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tion based on comparative
metabolomic analysis of chicken embryo fibroblast
DF-1 cells†

Jia Lin, ‡ Xiaoping Yi‡ and Yingping Zhuang*

Chicken embryo fibroblast DF-1 cells are increasingly being used in the production of avian virus vaccines.

However, the relatively low proliferative capacity does not meet the requirements of industrial production.

In this study, we attempted to improve the proliferative capacity of DF-1 cells. The results of intracellular

metabolomics showed that 28 types of metabolites could play roles in DF-1 cell growth based on the

variance and timing analysis of intracellular metabolites from DF-1 cells grown in two media with distinct

growth difference, DMEM/F12 (1 : 1) and DMEM. By examining the differences in the components in the

two media, DOE was used to screen and optimize the growth medium for DF-1 cells. The maximum cell

density was 40.72% higher, and the infectious bursal disease virus (IBDV) titer was 2.68 times higher, in

the optimized medium than in the control. This study proposes a complete solution from metabolomics

to media optimization.
Introduction

DF-1 is an immortalized cell line of chicken embryo broblasts,
arising spontaneously from East Lansing Line (ELL-0) chicken
embryos without any endogenous fragments related to avian
leukosis virus and sarcoma virus,1 which has been demon-
strated to have applications in the production of several avian
virus vaccines, such as Marek's disease virus,2 avian inuenza
virus3,4 and infectious bursal disease virus (IBDV).5 DF-1 cells
have greater proliferative capacity than the CEF cell line6 but it
is still not satisfactory for industrial production; thus,
improvement of the reproductive capacity of DF-1 cells would be
valuable.

In addition to the genome, transcriptome and proteome, the
metabolome has been widely used in the eld of industrial
biotechnology in recent years, such as for rational trans-
formation of biological processes,7 metabolic network optimi-
zation,8 in vivo metabolic functional research,9 and systemic
metabolic engineering. Metabolites can indicate the pheno-
types of the actual process, that is, small changes in gene
expression or protein activity oen lead to substantial changes
in metabolites, and these metabolite changes are in turn
responsible for cell or tissue behaviour directly while also
simultaneously affecting the proteome and transcriptome.10,11
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Therefore, the metabolome can reect the physiological char-
acteristics of the cell and identify the bottleneck in cell culti-
vation and metabolism to improve the efficiency of biological
processes. In terms of analysis, metabolite measurements only
require classic analytical chemistry techniques and are the least
expensive among all omics methods. In addition, analytical
methods are suitable for different organisms and species and
the results are acceptable for comparison of different condi-
tions and cell types directly.12 In short, the metabolome can
provide a large amount of detailed information regarding bio-
logical process phenotypes and biosystems, which cannot
obtain by other omics methods. Korneli C. et al. identied
a dynamic trend in intracellular amino acids in Bacillus mega-
terium in scale-down simulation experiments by metabolomics
and identied four types of amino acids as biomarkers, which
provided important clues regarding the feeding strategy.13

Chrysanthopoulos et al. applied metabolomics to accurately
monitor the BHK culture process.14 With all other conditions
remaining constant, different bioreactors, culture sizes and the
cell generations showed the different physiological character-
istics in terms of the metabolome. Biomarkers from different
culture processes can be identied by metabolomics to opti-
mize and accurately monitor the cell culture process.

Design of Experiment (DOE) is a common method for factor
optimization and to decrease the number of experimental steps
via decreased factor counts and levels in biological process
optimization. There are many variable factors in actual biolog-
ical processes, but not all factors have signicant impacts.
Therefore, the rst step in biological process optimization is
identication of signicant factors. Plackett–Burman design
(PBD) is a two-level fractional factorial design developed by
RSC Adv., 2019, 9, 27369–27377 | 27369
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Plackett and Burman and has been extensively used for
screening important factors from pre-analysed results and
estimating the extent of the effect with relatively few trials;
however, this design is not quantitatively accurate.15 The Box–
Behnken design (BBD) is an experimental design for the second-
order polynomial response surface method that is widely used
to estimate the response region; BBD is a three-level fractional
factorial design developed by Box and Behnken and provides
mathematical models with the dependence degree of each
independent variable (each component concentration in
medium or the operating parameters), including the predicted
result of each variable level.16 In summary, DOE is a useful tool
for medium optimization because of the reduced research
cost,17,18 reduced optimization time,19 improved product quality
and increased target product yield20–23 associated with this
method.

