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metal oxide catalysts for the
degradation of 1,4-dioxane†

Kimberly N. Heck, a Yehong Wang, b Gang Wu,c Feng Wang, b Ah-Lim Tsai,c

David T. Adamsond and Michael S. Wong *aefgh

1,4-dioxane, commonly used as a solvent stabilizer and industrial solvent, is an environmental contaminant

and probable carcinogen. In this study, we explored the concept of using metal oxides to activate H2O2

catalytically at neutral pH in the dark for 1,4-dioxane degradation. Based on batch kinetics

measurements, materials that displayed the most suitable characteristics (high 1,4-dioxane degradation

activity and high H2O2 consumption efficiency) were ZrO2, WOx/ZrO2, and CuO. In contrast, materials

like TiO2, WO3, and aluminosilicate zeolite Y exhibited both low 1,4-dioxane degradation and H2O2

consumption activities. Other materials (e.g., Fe2O3 and CeO2) consumed H2O2 rapidly, however 1,4-

dioxane degradation was negligible. The supported metal oxide WOx/ZrO2 was the most active for 1,4-

dioxane degradation and had higher H2O2 consumption efficiency compared to ZrO2. In situ acetonitrile

poisoning and FTIR spectroscopy results indicate different surface acid sites for 1,4-dioxane and H2O2

adsorption and reaction. Electron paramagnetic resonance measurements indicate that H2O2 forms

hydroxyl radicals (cOH) in the presence of CuO, and unusually, forms superoxide/peroxyl radicals (cO2
�)

in the presence of WOx/ZrO2. The identified material properties suggest metal oxides/H2O2 as

a potential advanced oxidation process in the treatment of 1,4-dioxane and other recalcitrant organic

compounds.
1. Introduction

1,4-dioxane is an industrial solvent,1 a byproduct present in
personal-care products,1 and a suspected carcinogen with US
state maximum contaminant limits that are frequently below 1
ppb. Because it is used to stabilize chlorinated volatile organic
compound (CVOC) solvents,1–5 1,4-dioxane was found by
Adamson et al. to co-occur at 76% of California sites containing
trichloroethane, and at 68% of sites containing 1,1-dichlor-
oethene.2 Extrapolating this co-occurrence problem to the
15 000–25 000 US sites that are contaminated with CVOCs,6 1,4-
dioxane is likely widespread.

A number of advanced oxidation processes (AOPs) have been
investigated for 1,4-dioxane remediation, including ex situ UV
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oxidative processes (UV/H2O2, UV/ozone),7 photocatalysis,8–10 or
sonolysis and photocatalysis.11 A few studies looked at catalytic
destruction of 1,4-dioxane, but most required the addition of
high-energy resources such as UV light,12,13 ultrasonic waves,14

or electricity,15–17 which are not only costly from an energy
perspective, but may also require the use of complicated reactor
congurations and may not be suitable for universal treatment
of 1,4-dioxane contamination (e.g. in chemical plumes).

“Dark” (non-photocatalytic) heterogeneous catalysis, which
does not require additional energy sources, may be a more
passive and more economically practical approach to treating
1,4-dioxane in water. Efforts have beenmade in the past to study
the activation of chemical oxidants for AOP using materials as
a heterogeneous form of Fenton's reagent, but few have focused
much on 1,4-dioxane nor provided an experimental under-
standing of the surface chemistry.18,19 CuO has been investi-
gated using ozone as oxidant, and implicated Lewis acid sites
for the decomposition of ozone.20 A Pd-based catalyst was re-
ported effective for degrading 1,4-dioxane using perox-
ymonosulfate, and suggested surface-bound radicals were
responsible for degradation.21 Two studies discussed using
H2O2; one a titanosilicate zeolite that was slightly active in water
at 60 �C,22 and another concerning Fe(II)-containing clays that
showed degradation activity on the order of several days.23

Unexplored for 1,4-dioxane degradation and other contami-
nants are a number of materials reported to be able to
This journal is © The Royal Society of Chemistry 2019
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nonphotocatalytically catalyze the dark dissociation of H2O2,
such as ZrO2

24 and TiO2.25 Furthermore, any materials proper-
ties of these unconventional H2O2-active materials which allow
them to degrade organics is unclear.

