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ocol based on integrative
metabonomics analysis for the rapid detection and
mechanistic understanding of sulfur fumigation of
Chinese herbal medicines†

Dai Shengyun,ab Wang Yuqi,a Wang Fei,ac Mei Xiaodana and Zhang Jiayu *de

In the current work, Lonicera japonica Flos (FLJ) was selected as a model Chinese herbal medicine (CHM)

and a protocol was proposed for the rapid detection of sulfur-fumigated (SF) CHMs. A multiple

metabonomics analysis was conducted using HPLC, NIR spectroscopy and a UHPLC-LTQ-Orbitrap mass

spectrometer. First, the group discriminatory potential of each technique was respectively investigated

based on PCA. Then, the effect of mid-level metabonomics data fusion on sample spatial distribution

was evaluated based on data obtained using the above three technologies. Furthermore, based on the

acquired HRMS data, 76 markers discriminating SF from non-sulfur-fumigated (NSF) CHMs were

observed and 49 of them were eventually characterized. Moreover, NIR absorptions of 18 sulfur-

containing markers were identified to be in close correlation with the discriminatory NIR wavebands. In

conclusion, the proposed protocol based on integrative metabonomics analysis that we established for

the rapid detection and mechanistic explanation of the sulfur fumigation of CHMs was able to achieve

variable selection, enhance group separation and reveal the intrinsic mechanism of the sulfur fumigation

of CHMs.
1. Introduction

Sulfur fumigation is a traditional storage method for Chinese
herbal medicines (CHMs). It was rst applied to the processing
of Dioscoreae rhizoma, and has been widely misused in various
CHMs in the last two decades, such as in the processing of
Chrysanthemi Flos, Gastrodia Rhizoma, Radix Paeoniae Alba and
Lonicera japonica Flos (FLJ).1–3 It plays an important role in the
production and post-harvest handling of CHMs due to its usage
in moisturizing, bleaching, retaining freshness and killing
parasites.4–6 However, sulfur fumigation induces signicant
chemical transformations in inherent herbal constituents,
resulting in alterations in the bioactivities, pharmacokinetics
and toxicities of CHMs.7,8 Besides, it oen leads to the
production in CHMs of excessive sulfur dioxide (SO2), sulfates,
sultes, heavy metal residues and other detrimental exogenous
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tion (ESI) available. See DOI:
materials, which exhibit harmful potential toxicities or side
effects to human health.9–11

Although the use of sulfur fumigation has been officially
restricted in China since 2005,12 some illicit herbal farmers and
wholesalers still misuse sulfur fumigation during the post-
harvest handling and storage of CHMs. Moreover, SO2

residue-based detection standards formulated by many coun-
tries and organizations are oen ineffective at evaluating the
degree of sulfur fumigation because of the high volatility of SO2.
Current studies mainly focus on total SO2 residues and neglect
the transformations of inherent herbal constituents and corre-
sponding mechanisms.13–16 Therefore, the development of rapid
and sensitive approaches based on stable quality-markers (Q-
markers), such as sulfur-containing derivatives, to discrimi-
nate sulfur-fumigated (SF) CHMs from non-sulfur-fumigated
(NSF) CHMs is urgently needed.17

Integrative omics combining and interpreting data from
multiple sources have already been adopted to successfully
elucidate the mechanisms of human diseases, such as diabetes,
obesity and schizophrenia.18,19 Besides, integrative omics anal-
ysis has been used to characterize genes in the context of the
molecular pathophysiology of the disease and its interacting
genes and pathways.20,21 Likewise, multi-omics data collected
using various detection technologies such as liquid chroma-
tography combined with mass spectrometry (LC-MS), high-
performance liquid chromatography (HPLC) and near infrared
This journal is © The Royal Society of Chemistry 2019
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(NIR) spectroscopy have been used for the screening and iden-
tication of Q-markers for the analysis of CHMs.22,23 Of these
technologies, HPLC retains the practicality and principles of LC,
while increasing the overall interlaced attributes of sensitivity
and resolution, MS has emerged as a powerful tool for quanti-
tative and qualitative analysis of the complex components in
CHMs, and NIR spectroscopy is a very rapid and alternative non-
destructive method that shows electromagnetic absorption
signals in the NIR region associated with specic chemical
structures and that can be assigned to specic chemical func-
tional groups and molecular structures. Nevertheless, although
each technique has its own powerful capabilities for specic
issues, any data set obtained by one single technique cannot
capture the complexity of the overall system. Thus, integrative
metabonomics analysis based on multiple levels of data fusion
and correlation combines the information provided by various
analytical technologies so as to achieve much better statistical
predictions and interpretations than those obtained from any
individual technique.

FLJ, also known as Jin Yin Hua in Chinese, is one of the most
well-known CHMs. It is derived from the dried buds or owers
of Lonicera japonica Thunb. and contains various biological
ingredients such as organic acids, avonoids and iridoid
glycosides.24–27 Pharmacological investigations indicated that
FLJ displays various pharmacological activities, such as hep-
atoprotective, cytoprotective, anti-microbial, anti-oxidative,
anti-viral and anti-inammatory activities.28–30 FLJ is also used
in many food products, such as FLJ tea, a well-known health
drink that has been highly praised for thousands of years for
clearing away heat and toxic materials and treating exogenous
pathogenic wind-heat.31 However, in the last two decades, sulfur
fumigation has been frequently misused in post-harvest
handling during the drying and storage of FLJ. Therefore, we
used FLJ as a study case to present a proposal for a protocol
based on integrative metabonomics analysis in order to clarify
the inherent chemical transformations of CHMs and to classify
the CHMs based on these transformations. SF and non-sulfur-
fumigated (NSF) FLJ along with organic acids, avonoids and
iridoid glycosides were used to verify the effectiveness of the
established strategy.

