Metabolomics
can reverse infer microbial metabolic pathways and modes by
potential marker. Metabolomics is precise and targeted.® The
reproducibility and stability of the UPLC-MS method were
required in large-scale metabolomics study to ensure that the
significant differences originate from inherent differences
between groups rather than instrumental drift from chroma-
tography and MS. While UPLC-MS was proved to be a powerful
and highly sensitive method for soil, detecting more features.

The removal of pollutants in SWIS is closely related to the
activities of soil microorganisms. Based on the difference of
operating environment, the population structure and biological
characteristics of microorganisms are deduced and verified.
However, this method cannot obtain the metabolic process and
decontamination mechanism under unknown conditions.
Through the analysis of microbial metabolites revealing the
microbial metabolic pathway in the substrate layer, it is
possible to break through the long-term black box limitation of
the biological removal theory of pollutants in SWIS. Therefore,
in this study, the metabolites of different profiles were
collected. After pre-treatment, statistical analysis and biological
interpretation, specific metabolic fingerprints were obtained,
the potential biomarkers were screened out and the species
classification and metabolic pathway of microorganisms were
explored.

2. Materials and methods

2.1. System description

As is shown in Fig. 1, three assemblies run in parallel. The
influent conditions (organic load 400 mg L"), soil matrix and
operation conditions are consistent. The main body size of the
device is 180 cm x 30 cm (high x diameter). The filling matrix
is 5 cm thick gravel, 3 cm thick fine sand and 140 cm thick
mixed matrix from bottom to top. The mixed matrix is
composed of sand, slag and farmland soil in volume ratio of
10% : 25% : 65%. SWIS porosity is 0.55 and permeability
coefficient ranges from 4.167 x 10> ~ 1.389 x 10 > cm s .
The water is pumped by a peristaltic pump and dispersed
through a “cross” perforated distribution pipe (65 cm below
the surface soil). The SWIS simulator waters in a dry-wet
alternating manner (12 hours of influenting and 12 hours of
drying). There are six groups of soil sampling ports: H1 (height
30 cm, aerobic), H2 (height 50 cm, aerobic), H3 (height 75 cm,
facultative anaerobic), H4 (height 100 cm, facultative anaer-
obic), H5 (height 125 cm, anaerobic), H6 (height 150 cm,
anaerobic) from top to bottom, which are sealed in peacetime
and opened only at sampling time. Two parallel samples were
taken from each height, and a total of 18 soil samples were
taken.

This journal is © The Royal Society of Chemistry 2019
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2.2. Sample extraction

The collected soil samples are quickly inactivated with liquid
nitrogen and extracted three times with pure methanol, 10 mL
for each. The extract is combined and dried in vacuum. The
supernatant is absorbed to resolve by 1 mL methanol and
centrifuged for 10 minutes by 13 000 rpm centrifuge. Then it is
put into a 1.5 mL sampling vial. The samples are stored in
a refrigerator at 4 °C for testing.

2.3. UPLC- MS analysis

Microbial metabolites were analyzed with the UPLC-MS system,
including 1200 rapid liquid chromatography (Agilent),
MicrOTOF-Q II electrospray, four stage time of flight mass
spectrometry (Bruker Daltonics Inc). Based on the experimental
study, the chromatographic conditions were optimized, and the
samples were chromatograph separated. Agilent Zorbax SB-C18
reversed-phase column (3.5 um, 100 mm X 2.1 mm) was
injected. During the analysis, the injection volume was 5 pL and
the column temperature was kept at 30 °C. Acidified water
containing 0.1% (v/v) formic acid (Sigma Aldrich) and acetoni-
trile were used as eluent A and B. The flow rate for the mobile
phase was set at 0.2 mL min~" throughout the gradient. The
following gradient profile was employed: 0-10 min, 15% B to
65% B; 10-15 min, 65% B to 80% B; 15-30 min, 80% B to 95% B;
30-38 min, 1% B to 99% B; 38-55 min, 99% B; 55-56 min, 99%
B to 15% B.

A dual ESI source was operated in positive ionization mode.
The detailed MS conditions were as follows: drying gas
temperature, 180 °C, flow, 6 L min~"; capillary voltage, 4500 V;
auxiliary gas pressure 2.0 bar. Sodium standard solutions were
used for off-line internal calibration. The collection range of
mass-to-charge ratio was 50-1800 m/z.

