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Application of ANN modeling techniques in the
prediction of the diameter of PCL/gelatin
nanofibers in environmental and medical studies

Saba Kalantary,? Ali Jahani, 2 ** Reza Pourbabaki® and Zahra Beigzadeh®

Prediction of the diameter of a nanofiber is very difficult, owing to complexity of the interactions of the
parameters which have an impact on the diameter and the fact that there is no comprehensive method
to predict the diameter of a nanofiber. Therefore, the aim of this study was to compare the multi-layer
perceptron (MLP), radial basis function (RBF), and support vector machine (SVM) models to develop
mathematical models for the diameter prediction of poly(e-caprolactone) (PCL)/gelatin (Gt) nanofibers.
Four parameters, namely, the weight ratio, applied voltage, injection rate, and distance, were considered
as input data. Then, a prediction of the diameter for the nanofiber model (PDNFM) was developed using
data mining techniques such as MLP, RBFNN, and SVM. The PDNFMp.p is introduced as the most
accurate model to predict the diameter of PCL/Gt nanofibers on the basis of costs and time-saving.
According to the results of the sensitivity analysis, the value of the PCL/Gt weight ratio is the most
significant input which influences PDNFMpy_p in PCL/Gt electrospinning. Therefore, the PDNFM model,
using a decision support system (DSS) tool can easily predict the diameter of PCL/Gt nanofibers prior to

rsc.li/rsc-advances electrospinning.

1 Introduction

In recent decades, nanofibers have been proposed as excellent
candidates in many areas owing to their unique properties such
as their micro or nanoscale structure, high porosity, large
surface area to volume ratio, and their substantial mechanical
flexibility and strength in the medical and engineering indus-
tries, including drug delivery, filtration, tissue engineering,
protective clothing, nanoelectronics, nanobiosensors, nano-
catalysis, and so forth."* Electrospinning is an easy, versatility,
and inexpensive method to prepare polymeric ultrafine fibers
under the action of a high electrostatic field from a wide variety
of polymers.>* Gelatin (Gt) is one of the most common
biopolymers, and has been widely explored owing to its biode-
gradability, biocompatibility, immunogenicity profiles, hydro-
philic nature, and commercial availability at a low cost.® Poly(e-
caprolactone) (PCL) is a semi-crystalline linear hydrophobic
polymer which is most commonly used for medical and envi-
ronmental applications, owing to its biocompatibility and slow
biodegradability.*” Polymer blending is one of the most effec-
tive techniques for providing new or desirable properties such
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as blending synthetic and natural polymers. Therefore, gelatin
can be blended with PCL to improve the biomechanical,
degradation, and cell adhesion properties.®

Although a wide variety of complicated electrospinning tech-
niques such as coaxial,’ modified coaxial,’ tri-axial,'® side-by-side**
and other complicated techniques' have been successively re-
ported, only a few limited publications have reported manipula-
tion of the quality of the nanofibers, which is often evaluated by
their diameter. Fiber size distribution and morphology play
a significant role in the porosity, the surface to volume ratio,
functionality, and performance.”® The shape, diameter of the
electrospun nanofibers, and spatial distribution have a close
relationship with their functional performance and can be divided
into four categories: polymer properties (molecular weight and
solubility), properties of the working fluids (the concentration,
solution viscosity, dielectric properties, surface tension, and
conductivity), the operational conditions (applied voltage, the fluid
flow rate, nozzle—collector distance, and nozzle diameter of the
spinneret), and manipulation of the environmental conditions
(temperature, atmospheric pressure, relative humidity, the
possible vacuum and even hot air blowing). These parameters have
a positive impact on downsizing of the nanofibers."*** Despite
important experimental investigations to determine fiber diam-
eter, using scanning electron microscopy, transmission electron
microscopy, and atomic force microscopy for example, it is still
time-consuming and expensive.'®* Furthermore, complexities in
the electrospinning method and many factors simultaneously
affecting the preparation techniques cause the findings from
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statistical tools, such as response surface methodology and
regression analysis, to be very noisy.'®*® Regression analysis is one
of the traditional techniques that has been used for model
generation but the accuracy decreases when the independent
parameters increase. In complex phenomena modeling, methods
such as an artificial neural network (ANN) are employed.** An ANN
is an attractive and flexible choice for solving linear and nonlinear
multivariate regression and different problems because it is based
on the natural neural network of the brain.”*** An ANN consists of
interconnected processing elements, such as an input layer,
various hidden layers and an output layer which is capable of
learning from samples, using transfer functions between neurons
and a specific learning algorithm in the structure of a program
without being affected by data noise.**** Nowadays, different
models and learning algorithms can be applied to modeling and
controlling the electrospinning processes.”?® In this paper, we
have compared the multi-layer perceptron (MLP), radial basis
function (RBF), and support vector machine (SVM) models for
predicting the diameter of PCL/gelatin nanofibers. The main
objectives were to: (i) analyze the effects of weight ratios, applied
voltage, injection rate, nozzle-collector distance, and their indi-
vidual and interactive effects on the diameter of PCL/gelatin
nanofibers; (i) compare different data mining models to identify
the most accurate model; (iii) detect the most significant factors
affecting the diameter of PCL/gelatin nanofibers using sensitivity
analysis; and (iv) design a decision support system (DSS) for pre-
dicting the diameter of electrospun PCL/Gt nanofibers.

2 Experimental
2.1 Materials

Poly(e-caprolactone) (M,, = 80 000 g mol '), gelatin from porcine
skin type A (gel strength 300 g bloom), glacial acetic acid (AA), and
formic acid (FA) were all provided by Sigma-Aldrich.

2.2 Preparation of the polymer solution

A separate solution was prepared from PCL and gelatin by dis-
solving 15% w/w of the sample in AA: FA in a 9 : 1 ratio using
a magnetic stirrer at room temperature for 4 h. Following this,
PCL and gelatin (PCL/Gt) were mixed at seven different volume
ratios (80:20, 70:30, 60:40, 50:50, 40:60, 30:70 and
20 : 80) for 20 h prior to electrospinning.?

2.3 Electrospinning

The prepared PCL/Gt solutions were added to a plastic syringe
with a needle tip of size 23G. The injection rate of the polymer
solution was 0.6-2 ml h™*, and the distance between the needle
tip and collector was 5-20 cm. The high voltage was 6-22 kv.*°

2.4 Characterization

Scanning electron microscopy (SEM, DSM-960A Model, ZEISS,
Germany) was applied to investigate the morphology of the
electrospinning nanofibers at an accelerating voltage of 20 kv.
Before SEM, the samples were coated with gold. For each
sample, the average fiber diameter was determined from about
70 random measurements using Image J software.
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2.5 Data collection

Different parameters affecting the diameter of electrospinning
nanofibers of PCL/Gt were measured, five independent input elec-
trospinning parameters, namely: PCL/Gt weight ratios (X;, wt%);
electrospinning voltage (X,, kV); needle-to-collector distance (X3,
cm); injection rate of the solution (X;, ml h™"); and the output data
include average diameter of PCL/Gt nanofiber (Y, nm) were chosen
and their effects on the diameter size of electrospinning PCL/Gt
were investigated using an artificial intelligence procedure.