In this study, we screened commercially available relatively
inexpensive metal oxide H2O2-active catalysts to establish a set
of basic data for the degradation of aqueous-phase 1,4-dioxane
using H2O2 at mild ambient conditions and in the dark. A 1,4-
dioxane degradation rate constant was measured for each
material at room temperature and atmospheric pressure, and at
near-neutral pH. H2O2 consumption activity (quantied as
a rate constant) and consumption efficiency (quantied as
moles of 1,4-dioxane degraded per mole H2O2 consumed) were
also determined. To understand the essential surface properties
that direct the degradation process, we further analyzed the
materials using in situ Fourier-transform infrared (FTIR) anal-
ysis of acid sites using pyridine, acid site poisoning catalytic
tests using acetonitrile, and electron paramagnetic resonance
(EPR). Based on these results, we proposed a reaction mecha-
nism to explain the observed material-dependency of 1,4-
dioxane degradation.

2. Materials

CuO (>97%) and g-Al2O3 (>97%) were used as received from
Strem Chemicals. ZrO2 and TiO2 P25 were obtained from Evo-
nik. Fe2O3 (hydrated, catalyst grade 30–50 mesh, crushed prior
to characterization and kinetic experiments), WO3 (nano-
powder), Zeolite Y (hydrogen, 30 : 1 SiO2 : Al2O3), CeO2 (99.95%,
nanopowder), dichloromethane (chromasolv, 99.9%), and 1,4-
dioxane (>99.5%), H2O2 (30%), and TiOSO4 (�15 wt% in dilute
sulfuric acid) were used as received from Sigma Aldrich. A
zirconia-supported tungsten oxide material (“WOx/ZrO2”,
20 wt% WO3 content) was obtained from MEI Chemicals and
used as-received. Specic surface areas (SSA) of the metal oxide
materials were evaluated on a Quantachrome Autosorb IIIB
using ve-point BET calculations on samples degassed at 350 �C
overnight. 5-Tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide
(BMPO) was obtained from Enzo Life Sciences. Deionized water
was used in all experiments.

3. Analytical methods
3.1 Catalytic activity testing

For kinetic experiments, 171 mL of deionized (DI) water, 0.4 mL
of 1,4-dioxane ([1,4-dioxane]0 ¼ 27 mM, 2.3 ppm), and 0–600 mL
of 30% H2O2 ([H2O2]0 ¼ 0–30 mM) were added to a 250 mL
Boston round bottle. Aer stirring, a �2 mL aliquot was taken
from the reactor for baseline measurements of H2O2 and 1,4-
dioxane. The catalyst was added to the reactor, which was then
sealed with a septum, covered in foil to shield from ambient
light, and magnetically stirred at 600 RPM. The amount of
added catalyst was chosen such that the total exposed oxide
surface area in the reaction medium was the same between
experiments (475 m2 per L-uid, Table S1†). Aliquots (�1.5 mL)
of reaction uid were ltered with a 0.2 mm syringe lter to
remove solid catalyst prior to H2O2 and 1,4-dioxane
This journal is © The Royal Society of Chemistry 2019
concentration measurements. Each reaction was repeated three
times. No degradation was observed in experiments where only
1,4-dioxane and catalyst were present.