This study rst applied metabolomics to screen nutrients
that inuenced the growth of DF-1 cells and then determined
signicant key factors by PBD, selected the optimal range by
one-factor-at-a-time design, and nally estimated the response
level and the relationship between factors so that the optimal
conditions for cell growth and the optimal effects could be
determined according to the second-order polynomial model by
BBD. Based on metabolomics and the DOE methodology, we
established a strategy for optimization of cell culture medium.
Table 1 Metabolites classification and component concentration in
Plackett–Burman design

Level (mM)
Methods
DF-1 cell culture

Routine cell culture of adherent DF-1 cells was performed in a 25
cm2 Nunc EasYFlask (Thermo Scientic) with 5mL of DMEM/F12
(1 : 1) or DMEM (Gibco) with 5% fetal bovine serum (Biological
Industries) in a humidied incubator at 37 �C with 5% CO2. Cell
number and viability were determined using a Countstar (ALIT
Life Science), an automated trypan blue cell counter.
Symbol Group Components �1 1

A Amino acids 1 Arginine 0.7 1.4
Proline 0.15 0.3

B Amino acids 2 Glycine 0.25 0.5
Serine 0.25 0.5
IBDV strain and preparation

IBDV was used to infect DF-1 in asks when the cells reached
90% conuence, and the cells were harvested when 80% of the
cells exhibited lesions; virulence was determined using TCID50.
Threonine 0.45 0.9
C Amino acids 3 Aspartate 0.05 0.1

Asparagine 0.05 0.1
D Amino acids 4 Glutamate 0.05 0.1

Glutamine 2.5 5
E Amino acids 5 Histidine 0.15 0.3

Cysteine 0.1 0.2
Methionine 0.12 0.23

F Putrescine Putrescine 5.03 � 10�4 1.01 � 10�3

G Nucleotide Nucleotides 1.51 � 10�3 3.02 � 10�3

H Vitamins Biotin 1.43 � 10�5 2.87 � 10�5

VB12 5.02 � 10�4 1.00 � 10�3

J Inorganic salts Zn2+ 1.50 � 10�3 3.00 � 10�3

Cu2+ 5.20 � 10�6 1.04 � 10�5

Fe2+ 1.50 � 10�3 3.00 � 10�3

K Others Linoleic acid 1.50 � 10�4 3.00 � 10�4

Lipoic acid 5.10 � 10�4 1.02 � 10�3

L Dummy 0 0
Experimental design and procedure of metabolome

For metabolomic analysis of global biochemical proles, cells
were cultivated in a 75 cm2 Nunc EasYFlask with 15 mL
medium, and a total of 107 cells were harvested for each
medium and stored at �80 �C immediately aer washing with
ice-cold phosphate-buffered saline. Three of these cultures were
used to determine the intracellular metabolites at each time
point (t ¼ 12, 24, 36, and 72 h). Metabolite determination was
performed by Metabolon, Inc. (Durham, NC) using standard
protocols. Metabolon has developed a platform that integrates
the chemical analysis, metabolite identication and relative
quantication, data reduction, and quality assurance compo-
nents of the process. The methodology has been detailed else-
where.24 Individual cell samples (n¼ 3 per group) were extracted
27370 | RSC Adv., 2019, 9, 27369–27377
and split into equal parts for analysis on the GC/MS and UPLC-
MS/MS platforms.

Prior to statistical analysis, the data obtained were normalized
to the protein concentration by Bradford analysis.25 All identied
metabolite relative abundance matrices were uploaded to
MetaboAnalysis (http://www.metaboanalyst.ca) for multivariate
statistical data analysis and the pathway analysis.26,27
Statistical analysis strategy

Plackett–Burman design. In this study, PBD was used to
screen the factors that signicantly affected cell growth from
twenty-eight metabolites to improve the maximum cell density
obtained and the specic growth rate in logarithmic growth
phase, including twenty-one metabolites based on metab-
olomics and seven metabolite components from differences in
the components in the comparative medium, and classied into
10 categories as listed in Table 1 according to possible path-
ways. Each variable was tested at two levels—high (+1) and low
(�1) which were initially experimentally estimated in DMEM/
F12 (1 : 1). In summary, eleven independent variables (ten of
the abovementioned variables and one dummy variable) were
screened by twelve trial runs according to PBD with N ¼ 11.
Further details regarding the PBDmatrix are listed in Table S4.†

One-factor-at-a-time design. A one-factor-at-a-time design
was used to determine the optimal range of values. The three
most signicant factors obtained from the PBD experiment
were further optimized by one-factor-at-a-time experiments for
response surface analysis.