2. Materials and methods
2.1 Chemicals, reagents and herbal materials

A total of 22 batches of authenticated NSF FLJ samples were
collected from several different areas in China (Table S1†). All of
their identities were authenticated using morphological and
histological methods to be the dried buds of L. japonica Thunb.
according to the monograph of Chinese Pharmacopoeia
(version 2015).32 The authenticated specimens were deposited
in the Beijing Research Institute of Chinese Medicine, Beijing
University of Chinese Medicine, China. Standard substances
including 3-caffeoylquinic acid (3-CQA), 4-CQA, 5-CQA, 3,4-
dicaffeoylquinic acid (3,4-DiCQA), 3,5-diCQA, 4,5-diCQA, loni-
cerin, secologanic acid, swertiamarin and luteolin 7-O-b-gluco-
side were purchased from Chengdu Bio-purify Phytochemicals
Ltd (Sichuan, China) with their purities all greater than 98%
This journal is © The Royal Society of Chemistry 2019
(Fig. S1 and Table S2†). HPLC-grade acetonitrile and methanol
were provided by Fisher Scientic (Fisher, Fair Lawn, NJ, USA).
Formic acid was provided by Aldrich (St. Louis, MO). All of the
other chemicals were of analytical grade and obtained
commercially from Beijing Chemical Works (Beijing, China).
De-ionized water was puried using a Milli-Q Gradient A 10
System (Millipore, Billerica, MA). The 0.22 mmmembranes were
purchased from Xinjinghua Co. (Shanghai, China).

2.2 Sample preparation

2.2.1 SF FLJ herbal samples. Fieen batches of SF FLJ
samples were prepared following the modied procedures that
were employed by farmers and illicit wholesalers.33,34 A total of
200 g of FLJ dried buds were wetted with water and allowed to
stand for 0.5 h. Aerwards, a proper amount of sulfur powder
was heated until it burned, and then the burning sulfur and
wetted FLJ were carefully put into, respectively, the lower and
upper layers of a desiccator. The desiccator was then kept closed
for 12 h in order to achieve a sufficient sulfur fumigation.
Meanwhile, the SF 5-CQA that was utilized for result validation
was also prepared with this same method.

2.2.2 Reference solutions. A certain amount of each of 3-
CQA, 4-CQA, 5-CQA, 3,4-CQA, 3,5-diCQA, 4,5-diCQA, lonicerin,
secologanic acid, swertiamarin and luteolin 7-O-b-glucoside
was respectively weighed accurately and then dissolved in
methanol to obtain the mixed reference solutions (0.01 mg
mL�1). These reference solutions were stored at 4 �C prior to
analysis.

2.2.3 FLJ sample solutions. FLJ powders ground and sieved
through a 65 mesh sieve were soaked for 30 min. A total of 1.0 g
of powder was accurately weighed and then extracted with
25 mL methanol/water (70 : 30, v/v) in an ultrasonic bath (40
kHz, Eima Ultrasonics Corp., Germany) for 30 min at room
temperature. Then the same solvent was added to compensate
for the lost weight during the extraction process. The methanol
solution was subjected to centrifugation (10 000 g) for 10
minutes, and then ltered through a 0.22 mm microporous
membrane before being injected into an LC-MS system for
analysis. To ensure the quality of the HPLC and LC-MS-based
metabonomics data, pooled quality control (QC) samples were
prepared by mixing equal amounts of 37 sample solutions.

NIR, HPLC-DAD and UHPLC-LTQ-Orbitrap MS data were
collected from these samples. The conditions for the three
methods are listed in the ESI.†

2.3 Primary metabonomics data processing

All of the data were subjected to principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA)
to interpret the interrelationships between the samples. With
respect to PLS-DA, samples were divided into a calibration set
for modeling and a validation set for the established model
evaluation. The prediction set consisted of samples that were
not used for the calibration set.

The very high quantities of acquired UHPLC-LTQ-Orbitrap
MS raw data were processed with an Xcalibur 2.1 workstation
(Thermo Scientic, Germany). The normalization was
RSC Adv., 2019, 9, 31150–31161 | 31151

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra05032a


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
O

ct
ob

er
 2

01
9.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 1
2:

25
:5

0 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
accomplished using Sieve 2.1 soware (Thermo Scientic, USA),
which was specically used to perform background subtraction,
component detection and peak alignment. SIMCA-P+ 11.5
(Umetrics, Sweden) and Unscrambler 7.0 (CAMO, Norway)
soware were utilized to carry out the spectral pre-processing.
PCA and PLS were conducted using Matlab version R2009a
(The MathWorks, Inc., USA) with Statistical Toolbox and in-
house functions. The iToolbox utilized to run synergy interval
partial least squares (siPLS) analysis algorithms was down-
loaded from http://www.models.kvl.dk/ for the NIR wavelength
selection.

2.4 Integrative metabonomics analysis

2.4.1 Metabonomics data fusion. In order to integrate the
information acquired from the different technologies, mid-level
metabonomics data fusion was carried out to investigate the
three obtained metabonomics data sets based on NIR, HPLC
and LC-MS approaches. Much more attention was paid to the
comparison between two methods, i.e., metabonomics data
fusion with or without variable selection. The rst method
specically applied PCA to describe the metabonomics data and
determine the data structure without variable selection. To
overcome the shortage of differences in scores and eigenvalues,
all of them were standardized and eigenvalues were converted
into percentage of explained variance. Scores were then multi-
plied by eigenvalues, and matrices were combined (HPLC, NIR
and HRMS). The second method was based on the selection of
relevant variables for each analytical method using PLS-DA with
variable selection, which was then investigated using PCA. In
this way, the number of explanatory variables was markedly
reduced, and the selected variables only described the primary
differences between all of the samples.