Because of order-of-magnitude differences in initial
concentrations, the disappearance of H2O2 and 1,4-dioxane
were both modeled as pseudo-rst order processes, where the
rate of disappearance of reactant X (either H2O2 or 1,4-dioxane),
rX, is given by

rX ¼ dX

dt
¼ kmeas;XCX (1)

where t is time, CX is the concentration of reactant X, and kmeas,X

is the measured pseudo-rst order rate constant, which can be
found from integrating eqn (1) to obtain

ln

�
CX

CX;0

�
¼ �kmeas;Xt (2)

where CX,0 is the initial concentration of the reactant.
In order to better compare intrinsic catalytic activity, we

report the pseudo-rst order rate constant normalized by added
catalyst surface area for each reagent for each catalyst, kX, since
only exposed catalyst sites should be active. kX is given by

kX ¼ kmeas;X

Ccat

(3)

where Ccat is the concentration of catalyst surface area in the
reactor (units of m2 mL�1), given by eqn (4)

Ccat ¼ SSAcatgcat

Vreactor

(4)

where SSAcat is the specic surface area of the catalyst (units m
2

g�1, as determined by BET, see Table S1†), gcat is the grams
catalyst added to the reactor (Table S1†), and Vreactor is the liquid
reaction volume.

Selective site poisoning experiments were conducted using
acetonitrile (which can chemisorb onto Lewis acid sites26), in
which the catalysts were premixed with 318 mL of 0.1 M aceto-
nitrile stock solution (nal [acetonitrile] in reactor ¼ 186 mM).27

Residual activity is dened as

residual k ¼ kno acetonitrile

kacetonitrile
� 100%: (5)

3.2 H2O2 quantication

H2O2 remaining in the aliquots was quantied using titanium
oxysulfate (TiOSO4, �15 wt% in dilute H2SO4). TiOSO4 reacts
with H2O2 to form the yellow-colored product perititanic acid,
quantiable using UV-vis.28 A standard curve was made using 0–
80 mM H2O2 to verify that the response was linear at the
maximum extinction (at l ¼ 405 nm). Reaction samples were
diluted up to 20� to verify that absorbance at l¼ 405 nm was in
the standard.

3.3 1,4-Dioxane quantication

The concentration of 1,4-dioxane was determined as detailed by
Li et al.29 Briey, 0.5 mL of reaction aliquot and 0.5 mL of
RSC Adv., 2019, 9, 27042–27049 | 27043
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dichloromethane (DCM) was added to an autosampler vial and
vigorously shaked for at least 30 seconds to extract the 1,4-
dioxane into the DCM phase. Following freezing at �20 �C for at
least 1 hour, the liquid DCM was decanted from the vial and put
into a fresh autosampler vial containing �10 mg of sodium
sulfate to sequester any residual water. These samples were then
analyzed via GC-MS. A calibration curve was prepared using this
method with 0–3200 ppb 1,4-dioxane in deionized water.
3.4 Determination of mass transfer resistances

To ensure the reported rate constants were kinetically limited,
we evaluated external mass transfer resistances as we have done
previously.30,31 We note that in this system, there is no gas phase
reactants, therefore kgl was neglected. Fig. S1,† prepared using
CuO, one of the most active catalysts for H2O2 degradation,
shows a linear increase in the measured rate constant with
added catalyst, indicating there were no external mass transfer
limitations in this range. The circled point corresponds to the
SSA loading chosen for all other reactions.

To assess any internal mass transfer resistances, we deter-
mined the Weisz–Prater criterion (CWP) for both the rst-order
degradation of H2O2 and 1,4-dioxane according to32,33

CWP ¼ k0rcR
2

De

(6)

where k0 is the catalyst mass normalized rate constant (m3 s�1

gcat
�1), rc is the catalyst density (g m�3), R is the pellet radius

(m, conservatively assumed to be 1 mm for all catalysts), and De

is the effective diffusivity of H2O2 and 1,4-dioxane in the pores
(assumed to be equivalent to H2O2 and 1,4-dioxane diffusivity in
water, 5.0� 10�6 m2 h�1 and 6.0� 10�8 m2 h�1 respectively). As
shown in Table S2,† the Weisz–Prater criterion was less than
one for all materials, which implies that the catalysts' activities
were not limited by internal diffusion.
3.5 EPR experiments

For the spin-trap experiments, 4 mM of CuO, WOx/ZrO2, or ZrO2

was added to a s 83 mM H2O2 and 5–10 mM BMPO solution,
then mixed for �2 min. Transient radical species rapidly react
with BMPO, forming stable adducts.34–37 15 mL of the reaction
mixture was sampled and sealed with Critoseal. EPR spectra of
the spin trapped radicals were obtained using a Bruker EMX
spectrometer at room temperature. EPR measurements were
taken using a frequency of 9.30 GHz, power of 20 mW, modu-
lation frequency of 100 kHz, modulation amplitude of 0.1 G,
and time constant of 0.33 s. No radicals were detected in control
solutions without metal oxide.