Box–Behnken design. Response surface analysis applied
BBD for evaluation of the effects of three independent variables
This journal is © The Royal Society of Chemistry 2019
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on cell growth to achieve increased maximum cell density and
specic growth rate in the logarithmic growth phase. With the
other factors maintained in DMEM/F12 (1 : 1), we studied the
three signicant variables at the three coded levels: high (+1),
intermediate (0) and low levels (�1). To determine the optimum
values for the three selected variables, 15 trial runs were
designed by BBD, including 3 replicates. The experimental
matrix, including the experimental and predicted results, is
provided in Table S6.†

The following second-order polynomial model ts the rela-
tionship between the response and the test variable. The
equations obtained using statistical methods are as follows:

Y ¼ b0 þ
X3

i¼1

biXi þ
X3

i¼1

biiXi
2 þ

X2

i¼1

X3

j¼iþ1

bijXiXj

where Y is the predicted response and b0, bi, bii, and bij are the
constant, linear coefficient, quadratic coefficient and interaction
coefficient, respectively. Xi and Xj are the independent variables.

Validation of the tting model. The second-order polynomial
described above was used to direct the experiment to validate the
tted model. The DF-1 cells cultured in optimized medium validate
the optimization results using the statistical strategy for the
maximum cell density obtained and the specic growth rate in the
logarithmic growth phase as the targets compared with cells
cultured in DMEM/F12 (1 : 1) medium as the control.

Method matrix and ANOVA. The experimental method matrix
was designed throughout the process, including in PBD and BBD,
and the restricted analysis of all the experimental data was per-
formed using Design Expert 10.0.4 (Stat-Ease Inc., Minneapolis,
USA). The statistical signicance of the variables was evaluated by
applying analysis of variance (ANOVA) using Student's t-test. The
adequacy of the model was veried using Fisher's F-test.
Results
Cell growth

The specic growth rate and maximum cell density are two
important indicators of the cell growth. DF-1 cells were cultured
in DMEM/F12 (1 : 1), with a maximum specic growth rate of
0.033 h�1 (Fig. 1a) and a maximum cell density of at least 1.63�
106 cells per ml, and in DMEM, with amaximum specic growth
rate of 0.029 h�1 and a maximum cell density of only 0.67 � 106

cells per ml. There was a signicant difference in the growth of
DF-1 cells inoculated at the same cell density in DMEM/F12
(1 : 1) and DMEM. DF-1 cells had a high specic growth rate
and could be maintained for long duration in the logarithmic
growth phase DMEM/F12 (1 : 1) medium; thus, a high
maximum cell density was achieved in this medium.
Metabolome analysis

Multivariate statistical analysis at different time points.
According to the growth of DF-1 cells in DMEM/F12 (1 : 1) and
DMEM (Fig. 1a), ten million cells, in triplicate, were collected
for metabolite measurement at 12 h, 24 h, 36 h or 72 h, and the
differences in cell growth between the twomedia increased with
time. The complete metabolite analysis process included
This journal is © The Royal Society of Chemistry 2019
analysis of the lag phase and logarithmic growth phase of cell
growth. We obtained 193 intracellular metabolites, including
amino acids, peptides, carbohydrates, lipids, nucleotides,
cofactors, and vitamins. LC/MS and GC/MS were used for
intracellular metabolite determination to ensure that reliable
data were selected for analysis (Table S1†).

Hierarchical clustering was performed to classify the detected
metabolites as a heat map (Fig. 1b). Principal component analysis
(PCA) (Fig. 1c) showed that the metabolite samples could be sepa-
rated based on different media types and sampling time points,
indicating that the intracellular pools reected the extracellular
environment and that the data regarding the structure and quality
of the detected metabolites were suitable for statistical inference
and monitoring of the cell culture process.