2.4.2 Method validation. To ensure the reliability of the
experimental results, the reference standard, 5-CQA, was ob-
tained to perform the SF process. SF chlorogenic acid samples
(0.5, 1.0, 2.0, 2.5 and 5.0 mg) were respectively weighed, and
each sample was then thoroughly mixed with 5.0 mg of dextrin.
Meanwhile, NSF chlorogenic acid samples were prepared in the
same way to test the reliability of the results. These ten samples
were analyzed using the same NIR and LC-MS methods.

3. Results and discussion
3.1 Basic data sets for the three technologies

Typical NIR, HPLC-DAD and total ion chromatogram (TIC)
results of the representative SF and NSF samples are presented
in Fig. S2.† Aer peak alignment and removal of the missing
values, 90 features were nally obtained for the HPLC-based
metabonomics analysis. Meanwhile, for each of 37 samples,
the NIR and MS data sets included 1557 and 5000 variables,
respectively.

3.2 Primary metabonomics data analysis

Primary data analysis results were obtained respectively from
unsupervised PCA and supervised PLS-DA for the three different
techniques (Table 1 and Fig. 1).
31152 | RSC Adv., 2019, 9, 31150–31161
As for PCA, SF and NSF FLJ samples were not explicitly
clustered into two groups with regards to HPLC-DAD and NIR
analysis (The preprocess method was SG9+2nd, and the results
obtained from the other preprocess methods are illustrated in
Fig. S3 and Table S3†). While for the LC-MS analysis results, the
37 SF and NSF samples did segregate into two distinct groups.
Fig. 1A–C show plots of these scores for these three techniques,
respectively. A distinct classication trend could be observed in
the LC-MS score plot. However, the results for these samples
were nevertheless scattered considerably, with that for sample
number 16 attributed to the NSF group being located in the SF
group, which indicated that some of the variation in the
samples cannot be obtained from the PCA.

Therefore, PLS-DA was performed to improve the group
separation. The PLS-DA model resulted in a clear separation of
the SF and NSF samples for each of the three different tech-
nologies (Fig. 1D–F). As for the HPLC and LC-MS analyses,
statistical models were considered to be statistically signicant
when the corresponding Q2-intercept values (�0.262 and
�0.264) for the permutation model were negative. Meanwhile,
the permuted R2 values (0.624 and 0.439) were lower than the
original R2-values (0.903 and 0.927). Additionally, analysis of
variance of the cross-validated predictive residuals (CV-ANOVA)
tests were performed to conrm that the SF and NSF groups
discriminated by PLS-DA were signicantly different. The
common practice was to interpret a p value (1.16 � 10�5 and
3.73 � 10�11) dramatically lower than 0.05 as contributing
a signicant model. As for the NIR analysis (for which the
preprocess method was SG9+2nd, and the results obtained from
the other preprocess methods are shown in Fig. S4†), the Q2-
intercept value was lower than 0.5, indicating the poor predic-
tive capability of PLS-DA here. The poor predictive capability
was also veried by the nding of a positive Q2-intercept value
from the permutation test. Therefore, the use of the NIR and
HPLC technologies did not achieve a satisfactory classication
based on PCA while the use of MS did so.
3.3 Integrative metabonomics analysis

3.3.1 Mid-level metabonomics data fusion analysis without
variable selection. Data fusion is dened as the integration of
data blocks from different analytical platforms into a single
model so as to improve the capability of statistical prediction
and facilitate interpretation.35 Low-level, mid-level and high-
level data fusion have been three commonly used strategies.
As the most commonly used strategy, mid-level data fusion can
either combine variables aer a relevant selection procedure or
concatenate latent variables extracted from different statistical
methods. Herein, the mid-level metabonomics fusion of NIR,
HPLC and MS data was investigated. PCA was respectively
conducted with various combinations of these techniques,
specically NIR-HPLC, HPLC-MS, NIR-MS and NIR-HPLC-MS
(Table 2).

Compared to the primary metabonomics analyses for HPLC
and NIR alone, the principal factor total cumulative based on
the results of the fusion of NIR and HPLC data was higher, with
a value of 93.5%. However, the discrimination was still
This journal is © The Royal Society of Chemistry 2019
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Table 1 Primary data analysis results for the three techniquesa

Technique

PCA PLS

Lvs R2(X) Lvs R2(Y) Q2 Q2-intercept Permuted R2 value p-Value

HPLC-DAD 3 35.7% 3 94% 63.5% �0.262 0.624 1.16 � 10�5

NIR 5 39.0% 3 97.2% 55.2% 0.504 0.504 0.037
LC-MS 6 72.0% 2 94.9% 82.9% �0.264 0.439 3.73 � 10�11

a Lvs: the number of latent variables.