Freeze trapping was also attempted for direct detection of
radicals. In these experiments, the 5 mm o.d. EPR tubes were
rapidly frozen in an EtOH/dry ice bath before transferring into
liquid N2. The measurements were conducted at 115 K using
a frequency of 9.28 GHz; power of 1 mW; modulation frequency
of 100 kHz, modulation amplitude of 2G, and time constant of
0.33 s.
27044 | RSC Adv., 2019, 9, 27042–27049
3.6 Pyridine-FTIR

For the pyridine-FTIR experiments, the sample was pressed into
a 13 mm diameter disk and analyzed in a homemade cell
attached to a closed circulation system. Before pyridine
adsorption, the cell was heated to 150 �C for 30 min at low
pressure (<10�3 Pa) then allowed to cool to 25 �C. A spectrum
was recorded as the background using a Bruker Tensor 27 FTIR
spectrometer in transmittance mode. Gas-phase pyridine was
then contacted with the sample for �20 min, and then the
chamber evacuated at 150 �C for 30 min at low pressure (<1.0 �
10�3 Pa) to remove pyridine that was physically adsorbed before
a FTIR spectrum of the chemisorbed pyridine was collected.
Spectra were also taken aer the sample was cooled to 25 �C.

For experiments looking at both pyridine and water, gas-
phase water (�1 atm) was added to the cell aer the pyridine
step. The water atmosphere was maintained for �20 min at
25 �C and then desorbed at 25 �C and 150 �C. The sample was
brought to 25 �C, and an additional spectrum collected.

The Lewis acid site concentration is given by38

CLewis ¼ 1:42� I � R2

W
(7)

where CLewis is Lewis acid site concentration (mmol gcatalyst
�1), R

is the catalyst radius (cm), I is the integration of the Lewis band
(cm�1), W is the weight of disk (mg), and the factor 1.42
mol cm�1 is the extinction coefficient of pyridine adsorbed to an
acid site.38 The W used for the experiments for CuO, ZrO2, and
WOx/ZrO2 were 4.17, 27.2, and 39.5 mg respectively, and the I
were found to be 1.095, 4.173, and 17.317 cm�1 respectively.
4. Results and discussion

Fig. 1a shows the dark catalytic activities for H2O2 consumption
alone (without 1,4-dioxane). CeO2, Fe2O3, and CuO all have high
reaction rate constants, which generally agree with reported
values of these Fenton-like materials, i.e., those that activate
H2O2 via formal oxidation/reduction of the metal sites.25,39 The
exception is CuO, which was slower than other reports (Table
S3†), which may be due to differences in catalyst and H2O2

concentrations between studies. ZrO2 and TiO2 showed H2O2

degradation ability, in agreement with previous reports.24,25,39–41

SiO2 and Al2O3 exhibited only trace activity (also in agreement
with literature),25 as was the case with zeolite Y. Monometallic
WO3 was also nearly inactive.