2.6 MLP neural network

The MLP model is a multi-layer network technique for modeling
and prediction. The MLP uses a self-learning mechanism using
samples for modeling nonlinear and complex process of the
real world. Thus, it has been applied as the benchmark model
by many researchers.**** The MLP network architecture
contains an input layer, hidden layers, and an output layer for
an accurate prediction of the fiber diameter. An MLP uses some
computational processing elements (PEs) which are called
neurons. The learning algorithm is a process of updating the
connection weights of the neurons continuously in hidden
layers to minimize the differences between the target and
network output samples.**

In this study, three activation functions consisting of
a hyperbolic tangent, logarithmic sigmoid, and linear transfer
functions were examined to optimize the prediction of the
diameter of the electrospinning PCL/Gt nanofibers model.

The backpropagation (BP) method is found to be the most
popular and powerful nonlinear statistical method, therefore it
is an effective technique for calculating the weight and biases of
neurons. The BP algorithm uses learning rules to assign weight
arrangements of neurons and layers to nodes based on the
output of the network. The weights alter during the learning,
and the process is repeated until the best performance is ach-
ieved, and the learning process will end.*"*

The aim of BP is to minimize the error between Y (average
diameter of PCL/Gt nanofiber) and Y,,.; (MLP output) in which X
and Y are given to the network and the weight of the PEs (w) and
input samples (X) are adjusted, and an output of the jth PE on
the kth (PEjk] is calculated using eqn (1):

n
K _
net/ =Y wix; (1)
i=0

The specific functions known as the transfer or threshold
functions are introduced to the network, and the output value of
the neurons is presented in eqn (2):

Yiet = Jnetj (2)

In the next step, the weights of the ¢t numbers of the input/
output parts (X and Y) will be changed using the delta rule in

eqn (3):

t t—1 ot
Wi = Wji + AWﬁ (3)
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Several of the learning algorithms for BP have been used to
end the learning process and for adjusting weights. In this
paper, the validation data set performed was the generalization
of MLP and avoids overtraining of the network. The final step is
the test performance of the MLP using the test data set, which is
not used in the training and validation data sets. To perform
this, the samples were randomly divided into three subsets
which include the training data set with 60% of the total
samples, a validation data set with 20% of the total samples and
a test data set with 20% of the total samples.

2.7 Radial basis function neural network

The radial basis function neural networks (RBFNNs) have a fast
learning algorithm and simple topological structure, they have
been structured with an input, hidden, and output layer, such
as in the MPL, but in comparison they are different in the
matter of the activation function in the hidden layer. The
RBFNNs have a fast learning algorithm, high accuracy, and
a unifying link in the function approximation amongst many
different research fields in recent years."***” The radial basis
function neural network (RBFNN) has two types of data sets,
which are training and testing. The application of radial func-
tion in the neurons of the hidden layer, the number of RBFNN,
the corresponding centers, and the output layer weight matrix is
different in RBFNNs.***® The application of the first layer in
a RBFNN network is the distribution of the variables to the
hidden layer. Each neuron of the hidden layer creates a radial
classifier and spheres of answers in the multidimensional
decision space, and the number of neurons depends on the
problem to be solved.*® The most common basis function, in
RBFNN structure, is a Gaussian function that is characterized by
a center and peak width®® as given by eqn (4):

R (x) = exp <"“2—' ) (@)

In which, R(x) is the radial basis function, ||x — a;|| which
represents the determined Euclidean distance between the total
of a; (RBF function center), x known as (input vector or vari-
ables), and ¢ is a positive real number, respectively.*® Finally,
the output layer should be calculated using eqn (5):

Vi = Z Wit Rj(x) + b; (5)
=1

In which wy is the weights of the neurons, j is the number of
each node in the hidden layer, m is the number of neurons, and
b; represents bias. The value of wy is adjusted to reduce the
mean square error of the output when the training of the
network ends. At the end of the training and after fixing the
number of neurons and the weights, the performance of the
network will be defined.?**

2.8 Support vector machine

The SVM, as a standard tool for machine learning and data
mining, was introduced for solving a variety of learning, clas-
sification, and prediction problems.*»*> The SVM seeks the
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widest possible margin between the boundaries of classes to
minimize the uncertainty of classification. This method of
prediction minimizes the probability of over-fitting in deci-
sions, which limits the prediction of the diameter of
nanofibers.*>*

There are two data sets, including training and testing in the
structure of SVM. The values of the target are based on an n-
dimensional matrix in which the most accurate boundaries and
margins possible are available.*>**

The SVM model algorithm equation can be expressed in eqn

(6):
Yo = Y ek () +b G

In which y(x) is the SVM output, «; is a multiplier, K presents the
kernel function, and b is the threshold parameter.

Next, we provide the Gaussian RBF in eqn (7), as the activa-
tion function in this study. As is known, RBF is the most
common function with a considerable ability to control the
generalization of the SVM network.

xi = %) )

K(xiax]') = exp(—y

In which x; and x; are samples and v is the kernel parameter,
respectively.

To achieve the most accurate SVM for predicting the fiber
diameter of electrospinning PCL/Gt, eqn (8) should be
minimized.

1 n
Sl +C> (8)
i=1

" . . -
In which EHWHZ presents the margin, > ¢; is the training errors,

and C is the tuning parameter respectively.

2.9 Model selection

To evaluate the performance of the model that is not applied in
the training process, a simulation of the test data set was used.
The performance of the designed MLP, RBFNN, and SVM was
assessed using several statistical indicators such as the mean
squared error (MSE, eqn (9)), the root mean squared error
(RMSE, eqn (10)), the mean absolute error (MAE, eqn (11)), the
coefficient of determination (R eqn (12)), Willmott's index (WI,
eqn (13)), and the Taylor diagram.****

i (vi— JA/i)z
MSE== (9)

RMSE = (10)

MAE ==L (11)
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Table 1 Results of the training method for the MLP structure
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Test set

Training data

Activation function Training function Structure R” MSE

RMSE MAE WI R?