Table 2 The results of the mid-level data fusion analysis for the three
techniques

Techniques

PCA PLS-PCA

Lvs R2(X) Lvs R2(X)

NIR-HPLC 5 93.5% 5 55.2%
HPLC-MS 5 71.4% 6 79.4%
NIR-MS 6 75.0% 5 66.9%
NIR-HPLC-MS 6 74.4% 5 66.7%
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unsatisfactory. NSF and SF samples were dispersed in the three-
dimensional space, indicating that the key information about
the discrimination between the two analyses might not be
captured (Fig. 2A). HPLC-MS-, NIR-MS- and NIR-HPLC-MS-
based metabonomics data fusion generated summarized prin-
cipal factorial plane results that were similar to the result for MS
analysis mentioned above. Besides, many more variables were
in the MS data set than in the HPLC data set, and hence the
information contained in the MS data set could cover up the
limited information of HPLC to some extent. Therefore, the
results from MS-HPLC metabonomics data fusion were similar
to those from primary metabonomics based on the MS data set
(Table 3).

3.3.2 Mid-level metabonomics data fusion analysis with
variable selection. Neither primary data analysis nor data
fusion of different analytical technologies without variables
Fig. 1 The results of primary metabonomics data fusion analysis. (A–C) P
and LC-MS.

This journal is © The Royal Society of Chemistry 2019
selection could distinctly discriminate SF from NSF samples.
This observation indicated that data fusion could not increase
the classication capability, as the obtained results from
metabonomics data fusion analysis were not improved greatly
CA for HPLC-DAD, NIR and LC-MS; (D–F) PLS-DA for HPLC-DAD, NIR

RSC Adv., 2019, 9, 31150–31161 | 31153
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Fig. 2 The results of mid-levelmetabonomics data fusion analysis. (A–D)Mid-level metabonomics data fusion analysis without variable selection
for NIR-HPLC, HPLC-MS, NIR-MS and NIR-HPLC-MS. (E–H) Mid-level metabonomics data fusion analysis with variable selection for NIR-HPLC,
HPLC-MS, NIR-MS and NIR-HPLC-MS.
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when compared to those obtained from the primary data
analysis.

Subsequently, we investigated the mid-level metabonomics
data fusion with PLS-DA to improve the group separation. The
results from NIR-HPLC, HPLC-MS, NIR-MS and NIR-HPLC-MS
data fusions were respectively presented aer preliminarily
screening all of data acquired from an individual platform
according to variable importance values (VIP > 1.0). The initial
NIR, HPLC and MS data sets included 1557, 90, and 5000 vari-
ables, respectively. Aer the screening based on the VIP scores,
607, 27 and 1843 variables, respectively, were considered to be
the most effective variables and hence retained for the subse-
quent discrimination. So now, a new PCA model could be
constructed to enhance the group discrimination of SF and NSF
samples based on the generated variables data set.

HPLC-NIR data fusion using the new PCA model yielded
much better results than ever before (Fig. 2E), even though 37
batches of FLJ were not distinctly clustered into two groups.
Meanwhile, the HPLC-MS data fusion generated much better
results without any misclassication, while one misclassica-
tion was still found in the NIR-MS data fusion results (no. 16
was still far from the NSF group) (Fig. 2F and G).

Fig. 2H shows the results obtained from NIR-MS-HPLC
metabonomics data fusion. Although no. 16 was not correctly
allocated into the NSF group, the group discrimination poten-
tial was signicantly improved when compared with those ob-
tained from metabonomics data fusion without variable
selection. Thus it could be seen from the results that
31154 | RSC Adv., 2019, 9, 31150–31161
metabonomics data fusion with variable selection made greater
improvements in class separation than did the metabonomics
data fusion without variable selection.

3.3.3 Identication of the markers discriminating NSF and
SF FLJ samples based on LC-MS metabonomics analysis. As LC-
MS could make up for the drawbacks in the structural identi-
cation of the discriminatory markers, a UHPLC-LTQ-Orbitrap
high-resolution mass spectrometer was employed to perform
the discrimination of the SF and NSF FLJ samples. To obtain
satisfactory group separation based on differential variables
and precisely distinguish the discriminatory markers, we
applied the VIP values to lter several variables that contributed
to them. Meanwhile, S-plots and t-tests were also typically used
for identication of the discriminatory markers and selection of
the informative correlations between the markers and the
modeled classes. Therefore, the ltered markers required
certain conditions to be satised, specically position in S plot
(|p| > 0.05 and |pcorr| > 0.3), VIP value (>1.0) and t-test (p < 0.05)
(Fig. 3E). As a result, the number of original variables was 5000.
Then, 76 peaks were chosen as potential markers. Because the
peak areas of most screened discriminatory variables were too
low to obtain their MSn data, a parent ion list-dynamic exclusion
(PIL-DE)-based method for acquiring data was utilized to
accomplish the comprehensive acquisition of HRMS1 and MSn

data sets, which greatly helped in the following structural
identication.36

Markers 1, 2 and 3 yielded identical [M–H]� ions at an m/z
value of 353.0867 (C16H23O10, mass error within �5 ppm) in
This journal is © The Royal Society of Chemistry 2019
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Table 3 Identification of discriminatory markers in SF and NSF FLJ using UHPLC-LTQ-Orbitrap MS