Fig. 1b shows catalytic activities for the H2O2 consumption
in the presence of 1,4-dioxane, and catalytic activity for 1,4-
dioxane degradation. We denote the “best” 1,4-dioxane degra-
dation catalysts as those that quickly degrade 1,4-dioxane (high
kdiox) while consuming low amounts of H2O2 (low kH2O2

), i.e.,
those closest to the lower right hand side of the semi-log k-by-k
plot. Catalytic activities for H2O2 consumption did not generally
change in the presence of 1,4-dioxane (comparing Fig. 1a and
b). Materials weakly active for H2O2 consumption (Al2O3, SiO2,
and WO3) consumed H2O2 more rapidly, except for zeolite Y,
which became less active; all these showedminimal 1,4-dioxane
degradation ability.
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 Pseudo-first order rate constants normalized by catalyst surface area for H2O2 consumption ([H2O2]0 ¼ 15 mM, pH ¼ 6.5) in the (a)
absence and (b) presence of 1,4-dioxane ([1,4-dioxane]0 ¼ 27 mM). Panel (b) shows the rate constant for H2O2 consumption plotted against the
1,4-dioxane degradation rate constant. (c) Stoichiometric efficiency (defined as moles 1,4-dioxane degraded per mole H2O2 consumed)
calculated for catalysts active for 1,4-dioxane degradation at 10–12% conversion.
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Catalysts most active for H2O2 consumption were not the
most effective at degrading 1,4-dioxane; Fe2O3 and CeO2, the
catalysts with the highest kH2O2

, were inactive for 1,4-dioxane,
and could be due to the conversion of H2O2 to nonreactive
species under these reaction conditions (neutral pH). Materials
that had the highest kdiox values were (listed in order of
decreasing activity) WOx/ZrO2 [ CuO > ZrO2 [ TiO2. Their
H2O2 consumption activity was also less than those of Fe2O3

and CeO2.
We calculated the stoichiometric efficiency for the four

catalysts most active for 1,4-dioxane degradation during the
batch reactions (Fig. 1c). Under these conditions, CuO was the
most H2O2-efficient, followed by TiO2, WOx/ZrO2, and ZrO2.
Fig. 2 BMPO-trapping of radical species in the H2O2 consumption with (
freeze trapping over (d) CuO (red), (e) ZrO2 (blue) and (f) WOx/ZrO2 (black)
EPR sample cavity.

This journal is © The Royal Society of Chemistry 2019
These values are on the same order of magnitude as those
measured by Sedlak and co-workers for the degradation of
phenol using H2O2 over a silica–Fe catalyst at neutral conditions
(�0.20–0.30%).42,43 A direct comparison of these results to other
materials is made with caution, as the initial reactant amount
and reactant type (50–250 mM H2O2 and 0.5 mM phenol vs.
15 mM H2O2 and 27 mM 1,4-dioxane) differ.

To further understand the surface mechanism, we explored
the effects of initial H2O2 concentrations (1.5–30 mM) using
a Langmuir–Hinshelwood–Hougen–Watson (LHHW) bimolec-
ular surface reaction model, which assumes the two reactants
(H2O2 and 1,4-dioxane) compete to adsorb to the same catalytic
sites. The rate of H2O2 consumption (r0H2O2

) increased before
a) CuO (red), (b) ZrO2 (blue) and (c) WOx/ZrO2 (black). Spectra following
. The small features at 3320 G for traces (d) and (e) are artifacts from the

RSC Adv., 2019, 9, 27042–27049 | 27045
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Fig. 3 FTIR spectra of chemisorbed pyridine under dehydrated and humid conditions for (a) CuO, (b) ZrO2, and (c) WOx/ZrO2.
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plateauing at high [H2O2]0 for WOx/ZrO2, CuO, and ZrO2, which
was indicative of saturation coverage of the active sites at high
H2O2 concentrations (Fig. S2a†). The 1,4-dioxane degradation
rate (r01,4-dioxane), however, also increased and remained pseudo-
rst order with respect to [H2O2] (Fig. S2b†), which suggests that
1,4-dioxane adsorption (and subsequent reaction) sites are not
blocked at high H2O2 concentrations, and implies that the
adsorption and reaction occurs on sites different from those for
H2O2 adsorption/reaction (for WOx/ZrO2, CuO, and ZrO2).