MSE RMSE MAE WI

logsig-logsig—purey, LM 4-10-10-1 0.96 0.036 0.19
S0 —-7)
R == (12)
—\2
;m—m
S i—5)
WI=1- =l , 0=WI=1 (13)

> (= vl + by = 7°
In which, y; and y; are the targets and network outputs, y; is the
mean of the target values, and n is the number of samples,
respectively.
A Taylor diagram was also used to show the accuracy and effi-
ciency of the models based on the observed values. The Taylor

. Training; R=0:9936I1

—
1er O Data
Fit

Output ~= 0.99*Target + 6.9e-05

0 2 4 6 8 10
Target
Test: R=0.Q801

T T ™
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Output ~= 0.98*Target + -0.0019

Target

Fig. 1 Scatter plots of PDNFMy p outputs versus the target values.

This journal is © The Royal Society of Chemistry 2019

0.097 0.9999984204 0.987 0.014 0.118 0.075 0.9999999967

diagram provided a polar plot to summarize multiple aspects of
the model and the observed parameters (i.e., correlation coeffi-
cient, normalized standard deviation and RMSD).***®

We need to find the factors with the most effect on the model
outputs to modify the diameter of the target nanofibers.
Sensitivity analysis was performed on the final model to detect
the importance of the variables concerning their role in the
model outputs.

3 Results and discussion
3.1 Prediction performance of MLP

The electrospinning parameters (ratio blends of the polymer,
applied voltage, injection rate and, the needle-to-collector
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Fig. 2 Target and output nanofiber diameter values for training, validation, and testing sets and all data.

distance), as input variables, and the effects of these parameters
on the diameter of the PCL/gelatin nanofibers as outputs, were
entered into the software MATLAB R2016b to design the most
accurate prediction of the diameter for the nanofiber model

24862 | RSC Aadv., 2019, 9, 24858-24874

(PDNFM)pprp- In the optimization of the MLP model parame-
ters, the total number of samples (762 samples) was randomly
divided into three data sets. The training data subset contained
60% of all samples (457 samples), the validation data set

This journal is © The Royal Society of Chemistry 2019
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Table 2 The results of parameter (spread and neurons) tuning in RBFNN architecture
Test set Training data
Model  Spread  Neurons  R® MSE RMSE  MAE WI R? MSE RMSE  MAE WI
RBF 7 125 0.821 0.136 0.368 0.269 0.9999907541 0.818 0.191 0.437 0.231 0.9999997597

contained 20% of the samples (153 samples), and 20% of the
samples (153 samples) were assigned to the test data to train,
validate and test the PDNFMyp. As we know, in the training
method, to achieve the most accurate PDNFM,; p, the number
of neurons and hidden layers, and the activation function
should be optimized (Table 1).

We present the best activation function equations in the
structure of the MLP model using eqn (14) and (15).

1
T+er

IOgsig('x) =1 + (14)

Purey;n(x) = f(x) (15)

According to the values of R* (Table 1), ANN optimization
detected the structure of ‘4-10-10-1’ for PDNFM,,; p as the most
successful structure of MLP in the prediction of the diameter of
PCL/Gt electrospinning nanofibers and effect of electrospinning
parameters on the diameter of the PCL/gelatin nanofibers. The
determined structure contains four variables as inputs, ten
neurons in the two hidden layers, and one neuron (diameter of
nanofibers) in the output layer. To use the most accurate esti-
mation functions in the hidden layer and output layer, loga-
rithmic sigmoid and linear transfer functions were used as
a learning function, respectively.

The scatter plot provides the correlation between variables
which is used to define the accuracy of an ANN model.>»** The
scatter plot of the MLP outputs versus the target values of the
PDNFMy; p for the training, validation, testing, and overall data
sets are presented in Fig. 1. The determination of the coefficient
(R?*) proves the strong correlation between the PDNFMyyp
outputs and the target values.

Fig. 2 compares the real (target) and simulated (output) values
of PDNFM,p in the data sets. A significant and distinctive
agreement between values has been provided in Fig. 2.

The PDNFMyp, using four electrospinning parameters as
model input variables, is the most accurate model for predic-
tion of the diameter of electrospun PCL/Gt nanofibers against
the changing electrospinning parameters. Eqn (16) is the loga-
rithmic sigmoid and eqn (17) illustrates the PDNFMypp in
electrospun PCL/Gt nanofibers.

1

k
Yiey) = —————
f ( t/) 1+ e(iY"e‘/+T)

(16)

In which i presents the neuron number, k is layer number, T is
the threshold value, Y, presents the sum of weighted inputs
for PEjk (processing elements) or neuron.

PDNFMuyp = purejin {logg{> LW, 1 {logg(> IW, 1, + b))} +
by}} (17)

This journal is © The Royal Society of Chemistry 2019

In which, PDNFMy;p is a prediction of the diameter of the
electrospun PCL/Gt nanofibers model, i defines the neuron
number, and j is the layer number, p; is the inputs signals, LW
and IWj; represent the layer weights and the input weights, and
>"b; presents the bias.

3.2 Prediction performance of RBFNN

In this type of ANN, the Gaussian transfer function is selected as
the activation function in the hidden layer, which is the main
difference from MLP. It consists of two layers: an input layer
and an output layer to receive data for the training process.
During the training process, the two main parameters that are
optimized are the spread of the radial basis functions and the
number of neurons.

The electrospinning parameters (ratio blends of the polymer,
applied voltage, injection rate and, the needle-to-collector
distance), as input variables, and the diameter of the PCL/
gelatin nanofibers as the outputs, were tagged in the software
MATLAB R2016b. In model parameters optimization, 80% of
samples (610 samples) were randomly defined as the training
set to train the most accurate RBFNN, and 20% of samples (152
samples) were applied to test the performance of the
PDNFMggr. The aim of the training step was the network error
minimization with RBFNN parameters values. Therefore, in the
best PDNFMggr performance, the number of neurons was 125,
and the spread of the radial basis functions was 7. The best
results for PDNFMggr in the training and test data sets are
shown in Table 2.

As shown in Table 2, the optimal architecture is determined
by the values of R® in the training and test data sets. The best
architecture of RBFNN was determined to be 4-125-1 with four
variables as inputs, 125 neurons in the hidden layer with
a Gaussian transfer function, and one neuron (diameter of
nanofibers) in the output layer.

The scatter plot of the RBFNN outputs versus the target
values of the PDNFMggr for the training and test sets, and all
data are presented in Fig. 3. The determination of the coeffi-
cient (R®) shows a significant correlation between the
PDNFMggr outputs and targets values.

Fig. 4 compares the real (target) and simulated (output)
values of PDNFMggr in the data sets. A notable and satisfying
agreement between the values can be observed in Fig. 4.