No. tR
Experimental
mass Formula [M–H]� MS/MS fragment ions Identication

M1a 4.47 353.0869 C16H17O9 MS2[353]: 191, 179, 135 3-CQA
M2a 6.91 353.0858 C16H17O9 MS2[353]: 191, 179, 161 5-CQA
M3a 7.73 353.0856 C16H17O9 MS2[353]: 173, 179, 191, 135 4-CQA
M4a 2.14 373.1122 C16H21O10 MS2[373]: 193, 149, 167, 179, 119 Swertiamarin
M5a 5.30 373.1118 C16H21O10 MS2[373]: 211, 167, 149, 193, 179 Secologanic acid
M6 7.88 373.1118 C16H21O10 MS2[373]: 193, 149, 167, 179 Swertiamarin isomer
M7 4.23 375.1292 C16H23O10 MS2[375]: 213, 169, 151 Loganin acid isomer
M8 4.84 375.1280 C16H23O10 MS2[375]: 213, 169, 151, 195 Loganin acid
M9 5.84 375.1273 C16H23O10 MS2[375]: 213, 169, 151 Loganin acid isomer
M10 6.63 375.1292 C16H23O10 MS2[375]: 195, 151 Loganin acid isomer
M11 1.81 391.1231 C16H23O11 MS2[391]: 229, 211, 193, 185, 167, 149 Secologanic acid hydrate
M12 2.45 391.1255 C16H23O11 MS2[391]: 211, 229, 193, 167, 149, 185 Secologanic acid hydrate
M13 14.33 403.1223 C17H23O11 MS2[403]: 371, 223, 179, 121, 91 Secologanin
M14 1.63 433.0428 C16H17O12S MS2[433]: 241, 415, 353, 161, 191, 287 CQA sulfate
M15 2.53 433.0427 C16H17O12S MS2[433]: 415, 387, 353, 241, 353 CQA sulfate
M16 2.66 433.0433 C16H17O12S MS2[433]: 241, 415, 387, 259, 353 CQA sulfate
M17 4.62 433.0423 C16H17O12S MS2[433]: 415.387, 259 CQA sulfate
M18 5.01 433.0419 C16H17O12S MS2[433]: 415, 241, 161, 259, 387 CQA sulfate
M19 1.12 435.0591 C16H17O12S MS2[435]: 353, 191, 179 CQA sulte
M20 3.15 437.0720 C16H21O12S MS2[437]: 193, 149, 373, 355 Secologanic acid sulte
M21a 19.06 447.0916 C21H19O11 MS2[447]: 285 Luteolin-7-O-glucoside
M22 21.06 447.0918 C21H19O11 MS2[447]: 285 Luteolin-7-O-glucoside isomer
M23 1.93 455.0822 C16H23O13S MS2[455]: 373, 411, 437, 193, 211 Secologanic acid sulte
M24 2.15 455.0836 C16H23O13S MS2[455]: 373, 437, 411, 193, 211 Secologanic acid sulte
M25 18.22 463.0854 C21H19O12 MS2[463]: 301, 271, 445 Hyperoside isomer
M26 18.73 463.0861 C21H19O12 MS2[463]: 301, 445, 271 Hyperoside
M27 23.05 499.1231 C25H23O11 MS2[499]: 337, 173, 335, 353 4-pCo-1-CQA
M28 23.49 499.1233 C25H23O11 MS2[499]: 353, 337, 191, 335, 179 5-pCo-3-CQA
M29 25.21 499.1230 C25H23O11 MS2[499]: 353, 337, 179, 191 3-pCo-4-CQA
M30a 20.36 515.1155 C25H23O11 MS2[515]: 353, 335, 173, 179 3,4-DiCQA
M31a 20.85 515.1155 C25H23O11 MS2[515]: 353, 191, 179, 335 3,5-DiCQA
M32a 22.44 515.1163 C25H23O11 MS2[515]: 353, 191, 179, 335, 353 4,5-DiCQA
M33 17.34 527.0494 C21H19O14S MS2[527]: 447, 285, 481 Luteolin-7-O-glucoside sulfate
M34 23.82 529.1343 C26H25O12 MS2[529]: 367, 179, 335, 353, 193 3-C-4-FQA
M35 24.60 529.1340 C26H25O12 MS2[529]: 353, 367, 191, 179 5-C-3-FQA
M36 25.86 529.1335 C26H25O12 MS2[529]: 353, 367, 173, 335 cis-5-C-3-FQA
M37 8.73 543.0431 C21H19O15S MS2[543]: 463, 381, 525, 301 Hyperoside sulfate
M38 12.76 543.0432 C21H19O15S MS2[543]: 381, 301, 381, 463 Hyperoside sulfate
M39 18.80 593.1488 C27H29O15 MS2[593]: 285, 447 Lonicerin isomer
M40 19.71 593.1483 C27H29O15 MS2[593]: 285, 447 Lonicerin isomer
M41a 20.50 593.1486 C27H29O15 MS2[593]: 285 Lonicerin
M42 16.70 595.0737 C25H23O15S MS2[595]: 549, 577, 415, 241, 259 DiCQA sulfate
M43 16.98 595.0750 C25H23O15S MS2[595]: 549, 577, 415, 301, 397 DiCQA sulfate
M44 17.61 595.0748 C25H23O15S MS2[595]: 577, 549, 415, 433, 241, 259 DiCQA sulfate
M45 17.89 595.0737 C25H23O15S MS2[595]: 577, 549, 415, 433, 241, 259 DiCQA sulfate
M46 19.38 595.0745 C25H23O15S MS2[595]: 577, 549, 415, 433, 259 DiCQA sulfate
M47 21.25 595.0745 C25H23O15S MS2[595]: 577, 415, 549, 433, 259, 241 DiCQA sulfate
M48 22.70 607.1653 C28H31O15 MS2[607]: 299 Chrysoeriol-7-O-b-D-neohesperidoside
M49 18.30 609.1403 C27H29O16 MS2[609]: 301, 300, 271, 255, 179, 591 Rutin

a Identied by comparison with reference standards; CQA, caffeoylquinic acid; DiCQA, dicaffeoylquinic acid; pCoCQA, p-coumaroylcaffeoylquinic
acid; CFQA, caffeoylferuloylquinic acid.
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negative ion mode. Their deprotonated molecular ions all
generated a series of diagnostic fragment ions including those
with m/z values of 191 [M–H–caffeoyl]�, 179 [caffeic–H]� and
173 [M–H–caffeoyl–H2O]

�.37 CQAs attributed to three different
linkage positions of caffeoyl groups on quinic acid have been
reported to display different intensities of their ESI-MS2 base
peak ions and predominant product ions. Meanwhile, based on
This journal is © The Royal Society of Chemistry 2019
retention times and MSn spectra of the corresponding reference
substances and literature data, markers 1–3 were identied to
be 5-CQA (Fig. S5†), 3-CQA and 4-CQA, respectively.