To study the metabolites associated with DF-1 cell growth in
the two media, the variation in the intracellular metabolites of
DF-1 cells was analysed. Because the differences in intracellular
metabolites at the 36 h and 72 h sampling points were the most
signicant among the four sampling points when DF-1 cells
were grown in DMEM/F12 (1 : 1) and DMEM (Fig. 1a), respec-
tively, pathway analysis for the two sampling points was per-
formed. The results showed that the nine pathways were
signicantly different at both sampling points, the pathway
effects of which were higher than 0.18, and the p-values were
lower than 0.05 (Fig. 2). Therefore, supplementation of nucle-
otides, cysteine, methionine, lysine, glycine, serine, and threo-
nine could promote the growth of DF-1 cells.

Metabolite timing analysis of DF-1 cells in two media. To
identify the metabolites linked with DF-1 cell growth
throughout the culture, we performed interactive principal
component analysis (iPCA) of the intracellular metabolites in
both media in four sampling times. Two heat maps were
generated for 50 selected metabolites that changed signicantly
over time, and the maps showed that the intracellular metab-
olite levels clearly changed over time and that the results were
suitable for analysis (Fig. 3).

The pathway analysis further integrated the KEGG pathway
database, and the metabolome visualization analysis showed the
metabolic pathways which changed signicantly in the DF-1 cells
over time in bothmedia. The p-values from the pathway abundance
analysis showed all the discrepant pathways and pathway topology
analysis identied the pathway effects. Common metabolic path-
ways with signicant changes in DF-1 cells over time in both media
were identied (p < 0.01), and pathways effects greater than 0.18
were selected for further analysis (Table S2†). The common meta-
bolic pathways screened included the twenty-two metabolites
identied by the above analysis.

The p-values for pathway abundance analysis and the impact
values calculated by pathway topology analysis are listed in
Table S2.† We found that the p value of the aminoacyl-tRNA
synthesis pathway was 0.002 in DMEM/F12 (1 : 1), while the p-
value among the pathways was 0.005 in DMEM, indicating that
multiple amino acids affected DF-1 cell growth in both media
and that amino acid metabolism could be one of the main
factors affecting cell growth. The most signicant amino acids
included arginine, proline, glycine, serine, threonine, alanine,
aspartate, glutamate, histidine, cysteine and methionine.
RSC Adv., 2019, 9, 27369–27377 | 27371
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Fig. 1 DF-1 cells in DMEM/F12 (1 : 1) and DMEM. (a) Viable cell density of DF-1 cells in DMEM/F12 (1 : 1) and DMEM (0–96 h); (b) three-
dimensional principle component analysis (PCA) plot of 193 metabolite features. Comp. 1 accounted for 33.84% of the variation between the
eight groups and comp. 2 for 13.69%; (c) hierarchical clustering displaying the features expression pattern. Each column represents one bio-
logical sample and each horizontal line represents one metabolite feature. DF-1 cells were maintained either in DMEM/F12 (1 : 1) or DMEM for
12 h, 24 h, 36 h, or 72 h then harvested for metabolomic profiling and three biological replicates of each group were provided. Application of PCA
and hierarchical clustering provided by Metabolon to determine separation of individual samples as a function of cellular metabolites
demonstrated greater segregation between growth DMEM/F12 (1 : 1) and DMEM at different time points indicating that both growthmedium and
time in culture had a profound impact on global metabolism.
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In addition, purine metabolism and pyrimidine metabolism
had a similar effect on growth in DMEM/F12 (1 : 1) and DMEM,
with effects of 0.42 and 0.30 observed by topological analysis
(Table S3†), respectively. Nucleotides are important for cellular
metabolism, acting as building blocks for the synthesis of RNA
or DNA and providing energy in many reactions. In both media,
the intracellular relative levels of mononuclear acids were
substantially reduced during cell growth and signicantly
decreased at 72 h, while nucleotides reached relatively high
levels at 72 h, indicating that continuous synthesis of nucleo-
tides is required for maintenance of cell expansion during the
growth process; we speculated that provision of nucleotides or
27372 | RSC Adv., 2019, 9, 27369–27377
nucleotide synthesis precursors could promote DF-1 cell
growth.

Determination of the components to be optimized. The
components to be optimized were determined by integrating the
intracellular metabolome of DF-1 cells grown in DMEM/F12 (1 : 1)
and DMEM with the comparation between the components of the
two media, and categorized into 10 groups according to compo-
nent properties and pathways with similar function in the
promotion of cell growth in the KEGG pathway database (Table 1).