3.3 Prediction performance of SVM

As with other models, some parameters of SVM require opti-
mization to improve the goal accuracy of the network. Usually,
SVM employs some predefined functions, called kernels that
can classify the data into a matrix with a multi-dimensional

RSC Adv., 2019, 9, 24858-24874 | 24863
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Fig. 3 Scatter plots of PDNFMggr outputs versus the target values for the training and test sets and all data.
space that separates all data in this multi-dimensional space value of the ¢ is related directly to the number of support
more easily.*>* vectors.”® The value of v is determined by the width of the bell-

The SVR regression performance is associated with the shaped curves in the structure of the SVM regression with
proper selection of the parameters, which are ¢, C, and y. The a Gaussian function (as shown in eqn (7)). In this research, the
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Fig. 4 Target and output PDNFMggr values for the training and test sets and for all data.

polynomial kernel function was found to be more accurate than more simple curves as the goal accuracy is obtained.** Thus, we
the Gaussian function; therefore, we did not achieve the value of  selected the values of the ¢ and C parameters to achieve a highly
v. On the other hand, the value of C allows the SVM to gain accurate SVM regression in the prediction of the diameter of the
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Table 3 The value of the parameters (e and, C) for tuning in SVM regression architecture

Test set Training data
& c R? MSE RMSE MAE WI R* MSE RMSE MAE WI
62.02 888.78 0.829 0.0067 0.082 60 0.9991904256 0.657 0.0001 0.012 60.41 0.9987218987

electrospun nanofibers. In the parameter optimization of
PDNFMgyy,, all data were divided into two subsets: 80% (610
samples) for the training network and 20% (152 samples) of
data for testing the PDNFMsgyy accuracy and generalization.
Table 3 presents the most appropriate PDNFMgy,, parameters
and prediction accuracies for SVM regression of the train and
test data.

The best finding was obtained for data modeling without
data standardization, while the data was standardized in the
MLP and RBFNN modeling to achieve better and faster findings.
As shown in Table 3, the best ¢ value was 62.02, the C value was
887.78 concerning the values of R* in the training and test data
sets. Other models with other values of ¢ and C show over-fitting
and under-fitting in models. In over-fitting models, a signifi-
cantly higher R? value is achieved in the training data set, but
the accuracy of the PDNFMgyy, is decreased significantly in the
test data test. The PDNFMgyy, is close to that of the training
data, otherwise the model is over-trained. In under-fitting
models, the performance of PDNFMgyy is not acceptable, or
the best performance is not obtained.

The results obtained from the scatter plot of the SVM outputs
versus the target values of the PDNFMgy,, for the training and
test sets, and all data are set out in Fig. 5. The determination of
the coefficient (R*) shows the acceptable correlation between
the PDNFMgyy outputs and the target values.

Fig. 6 compares the real (target) and simulated (output)
values of PDNFMgyy in the data sets. A notable and satisfying
agreement between the values is observed in Fig. 6.

Fig. 7 provides the Taylor diagrams observed for the perfor-
mances of the computing models (i.e., MLP, RBFF, and SVM). 1t is
shown that the MLP model provided a higher RMSD and corre-
lation coefficient compared to the RBFF and SVM models. There-
fore, comparison of the findings of the models shows that the MLP
is the most accurate model in the prediction of the diameter of the
diameter of the PCL/Gt electrospun nanofibers (Fig. 7).

Comparing the findings of PDNFMygp, PDNFMggp,
PDNFMgyn shows that PDNFM,; p is the most accurate model
for the prediction of the diameter of the PCL/Gt electrospun
nanofibers (Fig. 8). In comparison to RBFNN and SVM, the MLP
model shows the highest R* value in training, test, and total
data sets. After randomizing the data, they were divided into
training and test data sets so that the same training and test
samples were used for the three modeling methods.

The properties and morphology of the electrospun nano-
fibers are critical factors when designing nanofibers for
different applications. This property depends on many pro-
cessing parameters.'”** ANN models have been applied previ-
ously as a predictive modeling tool for electrospun nanofibers.**
For example, Ketabchi et al. developed and tested the accuracy

24866 | RSC Adv., 2019, 9, 24858-24874

of the ANN model for predicting the diameter of chitosan/PEO
nanofibers in trials and studies and for analysis of the interac-
tions between the involved electrospinning parameters and the
diameter of the chitosan/PEO nanofibers with sufficient sensi-
tivity and specificity.* In this research, we attempted to validate
the accuracy of data mining models such as MLP, RBFNN, and
SVM, on the effects of processing parameters including the
polymer weight ratios, nozzle-collector distance, applied
voltage, and the injection rate on the average diameter of the
electrospun PCL/Gt nanofibers.

As can be seen from Table 1, the MLP as an ANN modeling
approach can successfully predict the structure of the PCL/Gt
electrospun nanofibers with an accuracy of up to at least 0.96
(R* in test data), so long as reliable and in range data are
available to run the PDNFMy;p. Owing to the high degree of
complexity in the relationships between the electrospinning
parameters and the diameter of the nanofibers, these values
were satisfactory.”® The successful application of a BP neural
network and MLP in electrospinning studies has been proved in
previously published research with a higher accuracy in
comparison with the multiple regression models.****** The
reliable results of ANN modeling in electrospinning nanofibers
studies have been illustrated in previous studies in which
Khanlou et al. aimed to employ an MLP network with a BP
algorithm to assess the application of the ANN to predict and
optimize the electrospinning parameters for polymethyl meth-
acrylate nanofibers. Using an ANN with a three layer BP neural
network, there is a perfect correlation between the targets and
outputs. The correlation factors for the training and validation
samples were 0.98 and 0.99, respectively.®® Another study
showed the ability of an ANN to predict the diameter of poly-
urethane nanofibers by considering variables of the ratio of
solvents, average molecular weight of polyurethane, concen-
tration, voltage, distance, and the electric field. The results
show that artificial neural networks can predict the diameter of
electrospun polyurethane nanofibers well.>® In this research,
PDNFMy;p provides a framework for accurate analyzing elec-
trospinning parameters and the diameter of electrospun PCL/Gt
nanofibers that will result in greater economy and save time.
The results of the MLP approach, especially the greater accuracy
(R* = 0.96) obtained in comparison with the RBFNN (R*> =
0.821), and SVM (R = 0.829) results signify that PDNFMy p can
be used as a comparative impact assessment model for pre-
dicting the diameter of PCL/Gt nanofibers.