We also examined the radicals formed from H2O2 activation
by the 1,4-dioxane-active catalysts. Although EPR does not
necessarily provide direct evidence of surface generation of
radicals, it can reveal what radicals are generated in solution
with the use of the spin-trap reagent. BMPO, the spin-trap
reagent used here, rapidly reacts with otherwise transient
radicals to form stable radical adducts with cOH and cO2

�

species. The hyperne structures of the BMPO adduct are
characteristic of those of BMPO/cOH (Fig. 2a), which t well
with two conformers with similar hyperne splittings due to the
nitrogen, the b hydrogen, and one of the g hydrogen atoms,35,44
Fig. 4 Residual activity of catalysts for 1,4-dioxane and H2O2 degra-
dation with the addition of 0.125 moles acetonitrile per mole surface
site (186 mM acetonitrile).

27046 | RSC Adv., 2019, 9, 27042–27049
indicating formation of cOH radical over CuO. The EPR signal
did not change with the addition of superoxide dismutase
(“SOD,” an enzyme which rapidly and selectively converts cO2

�

to O2 or H2O2), conrming that CuO did not generate cO2
�

(Fig. S3†). This is in contrast to a recent study using ozone to
degrade 1,4-dioxane over CuO, which formed primarily super-
oxide radical.20 However, as hydroxyl radical is amongst the
strongest oxidants (Table S4†), it is likely responsible for the
high 1,4-dioxane degradation ability of CuO.

The spectra of BMPO-radical adducts were signicantly
different when ZrO2 catalysts were exposed to H2O2 (Fig. 2b).
The hyperne structures of the EPR spectrum (Fig. 2b) indicates
the formation of BMPO/cO2

�.35 BMPO/cO2
� adduct was also

observed in the reaction of WOx/ZrO2 (Fig. 2c) and the spectrum
t well with two conformers with similar hyperne splittings
due to the nitrogen and the b hydrogen atoms (Fig. S4a and b†).
Moreover, addition of SOD signicantly decreased the amount
of BMPO-trapped radical (Fig. S3†), corroborating that super-
oxide is the primary radical generated by ZrO2 from H2O2. This
observation is consistent with a previous work.45

Superoxide radicals have a lower oxidation potential
compared to H2O2

46,47 (Table S3†), and are considered relatively
unreactive.48 It is surprising that this species (and not cOH) is
generated by WOx/ZrO2, the most active catalyst tested for 1,4-
dioxane degradation. This suggests some catalytically benecial
feature of ZrO2-supported WOx domains that is absent from
ZrO2 and fromWO3. Direct freeze-trapping EPR measurements,
in which H2O2/metal oxide suspensions are frozen and analyzed
for any generated radicals (without using a spin-trap reagent),
showed signals for superoxide radicals for WOx/ZrO2 (Fig. 2f).
The gx/y ¼ 2.007 (3305 G) and gz ¼ 2.088 (broad peak centered at
3177 G) are typical of superoxide anion radicals in solution. The
narrow peak at 3263 G (gz ¼ 2.032) and trough at 3315 G (gxy ¼
2.002) are likely due to a WOx/ZrO2 surface-bound peroxyl
radical whose g values, particularly gz, are perturbed due to its
binding to the surface of the catalyst and much less spin–orbit
coupling than that of free superoxide radical.49 The EPR spec-
trum can be t well with a combination of these two types of
radicals (Fig. S4c†). No signals were detected in freeze-trapping
of ZrO2 and H2O2 even though cO2

� was spin-trapped using
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra05007h


Scheme 1 Hypothesized general mechanism of 1,4-dioxane degradation over Lewis-acidic catalyst surfaces. 1,4-dioxane adsorbed to Lewis
acid sites reacts with radicals generated from activation of H2O2 on surface.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
A

ug
us

t 2
01

9.
 D

ow
nl

oa
de

d 
on

 2
/3

/2
02

6 
8:

25
:2

0 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
BMPO in the same reaction, suggesting that WOx/ZrO2 can
better stabilize cO2

� radicals compared to ZrO2. In the CuO
reaction with H2O2, the formation of cOHwas too transient to be
directly freeze-trapped.