Optimization of cell growth medium based on DOE
Screening of signicant factors for cell growth by Plackett–Bur-

man design. The PBD was applied to the 10 groups as mentioned
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Differential metabolic pathways of DF-1 cells in the two media: (a) DMEM/F12 (1 : 1); (b) DMEM. The metabolome shows all matched
pathways according to the p values from the pathway enrichment analysis (y-axis and circle colour) and pathway impact values from the pathway
topology analysis (x-axis and circle size). The numbers besides the circles represented the differential metabolic pathways: 1: purinemetabolism;
2: cysteine andmethioninemetabolism; 3: lysine biosynthesis; 4: pyrimidinemetabolism; 5: phenylalanine, tyrosine and tryptophan biosynthesis;
6: phenylalanine metabolism; 7: sphingolipid metabolism; 8: glycine, serine and threonine metabolism; 9: glycerophospholipid metabolism.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

ug
us

t 2
01

9.
 D

ow
nl

oa
de

d 
on

 5
/3

0/
20

25
 3

:3
6:

09
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
above with the targets of maximum cell density and maximum
specic growth rate, as shown in Fig. 4a and Table S4.† The
restriction model with maximum cell density as the target
showed a p-value less than 0.0001, an F value of 47.42, a multi-
variate correlation coefficient R2 of 0.9646, and a model variable
range of 13.89%, indicating that the model ts the entire
restriction range well. The restriction model with the maximum
specic growth rate as the target had a p-value less than 0.0001,
an F value of 53.89, a multivariate correlation coefficient R2 of
0.9685, and a variable range of 15.51%, indicating that the
model could also t the entire restriction range well. A positive
or negative coefficient in one factor in the restriction model
indicated a positive or negative inuence of this factor on the
response. Among the 10 groups of components tested, 4 groups
of components with signicant inuence were determined with
the target of maximum cell density (Fig. 4b), and 4 groups of
components with signicant effects were also identied with
the target of maximum specic growth rate (Fig. 4c). In the
model with maximum cell density as the target, the amino acid
5 group and vitamins group had signicant positive effects,
while the amino acid 1 group and inorganic salt group had
signicant negative effects. In the model with the maximum
specic growth rate as the target, the amino acid 5 group and
the other group had signicant positive effects, while the inor-
ganic salt group and amino acid 4 group had signicant nega-
tive effects. Considering that the concentrations of the negative
components in the DMEM/F12 (1 : 1) and DMEM did not
inhibit cell growth signicantly, the amino acid 5, vitamin and
other groups were further analysed and optimized in the
subsequent study.
This journal is © The Royal Society of Chemistry 2019
One-factor-at-a-time design. According to the PBD experimental
results, the acid 5, vitamin and other groups, which signicantly
affected cell growth, were set to three concentration levels from
low to high, and the concentrations of the other factors were the
same as the original concentration in the DMEM/F12 (1 : 1), as
shown in Fig. 4d and Table S5.† The experiment with the amino
acid 5 yielded a high maximum cell density at level 1.5, while the
difference in themaximum specic growth rate at the three levels
was not signicant, so the range of level 1 to level 1.5 was selected
for subsequent studies. The experiment with the vitamin group
also achieved a high maximum cell density at level 1.5, and
simultaneously, a high maximum specic growth rate was ob-
tained, so the range of level 1 to level 1.5 was selected for
subsequent studies. The experiment with the other group had
a high maximum cell density at level 1.5, while the maximum
specic growth rate was the highest at level 2. Considering the
effect of the growth rate on virus reproduction, level 1 to level 2
was selected for subsequent studies with the other group.

Box–Behnken design. The BBD results (Fig. 4e and Table S6†)
were evaluated to identify the interactions between signicant
factors and determined the optimal levels of the three signi-
cant factors based on the results of the PBD experiments and
the one-factor-at-a-time experiments. The variance analysis of
the restriction model showed that the quadratic equation
models based on the maximum cell density and the maximum
specic growth rate were signicant (model I based on
maximum cell density, F ¼ 5.24, p < 0.05; model II based on
maximum specic growth rate, F ¼ 3.95, p < 0.05). For model I,
the analytical coefficient R2 was 0.9041, indicating that the
measurement results and the predicted results were consistent,
RSC Adv., 2019, 9, 27369–27377 | 27373
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Fig. 3 Heatmaps illustrating intracellular metabolite timing analysis of DF-1 cells in the twomedia: (a) DMEM/F12 (1 : 1); (b) DMEM. The top 50 features
were ranked using the t test, distance was measured using the Pearson correlation, and clustering was determined using the Ward algorithm.
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and the Adj R2 values showed that the model could explain
a variation of 73.14% (Fig. 4f–h). However, for model II, the
analytical coefficient R2 was 0.7479, and the Adj R2 values
showed that the model could only explain a difference of
55.86% (Fig. 4i–k), indicating insufficient correlation between
measured and predicted values. Based on the signicant
differences between model I and model II, the individual effects
of the amino acid 5, vitamin, and other groups on maximum
cell density and maximum specic growth rate were not all
signicant, whereas the curved surface effects were signicant.
The interaction effect and the optimization level of the variables
were determined according to the response surface points.