3.4 Sensitivity analysis of PDNFMyq p

According to these results, PDNFMy;p show the best perfor-
mance for the prediction of the diameter of PCL/Gt electrospun

This journal is © The Royal Society of Chemistry 2019
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Fig. 5 Scatter plots of PDNFMgym outputs versus the target values for the training and test sets and for all data.

nanofibers. Thus, a sensitivity analysis of the predicted outputs
of the optimal PDNFM,;p was conducted. In the sensitivity
analysis, each parameter in the range of the standard deviation
with 50 steps were changed, while the other parameters were

This journal is © The Royal Society of Chemistry 2019

fixed at the value of the average. Next, the standard deviation of
the outputs for each parameter change were measured as the
PDNFMy;p sensitivity for that parameter. As illustrated in
Fig. 9, the PDNFM,; p sensitivities for the input variables have
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been explored using sensitivity analysis. The results of the can be seen from Fig. 9, the value of the PCL/Gt weight ratios is
sensitivity analysis demonstrate that the electrospinning pro- detected as the most significant input influencing the
cessing parameters play a primary role in the MLP outputs. As PDNFMyp output.
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Fig. 10a and c shows the effect of the PCL/Gt weight ratios
and applied voltage on the diameter of the fiber. As one can see,
there is a negative correlation between the weight ratio and the
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Fig. 9 Sensitivity analysis of PDNFMy_p.
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voltage and fiber diameter, therefore the fiber diameter
decreases with the increased voltage or weight ratios. The fiber
diameter decreased upon increasing the content of PCL in the
AA/FA solution, as shown in Fig. 10a. A reason for this result
could be the presence of an emulsion, which can be weakened
at higher PCL contents. PCL/Gt exhibit an emulsion structure
when using an AA or AA/FA mixture as a solvent. The explana-
tion for this emulsion structure is the absence, or very limited
miscibility, of Gt and PCL and the relatively weak interaction
with AA and FA. These results are in accordance with those
obtained by Denis et al.>® Also, a decrease in the viscosity of the
polymer solution can be ascribed as the cause of the decrease in
the nanofiber diameter.”” As shown in Fig. 10b, the effect of
distance on the diameter of the nanofiber is contradictory, the
fiber diameter increases, as well as decreases, with an increase
of the distance. Indeed, at a short spinning distance, there will
not be sufficient time for the solvent to evaporate before the jet
is placed on the collector owing to thicker nanofibers.
Furthermore, the diameter of the nanofibers decreased with an
increase in the spinning distance.”® The curve is downward-
sloping for high values of the spinning distance. This result
may be explained by the fact that by increasing the spinning
distance, the jet has enough time to stretch and the solvent will
have more time to evaporate before the jet is deposited on the
collector leading to thinner fiber formation.*® Another reason is
probably owing to breaking of the formed jet into two or more
jets, leading to finer nanofibers.?* These results were reported in
recent studies.***® Fig. 10c shows the effect of applied voltage
on the diameter of the nanofibers. In fact, at a high applied
voltage, the electric field strength is high, resulting in further
stretching of the jet before it is deposited on the collector, and
hence the fiber diameter will decrease. On the other hand,
increasing the applied voltage will result in an increased surface
charge on the droplet jet, favoring the formation of thinner
fibers. This observation is in agreement with those from previ-
ously published reports.>-*

Considering the trends observed in Fig. 10d, the injection rate
has a two-fold impact on the diameter of the fiber. First, the
diameter of the nanofibers increases with an increase in the volume
injection rate. The published literature indicates that an increase in
the injection rate of the solution typically increases the diameter of
the nanofibers.®® This result could be explained by the fact that an
increase in injection rate leads to an increase of the amount of
polymer solution delivered to the top of the needle making the jet
diameter increase.””**% Therefore there is a limitation to this, after
reaching an optimum value, the diameter of the nanofibers
continuously decrease with an increase in the injection rate. Some
studies show that the injection rate increase leads to a decrease in
the diameter of the nanofibers.”* As increasing the injection rate
will cause higher electrostatic forces, an increase in the volumetric
charge density on the droplet jet, and a greater tensile force which
might increase the stretching of the jet, resulting in the formation of
thinner diameter nanofibers.®>* The literature shows that ANN
techniques have been designed with data analysis, modeling,
simulation, and output.** These models have been used to investi-
gate the relationship between electrospinning parameter and the
diameter of the nanofibers or fiber morphology .**
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PDNFM,,; p provides a new tool as a prediction model for the
electrospinning of nanofiber considering the variables of the
PCL/Gt weight ratios, applied voltage, distance and, injection
rate. PDNFMyp provides a new tool as a DSS in PCL/Gt elec-
trospinning for prediction of the diameter of the nanofibers
resulting from electrospinning. PDNFMy,;» was developed for
researchers or lab technician to predict the diameter of PCL/Gt

nanofibers, which helps them to save time and money. In this
study, which develops a tool for the prediction of the diameter
of PCL/Gt nanofibers, the steps of model development and
implementation are described as a DSS. We proposed the flow
diagram shown in Fig. 11 to design a DSS using PDNFMy,; p for
PCL/Gt electrospinning. The described DSS has been designed
using data analysis, modeling, simulation, and output. The
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Fig. 11 Flow diagram for the development of a DSS for PCL/Gt electrospinning.
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Fig. 12 Two different electrospinning processing parameters for the diameter of PCL/Gt nanofibers.

output of PDNFMy;p is applicable in the electrospinning of
PCL/Gt nanofibers, and the electrospinning processing param-
eters and diameter of PCL/Gt nanofibers could be modified
based on the proposed DSS to reduce time and costs. The values
of the optimization factors are not proposed for use in other
research, but they could be used as alternatives values to opti-
mize models in this kind of research. Finally, a graphical user
interface (GUI) was designed to run the PDNFM model on new
data for which the researchers are planning for PCL/Gt elec-
trospinning. A GUI, as a user friendly tool, is designed to
provide easy utilization of an ANN technique. The GUI provides
a tool to predict nanofiber diameter before electrospinning by
changing the values of the input parameters, which saves time
and material.*

This journal is © The Royal Society of Chemistry 2019

In general, it is necessary to mention that sizes at the
nanoscale significantly impact the structural, mechanical,
thermal, thermo-dynamic, kinetic, and electrical properties of
materials.”® Furthermore, rapidly increasing interest has been
shown by users, and this has led to the production of diverse
nanofibers for versatile usage in various applications.®” Deter-
mination of the nanofiber size is, therefore, a matter of
considerable importance in electrospinning for various appli-
cations.®® With the help of the PDNFM model, the changes are
detectable before electrospinning. This means that a change in
the diameter of the nanofibers and the morphology is measur-
able before electrospinning. The researchers, engineers, and
experts working in academia and industry can easily predict the
diameter of nanofibers in electrospinning. GUI as a DSS tool
will be run on new data by simply inputting the diameter of the

RSC Adv., 2019, 9, 24858-24874 | 24871
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nanofiber, as shown in Fig. 12. As an example, Fig. 12 illustrates
the effect of two different electrospinning processing parame-
ters on the diameter of PCL/Gt nanofibers. We found the
diameter of nanofibers to be thick (200 to 500 nm) in plan (a) for
our specific application in PCL/Gt electrospinning. Therefore,
we modified the electrospinning processing parameters of plan
(a) to plan (b), in which the diameter of the nanofibers will be
optimal in PCL/Gt electrospinning for our application. The
modification was conducted by changing the most significant
factors in the sensitivity analysis results and trends shown in
Fig. 10. Overall, the findings of this study indicate the advan-
tages of modeling and optimizing the diameter of electrospun
nanofibers using an ANN and the advantages of these models
for experts in the nano-field, tissue engineering, pharmaceu-
tical, environmental, medical, food and engineering industries
to help reduce product costs.