2.4. Data processing

The software tool MZConvert (ProteoWizard) converted the
initial data file into mzML format and performed peak inte-
gration and peak alignment processing. Noise and low abun-
dance components were eliminated from the data matrix based
on abundance and frequency of occurrence.® After data pro-
cessing, a two-dimensional matrix, consisting of retention time
(RT) and mass-to-charge ratio (m/z) data pairs, were generated.
The mass value and intensity of the peak were derived to Excel
(2010, Microsoft, Washington, USA) for further chemometric
analysis. Advanced processing functions such as molecular
prediction and structural retrieval were implemented with data
analysis processing software.

2.5. Statistical analysis

Multivariate statistical analysis of data sets was performed with
SIMCA-P software (version 14.1, UMETRICS, Ume, Sweden).
PCA (unsupervised pattern recognition method) was applied to
explore the intrinsic changes of data matrix. PLS-DA (supervised
pattern recognition method) was used to filter discriminant
molecular features from data sets.” By extracting the maximum
information from potential distinguishing features and sorting
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Fig. 1 Diagram of SWIS simulation device (SWIS: subsurface wastewater infiltration system).

the data according to the abundance value, the most charac-
teristic features were selected for further data clustering. Python
1.0 was constructed to clarify the differences of metabolites
among different sample types. The quality of the model was
represented by the classification error (CE). Then, PLS-DA was
used to highlight markers that distinguish different soil profile.
Based on physical separation of the scatter plots, the identifi-
cation ions were manually determined and then were used to
identify potential biomarkers."* To identify the most relevant
metabolic pathways in SWIS microorganisms, pathway analysis
was used for KEGG metabolic pathway analysis. The projections
(VIP) > 1.5 in PLS-DA were examined and selected as variable
importance metabolites according to various statistical criteria
for discriminating ability.

2.6. Potential biomarkers identification

Identify the characteristic values of interest, such as accurate
mass-to-charge ratio (m/z), strength, detection time, and match
with METLIN metabolic database (https://metlin.scripps.edu). To
elucidate the metabolic pathways of metabolites, compounds
identified in the database were submitted to the KEGG pathway
database. (http://www.genome.jp/kegg/pathway.html)

3. Results

3.1. Analytic characteristics of soil metabolic profiling
methods

UPLC-MS was used for soil metabolic profile analysis. Soils
extracts were analyzed by UPLC-MS in positive and negative

39676 | RSC Adv., 2019, 9, 39674-39683

ionization modes simultaneously, but only the positive data was
used for further analysis due to a lower signal to noise ratio than
the negative data.'” After the removal of duplicate samples,
a total of 1130 peaks, 180 clusters, and 698 singletons were
identified across the 18 samples for the ESI (+) mode.

Metabolic profile characterization and pattern recognition
were used to analyze metabolites in SWIS. When the organic
load is 400 mg L' (simulated column 2), typical chromato-
grams from UPLC-MS in ESI (+) modes was shown in Fig. 2.
UPLC-MS analysis of soil extracts produced a complex spectrum
characterized by the spectral characteristics of lipids, terpenes
and sugars. There were more single peaks, higher resolution
and more substances extracted in H6 profile.

3.2. Screening and identification of metabolite biomarker

The first step of potential biomarker discovery is to determine
which metabolites in the community analyses are responsible
for discriminating between samples. Using the established
metabolomics analysis method collect the data of the positive
ion (ESI+) pattern of soil samples, and obtain the TIC chro-
matogram of the corresponding metabolic profile (Fig. 2).
Potential markers were found with PLS-DA corresponding to
VIP values (important variable factors, variables with VIP > 1
indicates that their contribution to model grouping is higher
than average)."® For PLS-DA data, the loadings plot showed that
the soil profile height H2, H4, H6 metabolites had obvious
differentiations. The organic load of SWIS was 400 mg L™ ". The
metabolites of microorganisms in soil samples from different
profiles were analyzed by PLS-DA, and the metabolites of VIP >

This journal is © The Royal Society of Chemistry 2019
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Fig.2 Metabolic fingerprints ((a) is the peak spectrum of height H2; (b) is the peak spectrum of height H4; (c) is the peak spectrum of height H6).

1.5 were obtained as is shown in Table 1. The bigger the VIP
value was, the greater the contribution to the classification of
the model was, which could be used as one of the indicators for
screening differential metabolites. These differential metabo-
lites were selected as potential biomarkers, and then their
structural patterns were screened and identified according to
the database. Finally, there were 53 potential markers in
different sections of the column, and five compounds with VIP
value greater than 2 included fucoxanthin, pyrrhoxantrol, TG,
calafatinine, 6-alpha methylprogesterone (Table 1).