For model I, the correlation coefficient was obtained from
restriction analysis of the multivariate quadratic equation as
follows:

Maximum cell density

¼ 2.66 � 106 + 1.79 � 105 � A + 5.88 � 104 � B + 2.5

� 103 � C � 1.3 � 105 � AB + 2.25 � 104 � AC

+ 7.5 � 103 � BC � 9.42 � 104 � A2 � 1.69 � 105

� B2 � 1.27 � 105 � C2,
27374 | RSC Adv., 2019, 9, 27369–27377
and for model II, the correlation coefficient was obtained from
interaction restriction analysis of the model equation as
follows:

Maximum specific growth rate

¼ 0.035 + 0.00053 � A + 0.0010 � B � 0.0058

� C � 0.0015 � AB + 0.0012 � AC � 0.0025 � BC,

where A, B, and C represent the coded levels of the amino acid 5
group, vitamin group and other group, respectively, and their
actual values are presented in Table 1.

Experimental verication. The three-dimensional analysis of
the response surface indicated that the model had a maximum
cell density and a corresponding specic growth rate, as
shown in Fig. 4f–k. The maximum cell density predicted was
2.68 � 106 cells per ml, and the maximum specic growth rate
was 0.038 h�1, with the levels of each component group
determined to be as follows: amino acid 5 group ¼ 1, vitamin
group ¼ �0.78, other group ¼ 0.86. Compared with the values
in the original medium, the maximum cell density and
maximum specic growth rate were signicantly improved.
This journal is © The Royal Society of Chemistry 2019
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Fig. 4 The experiment results of DOE. (a) The experiment results of PBD. Bar chart represents maximum cell density and open circle represents
specific growth rate. (b) and (c) Components screened by PBD based on maximum cell density and specific growth rate, respectively. A: Amino
acid 1, including arginine and proline; B: amino acid 2, including glycine, serine and threonine; C: amino acid 3, including aspartate and
asparagine; D: amino acid 4, including glutamate and glutamine; E: amino acid 5, including histidine, cysteine and methionine; F: putrescine; G:
nucleoside; H: vitamin, including biotin and VB12; J: inorganic salt, including Zn2+, Cu2+ and Fe2+; K: other, including linoleic acid and lipoic
acid; L: dummy. The orange or blue bars mean factors have positive or negative influence on the response and the open bars mean the factors
have significant influence on the response. (d) and (e) The experiment results of one-factor-at-a-time design and BBD, respectively. Bar chart
represents maximum cell density and open circle represents specific growth rate. (f)–(h) Response surface and contour plot (base) of maximum
cell density showing the interactions among amino acid 5, vitamin, and other: (f) effects of amino acid 5 and vitamin; (g) effects of amino acid 5
and other; (h) effects of vitamin and other. (i)–(k) Response surface and contour plot (base) of specific growth rate showing the interactions
among amino acid 5, vitamin, and other: (i) effects of amino acid 5 and vitamin; (j) effects of amino acid 5 and other; (k) effects of vitamin and
other. N ¼ 3 biological replicates, and error bars represent s.d.
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When DF-1 cells were cultured in the optimized growth
medium, the maximum cell density increased by 40.72%
compared with the control (DMEM/F12 (1 : 1)) (Fig. 5a), and
the maximum specic growth rate increased by 13.7%, which
This journal is © The Royal Society of Chemistry 2019
was similar to the predicted values. Simultaneously, the IBDV
titer obtained for DF-1 cells cultured in the optimized medium
signicantly increased to 2.68 times higher than that of the
control (Fig. 5b).
RSC Adv., 2019, 9, 27369–27377 | 27375