4 Conclusions

In this research, MLP, RBFNN, and SVM models were developed
to predict the diameter of a PCL/Gt nanofiber considering
variables such as the PCL/Gt weight ratios, applied voltage,
distance, and injection rate. The performance of the designed
MLP, RBFNN, and SVM models was evaluated by root mean
squared error, mean absolute error, coefficient of determina-
tion, Willmott's index, and a Taylor diagram. Furthermore, the
sensitivity for each electrospinning parameter has been
explored using sensitivity analysis. In the structure provided
using MATLAB software, the results indicated the greater
accuracy of the MLP compared with the RBFF and SVM models
and showed the potential of the MLP modeling technique as
a handy tool for predicting the ideal electrospinning process
parameters and nanofiber properties. It also showed that the
PCL/Gt weight ratio is the most significant input which influ-
ences the MLP output. It is recommended to apply a modeling
approach such as the MLP model to estimate and optimize the
size of nanofibers before electrospinning. This can be worth-
while in terms of the economy, time, and scientific aims. It can
thus be suggested that designing and applying the prediction
method for different kind of nanofibers or nanomaterials
should be performed using ANN techniques for various appli-
cations in environmental, medical and other industries.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to acknowledge the Tehran University of
Medical Sciences and the College of Environment.

Notes and references

1 K. Nasouri, Novel estimation of morphological behavior of
electrospun nanofibers with artificial intelligence system
(AIS), Polym. Test., 2018, 69, 499-507.

24872 | RSC Adv., 2019, 9, 24858-24874

View Article Online

Paper

2 M. Naghibzadeh and M. Adabi, Evaluation of effective
electrospinning parameters controlling gelatin nanofibers
diameter via modelling artificial neural networks, Fibers
Polym., 2014, 15(4), 767-777.

3 B. Feng, S. Wang, D. Hu, W. Fu, J. Wu, H. Hong, et al,
Bioresorbable electrospun  gelatin/poly(e-caprolactone)
nanofibrous membrane as a barrier to prevent cardiac
postoperative adhesion, Acta Biomater., 2019, 83, 211-220.

4 W. P. Lu and Y. Guo, Electrospinning of Collagen and Its
Derivatives for Biomedical Applications, Novel Aspects of
Nanofibers, IntechOpen, 2018.

5M. E. Hoque, T. Nuge, T. Yeow and N. Nordin,
Electrospinning of gelatin nanofibre: current trends in
tissue engineering applications, J. Appl. Mech. Eng., 2013, 2,
e122.

6 L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed,
M.-H. Nasr-Esfahani and S. Ramakrishna, Electrospun
poly(e-caprolactone)/gelatin nanofibrous scaffolds for nerve
tissue engineering, Biomaterials, 2008, 29(34), 4532-4539.

7 L. Van der Schueren, B. De Schoenmaker, O. I. Kalaoglu and
K. De Clerck, An alternative solvent system for the steady
state electrospinning of polycaprolactone, Eur. Polym. J.,
2011, 47(6), 1256-1263.

8 Y. H. Wu, D. G. Yu, H. P. Li, X. Y. Wu and X. Y. Li, Medicated
structural PVP/PEG composites fabricated using coaxial
electrospinning, e-Polym., 2017, 17(1), 39-44.

9 Q. Wang, D. G. Yu, L. L. Zhang, X. K. Liu, Y. C. Deng and
M. Zhao, Electrospun hypromellose-based hydrophilic
composites for rapid dissolution of poorly water-soluble
drug, Carbohydr. Polym., 2017, 174, 617-625.

10 C. Yang, D. G. Yu, D. Pan, X. K. Liu, X. Wang, S. A. Bligh and
G. R. Williams, Electrospun pH-sensitive core-shell polymer
nanocomposites fabricated using a tri-axial process, Acta
Biomater., 2016, 35, 77-86.

11 K. Wang, X. K. Liu, X. H. Chen, D. G. Yu, Y. Y. Yang and
P. Liu, Electrospun hydrophilic Janus nanocomposites for
the rapid onset of therapeutic action of helicid, ACS Appl
Mater. Interfaces, 2018, 10(3), 2859-2867.

12 D. G. Yu, J. J. Li, M. Zhang and G. R. Williams, High-quality
Janus nanofibers prepared using three-fluid
electrospinning, Chem. Commun., 2017, 53(33), 4542-4545.

13 M. Naghibzadeh, M. Adabi, H. R. Rahmani, M. Mirali and
M. Adabi, Evaluation of the effective forcespinning
parameters controlling polyvinyl alcohol nanofibers
diameter using artificial neural network, Adv. Polym.
Technol., 2018, 37(6), 1608-1617.

14 W. Huang, Y. Hou, X. Lu, Z. Gong, Y. Yang, X. J. Lu, X. L. Liu
and D. G. Yu, The Process-Property-Performance
Relationship of Medicated Nanoparticles Prepared by
Modified Coaxial Electrospraying, Pharmaceutics, 2019,
11(5), 226.

15 X. Wang, L. Zhao, J. Y. Fuh and H. P. Lee, Effect of Porosity
on Mechanical Properties of 3D Printed Polymers:
Experiments and Micromechanical Modeling Based on X-
Ray Computed Tomography Analysis, Polymers, 2019, 11(7),
1154.

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra04927d

Open Access Article. Published on 12 August 2019. Downloaded on 10/30/2025 6:57:19 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

16 H. Zhou, Z. Shi, X. Wan, H. Fang, D. G. Yu, X. Chen and
P. Liu, The Relationships between Process Parameters and
Polymeric Nanofibers Fabricated Using a Modified Coaxial
Electrospinning, Nanomaterials, 2019, 9(6), 843.

17 B. H. Moghadam, M. Hasanzadeh and A. Haghi, On the
contact angle of electrospun polyacrylonitrile nanofiber
mat, Bulg. Chem. Commun., 2013, 45, 169-177.