Recognizing that 1,4-dioxane was historically used as
a CVOC stabilizer due to its ability to complex with AlCl3 formed
from CVOC storage inside aluminum-lined containers,50,51 we
hypothesized that Lewis acid sites of the metal oxides are
important for 1,4-dioxane degradation. We performed FTIR
analysis of 1,4-dioxane-active materials using pyridine as probe
molecule for surface acid sites under dry as well as humid
conditions to simulate the aqueous-phase conditions of the
oxidation reaction.

Characteristic peaks at �1445 cm�1 assigned to pyridine
adsorbed on Lewis acid sites were observed on WOx/ZrO2, ZrO2,
and CuO (Fig. 3). The concentration of Lewis acid sites was
quantied by integrating the area of the 1445 cm�1 peak, then
normalizing by the amount of catalytic material and using an
extinction coefficient previously determined by Emeis38 (Table
S5†). The metal oxides had similar Lewis acid site densities,
which were lower than the theoretical metal site density of �4
atoms per nm�2 (roughly 15–20%).52–54

To help verify these Lewis acid sites participate in 1,4-
dioxane oxidation catalysis, we co-added acetonitrile to the
batch reactor tests (at amount equivalent to �12.5% of theo-
retical metal site density, Fig. 4) and quantied the resulting
rate constants. As a water-soluble Lewis base (less basic but
easier to handle compared to pyridine), acetonitrile lowered 1,4-
dioxane degradation substantially (by �75–80%) over ZrO2 and
WOx/ZrO2, but did not affect H2O2 consumption much (by <5%)
(Fig. 4). The Lewis acid sites of ZrO2 andWOx/ZrO2 are the likely
adsorption sites for 1,4-dioxane (as poisoned by acetonitrile).
Acetonitrile inhibited 1,4-dioxane degradation over CuO to
This journal is © The Royal Society of Chemistry 2019
a lesser extent (�48%) and H2O2 consumption to a greater
extent (�13%).

Humidication, which more closely resembles the aqueous
reaction conditions, was introduced during FTIR analysis
(Fig. 3). The introduction of water led to the appearance of
Brønsted peaks (identied by characteristic pyridine IR peak at
�1550 cm�1) on CuO but not ZrO2 or WOx/ZrO2. We suggest
that CuO, when in water, contains Brønsted acid sites that may
contribute 1,4-dioxane degradation, and that Brønsted acidity
may not be an important characteristic for ZrO2 or WOx/ZrO2

catalysis.
In combining the kinetic, EPR, FTIR, and surface poisoning

results, we propose H2O2 dissociates onto metal surface sites
into either surface adsorbed cOH or cO2

� over the metal oxide
surface, while Lewis-acidic sites (a minority of total sites) adsorb
1,4-dioxane (Scheme 1). The adsorbed radicals, or peroxyl
radicals, react with adsorbed 1,4-dioxane, which contributes to
more efficient use of H2O2 and to higher 1,4-dioxane degrada-
tion activity.
5. Conclusions

In this work, we surveyed a number of H2O2-active metal oxide
materials, and evaluated their efficacy for the aqueous catalytic
degradation of 1,4-dioxane at mild conditions (ambient
temperature, neutral pH, in the dark). Of the materials
screened, we found that WOx/ZrO2 had the highest 1,4-dioxane
degradation rate, followed by CuO and ZrO2. A LHHW analysis
indicated that H2O2 and 1,4-dioxane adsorb to distinct catalytic
sites. EPR measurements indicate that CuO activates H2O2 into
highly reactive hydroxyl radicals, while ZrO2 and WOx/ZrO2

form solely less-active superoxide radicals. Pyridine-FTIR and
selective poisoning experiments imply that 1,4-dioxane, a weak
RSC Adv., 2019, 9, 27042–27049 | 27047
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Lewis base, selectively adsorbs to Lewis acid sites on the cata-
lysts. We present a possible surface-reaction mechanism in
which 1,4-dioxane adsorbs to catalyst sites and reacts with
metal-oxide supported radical species. These materials show
promise for treatment of 1,4-dioxane contaminated waters.
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