Markers 14–18 generated their deprotonated [M–H]�

molecular ions each at an m/z of 433.0435 (C16H17O12S, mass
error within �5 ppm). In their ESI-MS2 spectra, the diagnostic
product ions were at m/z values of 415 [M–H–H2O]

�, 387 [M–H–
RSC Adv., 2019, 9, 31150–31161 | 31155
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Fig. 3 The mass fragmentation behaviors of identified markers. (A) HRMS1 spectrum of M14. (B) ESI-MS2 spectrum of M20. (C) HRMS1 spectrum
of M23. (D) ESI-MS2 spectrum of M24. (E) The S-plot of LC-MS metabonomics analysis.
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H2O–CO]
�, 353 [M–H–SO3]

�, 259 [caffeic–H + SO3]
� and 241

[caffeic–H + SO3–H2O]
�. The observation of the pair of ions atm/

z values of 433 and 353 (Fig. 3A) further conrmed that the
sulfate moiety was introduced to the CQA molecule, which has
to the best of our knowledge never been reported before.
Finally, markers 14–18 were tentatively identied as isomeric
CQA sulfate.

Similarly, the ESI-MS2 spectrum of marker 20 (Fig. 3B)
showed anm/z signal corresponding to its deprotonated [M–H]�

molecular ion at a value of 437.0748 (C16H21O12S, error within
�5 ppm). Moreover, the characteristic product ions at m/z
values of 373 [M–H–SO2]

�, 193 [M–H–SO2–Glc–H2O]
� and 149

[M–H–SO2–Glc–H2O–CO2]
� were all observed. Based on the

observation of the signals at the m/z values of 193 and 149
coupled with its [M–H]� ion, marker 20 may be concluded to be
secologanic acid.38 Meanwhile, the observation of the product
ion at them/z value of 373 conrmed that the sulte moiety was
introduced into the iridoid molecule. Accordingly, marker 20
was tentatively identied as isomeric secologanic acid sulfate.

In addition, a combination of the isotopic pattern combined
and chromatography analyses was used for screening sulfur-
containing compounds in the complex systems, mainly because
the 34S isotopic ion has been shown to be drastically affected by
13C2 and 18O.39 Markers 23 and 24 produced their [M–H]� ions
each at an m/z of 455.0822 (C16H23O12S, error within �5 ppm).
And both of them generated a series of fragment ions at m/z
values of 437 [M–H–H2O]

�, 411 [M–H–CO2]
�, 373 [M–H–

H2SO3]
�, 211 [M–H–H2SO3–Glc]

� and 193 [M–H–H2SO3–Glc–
H2O]

�. Furthermore, they simultaneously produced the isotopic
patterns of the 34S ion at anm/z of 457.07822 and of the 13C2 +

18O
31156 | RSC Adv., 2019, 9, 31150–31161
ion at anm/z of 457.11760. Their characteristic product ions atm/
z values of 437 and 373 probably resulted from the occurrence of
the sulte moiety in some of the iridoid molecules. Accordingly,
markers 23 and 24 were putatively identied as secologanic acid-
sulte or its isomers (Fig. 3C and D).

Taken together, a total of 49 discriminatory markers (Table
S4†) attributed to iridoids, organic acids and avones were
screened and characterized according to the fragmentation
behaviors, isotopic patterns and diagnostic product ions ob-
tained using the UHPLC-LTQ-Orbitrap MS coupled with the
established integrated strategy. Eighteen of these markers were
assigned to sulfate/sulte derivatives of iridoid and chlorogenic
acid, which could be chosen as the characteristic Q-markers for
SF FLJ discrimination.40 (Note that Fig. S6† shows a histogram
of signal intensities of sulfur derivatives.)

3.3.4 Multi-omics correlation analysis (MOCA). At rst, we
performed a selection of specic wavenumbers according to the
NIR-based metabonomics data analysis. Analysis of the avail-
able NIR spectra, specically of the different NIR wavebands,
quickly provided vast amounts of useful chemical information.
However, it was in fact unable to present selective valid wave-
bands with discriminating potential. In order to interpret the
sulfur fumigation process and screen the potential wavebands
that presented the signicant differences between SF and NSF
samples, synergy interval partial least squares (siPLS) analysis
with three intervals was employed to obtain the signicant
differences between SF and NSF samples. To eliminate the
inuence of overtting, we set the latent variables to be within
the range 1–10. As demonstrated in Table 4, the siPLS analysis
with SG11+2nd optimized (the other siPLS methods are shown
This journal is © The Royal Society of Chemistry 2019
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Table 4 The results of SiPLS analysis