18 M. D. Chomachayi, A. Solouk and H. Mirzadeh, Electrospun
silk-based nanofibrous scaffolds: fiber diameter and oxygen
transfer, Prog. Biomater., 2016, 5(1), 71-80.

19 S. Rafiei, S. Maghsoodloo, B. Noroozi, V. Mottaghitalab and
A. Haghi, Mathematical modeling in electrospinning
process of nanofibers: a detailed review, Cellul. Chem.
Technol., 2013, 47, 323-338.

20 R. Faridi-Majidi, H. Ziyadi, N. Naderi and A. Amani, Use of
artificial neural networks to determine parameters
controlling the nanofibers diameter in electrospinning of
nylon-6,6, J. Appl. Polym. Sci., 2012, 124(2), 1589-1597.

21 A. Jahani, Forest landscape aesthetic quality model
(FLAQM): a comparative study on landscape modelling
using regression analysis and artificial neural networks, J.
For. Sci., 2019, 65(2), 61-69.

22 S. Akbarifard and F. Radmanesh, Predicting sea wave height
using Symbiotic Organisms Search (SOS) algorithm, Ocean
Eng., 2018, 167, 348-356.

23 H. Aghajani, M. M. Mohadjer, A. Jahani, M. R. Asef,
A. Shirvany and M. Azaryan, Investigation of affective
habitat factors affecting on abundance of wood
macrofungi and sensitivity analysis using the artificial
neural network (case study: Kheyrud forest, Noshahr),
Iranian Journal of Forest and Poplar Research, 2014, 21(4),
617-627.

24 E. Vatankhah, D. Semnani, M. P. Prabhakaran, M. Tadayon,
S. Razavi and S. Ramakrishna, Artificial neural network for
modeling the elastic modulus of electrospun
polycaprolactone/gelatin scaffolds, Acta Biomater., 2014,
10(2), 709-721.

25 K. Qaderi, S. Akbarifard, M. R. Madadi and B. Bakhtiari,
Optimal operation of multi-reservoirs by water cycle
algorithm, Proceedings of the Institution of Civil Engineers -
Water Management, 2017, 171(4), 179-190.

26 A. Jahani, J. Feghhi, M. F. Makhdoum and M. Omid,
Optimized forest degradation model (OFDM): an
environmental decision support system for environmental
impact assessment using an artificial neural network, J.
Environ. Plan. Manag., 2016, 59(2), 222-244.

27 A. Rabbi, K. Nasouri, H. Bahrambeygi, A. M. Shoushtari and
M. R. Babaei, RSM and ANN approaches for modeling and
optimizing of electrospun polyurethane nanofibers
morphology, Fibers Polym., 2012, 13(8), 1007-1014.

28 A. Jahani, Aesthetic quality evaluation modeling of forest
landscape using artificial neural network, Wood & Forest
Science and Technology, 2017, 24(3), 17-22.

29 P. Denis, J. Dulnik and P. Sajkiewicz, Electrospinning and
structure of  bicomponent polycaprolactone/gelatin
nanofibers obtained using alternative solvent system, Int. J.
Polym. Mater. Polym. Biomater., 2015, 64(7), 354-364.

This journal is © The Royal Society of Chemistry 2019

View Article Online

RSC Advances

30 J. Dulnik, P. Denis, P. Sajkiewicz, D. Kolbuk and
E. Choinska, Biodegradation of bicomponent PCL/gelatin
and PCL/collagen nanofibers electrospun from alternative
solvent system, Polym. Degrad. Stab., 2016, 130, 10-21.

31 H. M. Khanlou, A. Sadollah, B. C. Ang, J. H. Kim, S. Talebian
and A. Ghadimi, Prediction and optimization of
electrospinning parameters for polymethyl methacrylate
nanofiber fabrication using response surface methodology
and artificial neural networks, Neural Comput. Appl., 2014,
25(3-4), 767-777.

32 B. T. Pham, M. D. Nguyen, K.-T. T. Bui, I. Prakash, K. Chapi
and D. T. Bui, A novel artificial intelligence approach based
on multi-layer perceptron neural network and biogeography-
based optimization for predicting coefficient of
consolidation of soil, Catena, 2019, 173, 302-311.

33 A. Jahani, Modeling of forest canopy density confusion in
environmental assessment using artificial neural network,
Iranian Journal of Forest and Poplar Research, 2016, 24(2),
310-321.

34 A.Jahani and F. A. Mohammadi, Aesthetic quality modeling
of landscape in urban green space using artificial neural
network, Journal of Natural Environment, 2017, 69(4), 951-
963.

35 A. Jahani, Sycamore failure hazard classification model
(SFHCM): an environmental decision support system
(EDSS) in urban green spaces, Int. J. Environ. Sci. Technol.,
2019, 16(2), 955-964.

36 S. Shafiee and S. Minaei, Combined data mining/NIR
spectroscopy for purity assessment of lime juice, Infrared
Phys. Technol., 2018, 91, 193-199.

37 Q. He, H. Shahabi, A. Shirzadi, S. Li, W. Chen, N. Wang,
et al., Landslide spatial modelling using novel bivariate
statistical based Naive Bayes, RBF Classifier, and RBF
Network machine learning algorithms, Sci. Total Environ.,
2019, 663, 1-15.

38 Y. Yao, L. Dai, F. Jiang, W. Liao, M. Dong and X. Yang,
Kinetic modeling of novel solid desiccant based on PVA-
LiCl electrospun nanofibrous membrane, Polym. Test.,
2017, 64, 183-193.

39 W. Li, Y. Chen, W. Ma, X. Zhang, F. Luan, M. Liu, et al.,
QSAR study of neuraminidase inhibitors based on
heuristic method and radial basis function network, Eur. J.
Med. Chem., 2008, 43(3), 569-576.

40 N. Qu, X. Li, Y. Dou, H. Mi, Y. Guo and Y. Ren,
Nondestructive quantitative analysis of erythromycin
ethylsuccinate powder drug via short-wave near-infrared
spectroscopy combined with radial basis function neural
networks, Eur. J. Pharm. Sci., 2007, 31(3-4), 156-164.

41 L. Wang, Support vector machines: theory and applications,
Springer Science & Business Media, 2005.

42 W.-H. Chen, S.-H. Hsu and H.-P. Shen, Application of SVM
and ANN for intrusion detection, Comput. Oper. Res., 2005,
32(10), 2617-2634.

43 A. Jahani, Sycamore failure hazard risk modeling in urban
green space, Journal of Spatial Analysis Environmental
Hazards, 2017, 3(4), 35-48.