In this study, representative markers were selected and 1.5
was regarded as the critical value for screening. Potential
biomarkers were screened according to screening limits. The
structure derivation of potential markers mainly included the
following steps: accurate molecular weight determination,
conjecture structure, contrast database and correlate analysis.
Given the isobaric nature of groups of these features and the
similar putative molecular formulas it was anticipated that
these molecules would be structurally related. Additional MS
study of these features including accurate mass and fragmen-
tation using MS approaches confirmed this and allowed the
identification of a core subunit present in several of the
biomarkers and tentative structure assignment for two features.
Finally, 17 compounds were obtained by matching METLIN
metabolomics database. The identification results were shown

This journal is © The Royal Society of Chemistry 2019

in Table 2. The main metabolites were amino acids, nucleo-
tides, vitamins, antibiotics, growth hormones and pigments,
which played an important role in microbial metabolism. The
metabolites isolated from each soil sample reflected the
chemical composition of the entire soil matrix. PLS-DA studies
of soil organic matter showed that they contained a predomi-
nance of microbial, plant biopolymers and their degradation
products,** with microbial cells accounting for up to 50% of the
total PLS-DA signal in some soil extracts.

3.3. Analysis of correlative metabolic pathways of
biomarkers

The information of the identified biomarker was introduced
into the metabolic pathway analysis (https://
www.genome.jp/kegg/pathway.html) for analysis. KEGG
combines a number of advanced pathway enrichment analysis
procedures and pathway topology characterization to assist in
determining the most relevant metabolic pathways associated
with metabolic research.

Phospholipids are complex esters containing phosphoric
acid groups and the main components of cell membranes in
eukaryotes. It is widespread in microorganisms. It was clear to
know in the metabolic pathway diagram (Fig. 3) that glycerol
and fatty acids were produced by glucose metabolism and
ethanolamine was decarboxylated to ethanolamine. The

website
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Table 1 Organic load is 400 mg L™t potential markers of different
heights (VIP > 1.5)

No. RT(s) m/z VIP No. RT mlz VIP

1 1493.8 681.41 2.12466 28 1457.9 887.46 1.6701
2 1224.4 571.33 2.10899 29 1040.3 1006.45 1.66952
3 1492.8 1011.68 2.04646 30 1458.4 669.35 1.65405
4 1523.9 473.46 2.03173 31 1569.9 403.19 1.65263
5 2001.8 329.24 2.00053 32 1375.8 429.26  1.63427
6 1858.7 673.49 1.94785 33 2275.2 557.44 1.6301
7 1467.7 669.49 1.92935 34 1461.3 337.27 1.62736
8 1478.2 487.47 1.89518 35 76.3 444.07 1.62701
9 1831.1 921.66 1.87298 36 14359 675.43 1.62079
10 1468.9 485.46 1.87216 37 68.9 442.88 1.60818
11 1332.8 487.21 1.85782 38 1094.2 1054.44 1.60353
12 1483.8 671.50 1.84558 39 1076.5 577.18 1.60021
13 1055.7 968.41 1.81376 40 1370.1 661.41 1.56913
14 1474.2 275.08 1.8104 41 1216.8 969.39 1.56775
15 1449.0 427.25 1.80331 42 1362.3 487.36  1.54988
16 1551.9 429.26 1.79309 43 1460.0 664.40 1.54287
17 1735.7 339.29 1.78516 44 2064.3 693.55 1.53803
18 2042.9 803.54 1.78421 45 2321.8 750.55 1.53743
19 1056.6 1114.47 1.7838 46 1260.4 561.40 1.5288
20 2016.5 570.51 1.74516 47 1376.2 443.33 1.52863
21 1522.0 635.51 1.7068 48 1198.4 579.29 1.52798
22 1470.1 625.32 1.70528 49 1629.1 627.48 1.52358
23 1267.8 361.23 1.702 50 1993.8 701.52 1.51134
24 1283.9 321.19 1.69764 51 1195.9 301.14 1.50565
25 1050.8 946.43 1.68414 52 2065.1 715.53  1.50259
26 1199.7 319.22 1.68353 53 2041.7 429.24 1.5004
27 2068.4 702.21 1.67147