Preprocessing method

PCA PLS-DA

Lv R2(X) R2(Y) Lvs R2(X) R2(Y) Q2

Baseline 3 0.998 0.997 3 0.997 0.501 0.326
Spectroscopic transformation 3 0.999 0.998 3 0.999 0.390 0.248
MSC 6 0.999 0.997 3 0.858 0.454 0.206
Normalization 5 0.999 0.999 3 0.975 0.494 0.309
Original 3 0.999 0.999 3 0.999 0.497 0.249
SG91st 5 0.899 0.831 4 0.845 0.827 0.601
SG92nd 5 0.621 0.381 3 0.425 0.827 0.309
SG111st 4 0.693 0.578 3 0.583 0.791 0.476
SG112nd 6 0.582 0.234 3 0.292 0.922 0.418
SNV 4 0.997 0.996 3 0.993 0.517 0.336
WDS 3 0.999 0.999 3 0.999 0.538 0.159
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in Fig. S7 and S8†) was the best discriminatory model and
achieved a value of 0.859 for R2(Y) and 0.471 for Q2; i.e., this
method produced a better model performance than did any of
the other preprocessing methods. Furthermore, the SF and NSF
FLJ samples were clearly separated (Fig. 4A). The wavenumbers
of the optical subinterval combinations ranged from 5000 to
5200 cm�1. Thereaer, NIR spectra were integrated with two-
dimensional correlation spectra (2D-COS) that were expected
to clearly identify the screened wavebands, discriminate
features and details of the structural changes of SF and NSF FLJ
samples. For the synchronous 2D-COS auto-peak analysis, two
main sensitive variables were identied and displayed wave-
numbers ranging from 5000 to 5200 cm�1 (see Fig. 4B, which
Fig. 4 The MOCA for the FLJ. (A) The discriminatory information of pre
analysis of the SF and NSF samples; (C) the mass fragmentation behav
analysis of the SF and NSF chlorogenic acid samples; (E) the mass fragm

This journal is © The Royal Society of Chemistry 2019
shows the diagonal data of the 2D-COS plot, and Fig. S9,† which
shows the 2D-COS plot), whose correlation analysis was in
accordance with the wavebands screened using the siPLS
method. Similar to that previously reported, strong absorptions
in the wavenumber range 5000–5200 cm�1 were attributed to
S–H and S–OH.33,41 As mentioned above, some sulfur-containing
components were identied as the discriminatory markers. As
a result, a close relationship was identied between the
screened wavebands (5000–5200 cm�1) and the sulfur-
containing markers generated in the sulfur fumigation process.

To validate the above-mentioned results, one of the main
representative chemical constituents, namely chlorogenic acid
(5-CQA), was subjected to sulfur fumigation and analyzed using
process method of SG9+1st; (B) the synchronous 2D-COS auto-peak
iors of SF chlorogenic acid; (D) the synchronous 2D-COS auto-peak
entation behaviors of SF chlorogenic acid.

RSC Adv., 2019, 9, 31150–31161 | 31157
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the same methods. The autocorrelation curves of the SF and
NSF chlorogenic acid samples (Fig. 4D) were derived from their
respective 2D-COS spectra. Obvious differences between the SF
and NSF chlorogenic acid samples in the wavebands between
5000 and 5200 cm�1 were observed, which was also in accor-
dance with the wavebands screened using the siPLS model. The
subsequent LC-HRMS analysis of an SF chlorogenic acid
mixture also indicated the presence of newly generated
constituents (Fig. 4C and E) except for the prototype drug
during the process of sulfur fumigation. Through analyzing the
fragment ions of the S-derivatives, it was found that SO3

(79.9568) and H2SO3 (81.9725) were the characteristic neutral
losses of organic sulfates or sultes. The assignments of these
newly emerged peaks were conrmed to be the rudimentary
sulfate derivatives of chlorogenic acid based on the HRMS data,
which indicated a mass 79.95 Da (SO3) more than that of
standard reference. It also indicated that the results of NIR were
reliable and credible in the discrimination of SF FLJ.

3.4 Proposed protocol for the rapid detection and
mechanistic explanation of the sulfur fumigation of CHMs
using SF FLJ as a study case

Evaluating the quality of CHMs and judging their authenticity
are two major challenges. Sulfur fumigation has attracted
increasing attention due to its alteration of CHM quality
Fig. 5 A suggested protocol for the rapid discrimination of SF CHMs an

31158 | RSC Adv., 2019, 9, 31150–31161
resulting from its damage to bioactive components, generating
excessive sulfur dioxide residue and especially changing the
chemically active ingredients in CHMs.

NIR, HPLC and LC-MS were proposed to be used to evaluate
the quality of CHMs. However, the variations during sulfur
fumigation were much more complicated than expected.
Furthermore, the amount of data obtained based on one single
method was still limited, making it difficult to expound on the
mechanism of sulfur fumigation. To experimentally support our
inference, we selected FLJ as a model herb in this study. With
the development of a few high-throughput strategies, integra-
tive metabonomics analysis was applied to integrate the
multiple interactions of NIR spectra, HPLC chromatograms and
HRMS data. The results aimed to reveal whether the herb
underwent sulfur fumigation and to illuminate the inherent
mechanism of the NIR judgment method by associating NIR
with HPLC and UHPLC-MS analyses. Our established approach
was applied to rapidly discriminate SF FLJ among many
unknown samples, and is expected to be greatly benecial for
guaranteeing CHM quality.

To perform the analysis of the sulfur fumigation of CHMs, the
process of sulfur fumigation was rst simulated in the laboratory.
According to the characteristics of each analytical technology,
optimum analytical conditions were adopted and the corre-
sponding high-quality data of SF and NSF CHM samples were
d an explanatory mechanism.

This journal is © The Royal Society of Chemistry 2019
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obtained. All of these experiments provided the foundation for
subsequent data analysis, which is illustrated in Fig. 5.