RSC Adv., 2019, 9, 24858-24874 | 24873


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra04927d

Open Access Article. Published on 12 August 2019. Downloaded on 10/30/2025 6:57:19 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

44 S. Akbarifard and B. Bakhtiari, Optimal allocation of water
resources using Water Cycle Algorithm (WCA) (Case study:
Gorganrood basin), Water Engineering, 2018, 11(36), 33-46.

45 S. Rezazadeh, A. Jahani, M. Makhdoum and H. G. Meigooni,
Evaluation of the Strategic Factors of the Management of
Protected Areas Using SWOT Analysis—Case Study:
Bashgol Protected Area-Qazvin Province, Open J. Ecol,
2017, 7(01), 55-68.

46 R. Khatibi, M. A. Ghorbani and F. A. Pourhosseini, Stream
flow predictions using nature-inspired Firefly Algorithms
and a Multiple Model strategy — Directions of innovation
towards next generation practices, Adv. Eng. Inf., 2017, 34,
80-89.

47 M. A. Ghorbani, R. C. Deo, Z. M. Yaseen, M. H. Kashani and

B. Mohammadi, Pan evaporation prediction using a hybrid

multilayer perceptron-firefly algorithm (MLP-FFA) model:

case study in North Iran, Theor. Appl. Climatol., 2018,

133(3-4), 1119-1131.

S. Kim, Y. Seo, M. Rezaie-Balf, O. Kisi, M. A. Ghorbani and

V. P. Singh, Evaluation of daily solar radiation flux using

soft computing approaches based on different

meteorological information: peninsula vs. continent, Theor.

Appl. Climatol., 2018, 137(1-2), 1-20.

S. Niell, F. Jesus, R. Diaz, Y. Mendoza, G. Notte, E. Santos,

et al., Beehives biomonitor pesticides in agroecosystems:

Simple chemical and biological indicators evaluation using

Support Vector Machines (SVM), Ecol. Indicat., 2018, 91,

149-154.

50 F. Tourlomousis and R. C. Chang, Dimensional metrology of
cell-matrix interactions in 3D microscale fibrous substrates,
Procedia CIRP, 2017, 65, 32-37.

51 R. Laref, E. Losson, A. Sava and M. Siadat, On the
optimization of the support vector machine regression
hyperparameters setting for gas sensors array applications,
Chemom. Intell. Lab. Syst., 2019, 184, 22-27.

52 M. M. Abolhasani, K. Shirvanimoghaddam, H. Khayyam,
S. M. Moosavi, N. Zohdi and M. Naebe, Towards predicting
the piezoelectricity and physiochemical properties of the
electrospun P(VDF-TrFE) nanogenerators using an artificial
neural network, Polym. Test., 2018, 66, 178-188.

53 N. Ketabchi, M. Naghibzadeh, M. Adabi, S. S. Esnaashari and
R. Faridi-Majidi, Preparation and optimization of chitosan/
polyethylene oxide nanofiber diameter using artificial
neural networks, Neural Comput. Appl., 2017, 28(11), 3131-
3143.

54 T. Khatti, H. Naderi-Manesh and S. M. Kalantar, Application
of ANN and RSM techniques for modeling electrospinning
process of polycaprolactone, Neural Comput. Appl., 2019,
31(1), 239-248.

55 Neural network modeling of smart nanostructure sensor for
electronic nose application, 6th International Conference on

48

49

24874 | RSC Adv., 2019, 9, 24858-24874

56

57

58

59

60

61

62

63

64

65

66

67

68

View Article Online

Paper

Systems and Control (ICSC), ed. S. Khaldi and Z. Dibi,
Batna, Algeria, 2017.

E. Hosaini-Alvand, H. Mirshekar, M. Taghi Khorasani,
M. Parvazinia and A. Joorabloo, Fabricating and robust
artificial neural network modeling nanoscale polyurethane
fiber using electrospinning method, J. Appl. Polym. Sci.,
2017, 134(30), 45116.

S. Baghersad, S. H. Bahrami, M. R. Mohammadi,
M. R. M. Mojtahedi and P. B. Milan, Development of
biodegradable electrospun gelatin/aloe-vera/poly(e-
caprolactone) hybrid nanofibrous scaffold for application
as skin substitutes, Mater. Sci. Eng. C, 2018, 93, 367-379.
D. Nurwaha, W. Han and X. Wang, Effects of processing
parameters on electrospun fiber morphology, J. Text. Inst.,
2013, 104(4), 419-425.

C. Thompson, G. G. Chase, A. Yarin and D. Reneker, Effects
of parameters on nanofiber diameter determined from
electrospinning model, Polymer, 2007, 48(23), 6913-6922.

S. Theron, E. Zussman and A. Yarin, Experimental
investigation of the governing parameters in the
electrospinning of polymer solutions, Polymer, 2004, 45(6),
2017-2030.

A. Haghi, Electrospun nanofibers
developments, Nova Science Publishers Incorporated, 2009.
M. Costolo, J. Lennhoff, R. Pawle, E. Rietman and A. Stevens,
A nonlinear system model for electrospinning sub-100 nm
polyacrylonitrile fibres, Nanotechnology, 2007, 19(3), 035707.
Q. Shao, R. C. Rowe and P. York, Comparison of neurofuzzy
logic and neural networks in modelling experimental data of
an immediate release tablet formulation, Eur. J. Pharm. Sci.,
2006, 28(5), 394-404.

S. Ramakrishna, An introduction to electrospinning and
nanofibers, World Scientific, 2005.

T. Wu, X. Chen, J. Sha, Y.-Y. Peng, Y.-L. Ma, L.-S. Xie, et al.,
Fabrication of shish-kebab-structured carbon nanotube/
poly(e-caprolactone) composite nanofibers for potential
tissue engineering applications, Rare Met., 2019, 38(1), 64-
72.

G. G. Ahmad, Using artificial neural networks with graphical
user interface to predict the strength of carded cotton yarns,
J. Text. Inst., 2016, 107(3), 386-394.

F. A. Paskiabi, E. Mirzaei, A. Amani, M. A. Shokrgozar,
R. Saber and R. Faridi-Majidi, Optimizing parameters on
alignment of PCL/PGA nanofibrous scaffold: An artificial
neural networks approach, Int. J. Biol. Macromol., 2015, 81,
1089-1097.

S. S. Esnaashari, M. Naghibzadeh, M. Adabi and R. Faridi
Majidi, Evaluation of the Effective Electrospinning
Parameters Controlling Kefiran Nanofibers Diameter Using
Modelling Artificial Neural Networks, Nanomed. Res. J.,
2017, 2(4), 2239-2349.

research:  Recent

This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra04927d

	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies

	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies

	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies
	Application of ANN modeling techniques in the prediction of the diameter of PCL/gelatin nanofibers in environmental and medical studies