ethanolamine was methylated to choline. CTP was involved in
the activation of choline, CDP-choline was formed, and then it
was condensed with glycerol diester to form phosphatidylcho-
line (PC). CDP glycerol ester and phosphoglycerol were
synthesized into phospholipid glycerol, which was then
dephosphorylated to form phosphatidylglycerol (PG). The
mechanism of microbial metabolism was studied by retrieving
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known metabolic pathways to identify compounds and regula-
tors. Metabolic pathway diagrams visually presented the inter-
action in the metabolic process of products. It could express
receptor-binding activities, protein complexes, phosphoryla-
tion reactions, enzyme activation and so on. It linked pathways
with biological annotations to make the metabolic pathways of
products clearer. The results showed that UPLC-MS could
accurately and rapidly analyze the level of endogenous
substances, which laid a solid foundation for further analysis of
SWIS microbial metabolic differences based on targeted
metabolomics.

3.4. Redundancy analysis of differential metabolites and
environmental factors

In order to study the correlation between metabolites and
environmental factors, redundancy analysis (RDA) was intro-
duced. Based on the development of correspondence analysis,
RDA is a sort method. It combines correspondence analysis
with multiple regression analysis. Each step of calculation is
regressed with environmental factors, which is also called
multiple direct gradient analysis. RDA analysis could visually
see the relationship between sample distribution and environ-
mental factors.

It could be seen from the angle between metabolites and
environmental factors (Fig. 4) that environmental factors NH,",
NO,  had significant positive correlation with most metabolites.
NO;™, ORP, COD and Salt had negative correlation with most
metabolites. It could be seen from the angle between environ-
mental factors that NO;~, ORP, COD and Salt were positively
correlated; NO,~ was negatively correlated with NH," and COD.
The length of environmental factor rays showed that NO;~ and
COD had a great influence on the metabolites. At the same time,
RDA sequence map reflected the adaptability of different
microbial metabolites to environmental factors. The closer the
position of metabolites in RDA sequence diagram, which

Table 2 Quialitative analysis of SWIS microbial metabolites under different height changes

No. RT(s) m/z METLIN ID  Metabolites Formula ppm  Adduct VIP CAS no.

1 1890.5 529.4069 95 599 Panaxynol linoleate C35H54,0, 10 M+ NH4]+ 1.64503 155551-18-1
2 1569.9  403.1872 48 209 Hydroxyjasmonate glucoside C19H300; 22 M +H] 1.61275

3 1470.1 625.331 67 681 Dauricine C3gH44N,O¢ 6 M + H]+ 1.66134 524-17-4

4 1858.7  673.4838 40921 PC(16:0/18:2(9Z,12Z)) Cs,HgoOgP 5 M +H] 1.88499

5 1362.3  487.4693 87 378 8-Hydroxy-14,16-hentriacontanedione  C3;Hgo03 1 [M+NH,]" 1.504 10368-07-7
6 2275.2 557.4376 89 986 Germanicol cinnamate C30H560, 4 M+H] 1.58054 65883-48-9
7 2001.8  329.2451 70181 6-Alpha-methylprogesterone C,,H3,0, 22 M +H] 1.94218 903-71-9

8 14584  669.35 43 578 Capreomycin C,5H,4N1,04 5 M +H] 1.60104 1405-37-4

9 1460.0 664.40 44 814 PG C3,H5sNO¢ P 18 M + H]+ 1.50257 439904-33-3
10 1431.5  521.3192 80 026 Soraphen A CyoH,140g 17 M +H] 1.99833 122547-72-2
11  1094.2 1054.436 142 Docosanoyl-CoA C4;H,4N,0,,P,S 9 [M +NH,]" 1.61866

12 1457.9  887.472 89863 3-[2"-Glucosyl-6"-arabinosylglucoside] Cy4H70015 9 M+H] 1.68747 244762-25-2
13 76.3 444.07 71 657 L-Galacturonic acid calcium salt Cy,H;5Ca04, 8 [M+NH,]" 1.10803

14 1449.0  427.2526 62 994 Methylcarbamyl PAF C-8 C1H30N,05p 9 M +H] 1.82325

15  2016.5 570.5129 41 509 All-trans-retinyl stearate C35He4 0, 20 M +H] 1.69468

16  1493.8  681.4098 3685 Fucoxanthin CusHs504 3 M +H]' 2.05245 3351-86-8
17  1492.8 1101.6748 38 896 TG(20:5(5Z,82,11Z,14Z,17Z) CesHosOg 3 M +H] 1.98994