Step 1: Performing PCA and PLS-DA for the single
technology.

This step was focused on the analytical capability of each
single technology and whether the SF and NSF CHMs could be
distinguished. Our study demonstrated that NIR spectroscopy
based on a data preprocessing method (SG9+2nd) with a multi-
variate calibration approach such as PCA and PLS-DA was the
appropriate tool to discriminate SF from NSF FLJ samples. The
chemical constituents in FLJ samples displayed strong ultravi-
olet absorption, which was observed with HPLC-DAD at 330 nm,
238 nm, 254 nm and 280 nm. Peak areas ($150 mAU) were
selected separately through the data fusion of the four wave-
lengths and then analyzed by performing PCA and PLS-DA. In
addition, a UHPLC-LTQ-Orbitrap high-resolution MS was
employed to comprehensively and dynamically prole the
chemical constituents in FLJ. The derivative content during the
sulfur fumigation process was not abundant enough, i.e., the
signals of sulfur-containing analytes would have been drowned
out by the contribution of inherent constituents.

Step 2 and Step 3: Performing the integrative metabonomics
analysis, such as mid-level metabonomics data fusion analysis
without/with variable selection.

In our previous study, the data fusion of NIR- and HRMS-
based metabonomics-like analysis was successfully applied to
accomplishing the discrimination of SF Ophiopogon Radix.17

Herein, we combined three kinds of analytical techniques
including NIR, HPLC and UHPLC-HRMS to obtain the
Fig. 6 Comparison between the unique model and the metabonomics
Result for HPLC-NIR, HPLC-MS, NIR-MS and NIR-HPLC-MS data fusion
MS, NIR-MS and NIR-HPLC-MS data fusion with variable selection analy

This journal is © The Royal Society of Chemistry 2019
dimensional information of SF samples, and investigated two
types of mid-level metabonomics data fusion strategies as
illustrated in Step 2 and Step 3. For that, informative features of
the raw data from a single instrument were separately extracted
using their own protocol from sample preparation to data
preprocessing.

The comparison between the unique model and the
metabonomics data fusion model is illustrated in Fig. 6. No
single analytical platform could be utilized to accurately
discriminate the SF samples based on PCA score plots. HPLC
and NIR led to classication without rhyme or reason and
HRMS could not correctly discriminate one of the SF samples
(no. 16). Thus, we believed that utilizing mid-level metabo-
nomics data fusion without variable selection to obtain more
accurate characteristics of the samples might be a much better
choice. As a result, the potential to discriminate between of NSF
and SF samples was actually improved with no. 16 still in the
wrong class, and the results were worse than the individual
application of MS. Mid-level fusion with variable selection was
employed and clearly improved the class separation, as samples
were correctly classied and less scattered (Fig. 6K). Taking the
classication into account, the fusion of NIR and HRMS data,
accomplished with high accuracy, provided the best model
(Fig. 6I and J). Moreover, variables that were selected before
classication generated better classication results than those
obtained when all variables were used. Overall, the proposed
metabonomics data fusion approach demonstrated an ability to
effectively discriminate key information from raw analysis data.
data fusion model. (A–C) PCA for HPLC-DAD, NIR and LC-MS. (D–G)
without variable selection analysis. (H–K) Result for HPLC-NIR, HPLC-
sis.

RSC Adv., 2019, 9, 31150–31161 | 31159
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The results demonstrated that the mid-level metabonomics
data fusion methods were much better than all of the primary
analyses, which meant that the information obtained from
individual techniques was in fact insufficient. The results from
both kinds of mid-level fusion strategies accomplished the
effective discrimination of SF FLJ samples.

Step 4: Identifying the discriminatory markers attributed to
group separation.

LTQ-Orbitrap high-resolution MS has been one of the most
powerful approaches used for the rapid identication of
multiple constituents in CHMs.42,43 It has been used to combine
high trapping capacity and multiple data acquisition of linear
ion traps to generate a large amount of information from MS1

and MSn data. In this study, a highly sensitive and effective
strategy was utilized for rapidly screening and identifying SF FLJ
by using PIL-DE acquisition based on a hybrid LTQ-Orbitrap
mass spectrometer to accomplish the overall acquisition of
data sets, which helped allow for a search of a greater number of
potential active compounds especially for the sulfur-containing
constituents. As a result, 49 markers including iridoids, organic
acids and the sulfur-containing derivatives were positively or
tentatively identied.

Step 5: Application of MOCA for deriving mechanistic
explanations of the sulfur fumigation process and the corre-
sponding method validation.

An NIR spectrum was constructed from different wavebands,
but not every waveband displayed a special discrimination
ability. Therefore, siPLS analysis was employed to screen the
potential wavebands that presented the signicant differences
between SF and NSF samples. In step 4 mentioned above, some
sulfur-containing constituents were identied that would
explain the potential NIR wavebands. Chlorogenic acid was
selected as the example to validate whether the new sulfur-
containing derivatives were produced aer the sulfur fumiga-
tion process.

4. Conclusions

Our work indicated that the proposed protocol for the rapid
detection of SF CHMs is also benecial for revealing the
intrinsic mechanism of sulfur fumigation and boosting the
ability to discriminate SF from NSF FLJ samples, and could
serve as an example for future research on rapidly detecting
other SF CHMs. Integrative metabonomics analysis was also
found to be benecial for evaluating the quality of and rapidly
detecting CHMs. Our work also suggests a future trend of
integrating multiple metabonomics datasets from different
technologies to achieve a sound evaluation.
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