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra05128g


Fig. 5 Comparison of production between the optimized and control
media. The asterisks represent p value calculated by two-ANOVA
analysis—***p ¼ 0.002. N ¼ 3 biological replicates, and error bars
represent s.d.
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Discussion and conclusions

Metabolites are sensitive to genomic changes and cellular
responses to external stimuli. Therefore, the metabolomics has
potential advantages in the optimization of cell growth. In
recent years, due to the considerable advances in routine
analytical techniques and animal cell metabolomics, a specic
map depicting the cellular metabolic state can be generated for
optimization of the cell culture process optimization by
measurement of specic changes in intracellular metabolites.

There were signicant differences in the growth of DF-1 cells
in DMEM/F12 (1 : 1) and DMEM. To investigate the specic
changes in cell metabolism in two culture conditions and the
effects of different nutrient components on cell growth, intra-
cellular metabolomes were analysed between the two media.
The PCA results showed that the bioparallel sample groups were
well aggregated and could be differentiated based on the type of
27376 | RSC Adv., 2019, 9, 27369–27377
medium and sampling time, indicating that the data could be
used to monitor the DF-1 cell culture process.

Combined with the time series analysis, differential analysis
of the metabolites and pathways revealed that amino acid
metabolism plays an important role in DF-1 cell growth. Amino
acids are important for cell metabolism, not only in protein
metabolism, but also as precursors of various macromolecular
metabolites. For example, cysteine is involved in the synthesis
of glutathione and regulates the cellular redox state;28,29

methionine is one of the sources of methyl groups in bio-
methylation reactions and plays an important role in the
methylation of DNA and histones.30 In proliferating cells, amino
acids contribute more than glucose to biomass synthesis.
Hosios et al. used [U–14C]-labeled amino acids to show labelling
of most of the carbon skeleton in proliferating animal cells,
verifying that amino acids primarily participated in protein and
nucleotide synthesis, while glucose exhibited increased partic-
ipation in biomass synthesis only in the absence of amino
acids.31 The metabolomic analysis in this study showed that
glycine, serine, threonine, aspartate, asparagine, glutamate,
and glutamine might be involved in central carbon metabolism
via different metabolic pathways, and in turn in biomass
synthesis, indicating that amino acids might affect the
synthesis of cellular biomass by regulating protein anabolism or
by being directly involved in protein synthesis.

The results of the DOE methodology showed that biotin,
cobalamin (VB12), linoleic acid and lipoic acid had signicant
effects on the growth of DF-1 cells. Biotin is involved in the
metabolism of glucose, amino acids and fatty acids, covalently
binding to coenzyme synthase (HCS) as the coenzyme of four
carboxylases (pyruvate, propionyl-CoA, 3-methyl crotonyl-CoA,
and acetyl-CoA) in animal cell culture in vitro.32 VB12 is
a complex organometallic cofactor that is associated with
several enzymes that are involved in many types of cellular
metabolism.33,34 Linoleic acid, the crucial ligand for nuclear
receptors in animal cell lipogenesis and fat deposition, affects
the expression of genes associated with animal cell proliferation
and lipid catabolism with eicosatetraenoic acid. Liu et al.
cultured duck primary hepatocytes with linoleic acid and eico-
satetraenoic acid, which resulted in promotion of cell growth.35

Lipoic acid enhances the cellular antioxidant capacity, scav-
enges free radicals, promotes fat consumption, and inhibits
oxidative stress.36 The results of the response surface design
indicated that promotion of the utilization of lipid metabolites
was benecial for DF-1 cell growth.

In this study, the intracellular metabolites of DF-1 cells
grown in DMEM/F12 (1 : 1) and DMEM were rst analysed by
difference analysis and time series analysis. It was inferred that
amino acid metabolism and lipid metabolism played important
roles in cell growth. By examining the differences in the
components of the two media, the optimum components for
cell growth were predicted. Then, the growthmedium of the DF-
1 cells was optimized rapidly and efficiently using the DOE
statistical design method. The growth of DF-1 cells was
improved, and the production of the IBDV vaccine was signi-
cantly enhanced, with the optimized medium. This study
provided guidance for the production of viral vaccines using DF-
This journal is © The Royal Society of Chemistry 2019
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1 cell, and a set of schemes for the rapid design and optimiza-
tion of the cell growth medium based on metabolite analysis.
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