39678 | RSC Adv., 2019, 9, 39674-39683
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Fig. 3 Metabolite pathways of selected compounds.

indicated the more similar of their adaptability to environment.
The results of RDA analysis indicated that environmental factors
had an effect on microbial metabolites. With the variation of
different height profiles, the metabolites were significantly
affected by ORP and NO; ™, which were negatively correlated.
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S
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RDAI (73.55%)
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Fig. 4 RDA analysis of differential metabolites and environmental
factors in SWIS (note: the blue arrow in the figure represents different
environmental factors, and the red arrow represents different
metabolites. When the angle between the environmental factors is
acute, it means that there is a positive correlation between the two
environmental factors. The obtuse angle is a negative correlation. The
names of metabolites in the figure are all abbreviated).
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4. Discussion

4.1. Principal component analysis

A large amount of data generated with analyzing samples
through UPLC-MS system. In this case, stoichiometric analysis
methods, including principal component analysis (PCA), partial
least squares-discriminant analysis (PLS-DA) and clustering
analysis, were introduced to process metabolite lists to reduce
data dimension and improve data interpretability. In general,
based on a linear combination of mutual features, PCA could
reduce the matrix of metabolites. By analyzing the composition of
different samples, the differences and distances between
samples would be reflected. Variance decomposition was re-
flected the differences between groups of data on the two-
dimensional coordinate map. The coordinate axis was two
eigenvalues which could reflect the variance to the greatest
extent. PCA studied the influence of SWIS profile height variable.
PCA results of soil samples from different soil profiles were
shown in Fig. 5.

Statistical analysis of the UPLC-MS metametabolomics data
revealed that the soil extracts clustered based on different soil
profiles (Fig. 5) for the 18 samples. The UPLC-MS metabolite
profiles were compared for all samples by PCA. The soil sample
H2 was on the left side of scoring map, and the height of H4
sample was on the right. The sample height H6 was in the
middle of the two groups. The sample points of the same matrix
profile of the simulated column were close and highly

RSC Adv., 2019, 9, 39674-39683 | 39679
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aggregated. The metabolite information of different matrix
profiles was clearly separated. These three classifications were
relatively separated from each other, which indicated that there
were differences in metabolites between the height layers of the
simulated column.

4.2. Partial least squares-discriminant analysis

PCA model was used to determine the distribution of metabo-
lites in different sections of H2, H4 and H6. PLS-DA was used to
indicate whether samples can be distinguished from specific
factors, and the points far away from original were having the
major contribution to the differences between different profiles.
PLS-DA allowed sample discrimination to reduce the correla-
tion between matrix dimensions and maximizing variables, and
it could explain whether samples can be distinguished from
specific factors. On the basis of PCA analysis, PLS-DA made the
distinction between components more obvious and directive.*
PLS-DA was utilised for metabolite profiles to identify signifi-
cantly different metabolites as putative biomarkers based on
soil samples. Based on the metabolites detected in positive ion
mode, the PLS-DA score plots were generated. Therefore, PLS-
DA method was used to distinguish the differences of micro-
bial metabolites at different heights and screen potential
biomarkers.

Similar ordination patterns were observed for the PCA of all
samples, with 15.7% variation on PCA. Further separation
based on profiles was evident on PCA, Samples of different soil
layers formed separate clusters as in the ordination for UPLC-
MS data."” Soils for PLS-DA model based on metabolic profiles
was constructed to determine if the distribution of metabolites
could be predicted with any accuracy. As is shown in Fig. 5, the

39680 | RSC Adv., 2019, 9, 39674-39683

effect of sample discrimination was obvious. The heights of
different soil sections H2, H4, and H6 were highly aggregated
within a certain range, but there was a certain distance between
them. The height of the sample point of height H2 was relatively
close, indicating that the community composition and the
material properties were similar. The heights of H4 and H6 were
relatively scattered, which indicated that there were some
differences in their material properties. The loadings plot
(Fig. 6) illustrated the variables or metabolites that were
responsible for the discrimination and clustering of the
samples observed in the scores plots. In an ellipse with 95%
confidence interval, three high soil samples were separated
from each other by X-axis. PLS-DA model explained 13% of the
total variation and showed excellent prediction function.

4.3. Hierarchical clustering analysis

A heat-map was constructed after biomarker identification
(Fig. 7) to visualize the changes of these biomarkers in
different soil heights. As shown in Fig. 7, colour differences
exhibit that the metabolite alteration occur in different
groups. In order to assess heterogeneity and determine the
hierarchical structure of clusters, HCA (53 metabolite signal
components) was constructed on the basis of metabolites to
extract information about similarities and differences of
metabolites.

Multivariate analyses (PLS-DA and PCA) of the UPLC-MS
spectra showed that the soil samples had different biochem-
ical profiles and distinctive clustering patterns. Cluster analysis
of soil samples with different heights and visualized thermal
maps were presented in the form of tree maps. As is shown in
Fig. 6, the metabolites were divided into two main clusters by

This journal is © The Royal Society of Chemistry 2019
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height, with H2 as cluster 1 and H4 and H6 as cluster 2.
Therefore, the chemical compositions of soil samples with H4
and H6 shared more similarity. Metabolites were divided into

=

=

E
]
H2 H4 H6

four main clusters by their own properties (ranking from top to
bottom). cluster 1, cluster 2 and cluster 3 metabolites were
mainly small molecular compounds and some polymers which

Fig.7 SWIS tree height and heat maps of different heights (color-coded scale indicates the relative abundance of each metabolite, red indicates
a relatively abundant species, and blue represents a relatively abundance species).
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played an important role in microbial metabolism, such as
amino acids, nucleotides and vitamins. The main metabolites
of cluster 4 were antibiotics, growth hormones and pigments. It
was reported that agricultural soils contained more lipids and
sugars while remnant soils had greater carbon pools with larger
quantities of terpenetype molecules. This was consistent with
the metabolites that were screened. Cluster analysis results
were influenced by environmental impact factors (dissolved
oxygen). Oxygen content was one of the main factors affecting
the growth and distribution of microorganisms. According to
ORP value, aerobic microorganisms were dominant when the
height of soil column H2 is in the aerobic zone; H4 (middle
layer of soil column) was in the facultative anaerobic zone; H6
(the lower layer) oxygen content decreases gradually and
anaerobic microorganisms as the dominant group.*®* Height H4
and H6 belong to anoxic or even anaerobic state so that the
cluster analysis results of metabolites were divided into two
main clusters. Cluster analysis revealed the diversity of metab-
olite profiles.”

As is shown in Fig. 8(A), when SWIS runs steadily, the ORP in
H2 and H6 remained between 600-800 mV and —200 to
—400 mV respectively; the ORP fluctuations at the matrix layer
H4 decreased to 0-100 mV with distributing wastewater, and
returned to the 200 mV level after drying and maintained
alternating cycles.*® The aerobic environment of the system was
restored in time by intermittent operation. The area above H2
was always aerobic, the microenvironment of H4 was anoxic-
anaerobic, and the area of H6 was completely anaerobic. After
drying, the interspace of the matrix bed seeps underwater and
the water content decreases. Oxygen dioxide can be convective
and diffused into the surface of the system. With the increase of
dissolved oxygen content, SWIS oxidation-reduction micro-
environment can be better maintained (as shown in Fig. 8(B)).
According to the variation of ORP, it can be well explained that

39682 | RSC Adv., 2019, 9, 39674-39683

the metabolites of layer H4 were mainly organic acids and
alcohols, while metabolites of layer H6 were antibiotics, growth
hormones and pigments.

5. Conclusion

Using UPLC-MS method to identify microbial metabolites of
SWIS in different profiles was a non-targeted metabolomics
fingerprint study. The biomarkers and metabolic pathways in
different sections of SWIS were studied to understand the role
of microorganisms in SWIS by multivariate statistical analysis.
The relationship between environmental factors and microbial
metabolites was studied by RDA analysis.

The PLS model was selected with VIP > 1.5 as the screening
threshold, and 53 potential biomarkers were screened. Seven-
teen compounds were identified by METLIN metabolomics
database. As one of the factors affecting the growth and repro-
duction of microorganisms, ORP affected not only the activity of
microorganisms but also the distribution of microorganisms
and metabolites. The ORP value varied with the height of the
profile. Metabolites were correlated with ORP in SWIS profile.
The results showed that microbial metabolites were concen-
trated in the aerobic layer H2, organic acids and alcohols in the
facultative anaerobic layer H4 and antibiotics, growth
hormones and pigments in the anaerobic layer H6.
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