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Coumarin-based fluorescent ‘AND’ logic gate
probes for the detection of homocysteine and
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With this research we set out to develop a number of coumarin-based ‘AND’ logic fluorescence probes that
were capable of detecting a chosen analyte in the presence of HCys. Probe JEG-CAB was constructed by
attaching the ONOO™ reactive unit, benzyl boronate ester, to a HCys/Cys reactive fluorescent probe, CAH.
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Similarly, the core unit CAH was functionalised with the nitroreductase (NTR) reactive p-nitrobenzyl unit to

produce probe JEG-CAN. Both, JEG-CAB and JEG-CAN exhibited a significant fluorescence increase when
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Homocysteine (HCys) is a non-proteinogenic amino acid,
formed from the de-methylation of methionine,' which is then
converted into cysteine (Cys) via a vitamin B, cofactor. Typical
physiological concentrations of HCys range between 5-15 pmol
L~ '.2 However, elevated levels of HCys (>15 umol L™ "), which is
known as hyperhomocysteinemia (hHCys),® have been associ-
ated with pregnancy disorders, Alzheimer's disease, cardiovas-
cular disease and neurodegenerative diseases (NDs).** It is
believed that the main cause of HCys induced toxicity is through
the non-enzymatic modification of proteins. This is achieved
through irreversible covalent attachment of the predominant
metabolite of HCys, homocysteine thiolactone (HTL), to lysine
residues; a phenomenon known as ‘protein N-homo-
cysteinylation’ that results in the loss of a proteins structural
integrity leading to loss of enzymatic function and aggregation.”
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exposed to either HCys and ONOO™ (JEG-CAB) or HCys and NTR (JEG-CAN) thus demonstrating their
effectiveness to function as AND logic gates for HCys and a chosen analyte.

A number of fluorescent sensors have been developed for the
detection of HCys to help improve our understanding of its role in
biological systems.*** However, these fluorescent probes have
focused on the detection of a single biomarker (HCys), however,
processes associated with HCys induced toxicity often involve more
than one biochemical species. For example, it has been reported
that peroxynitrite (ONOO™) and nitric oxide (NO") play a significant
role in HCys-mediated apoptosis in trigeminal sensory neurons'
and HCys has been reported to induce cardiomyocytes cell death
through the generation of ONOO™."** The production of ONOO™ is
believed to be the result of an increased production of superoxide
(0,7) by HCys activating the enzyme NADPH oxidase.** This
increased production of O, " leads to a reduction in the bioavail-
ability of NO" by increasing the formation of ONOO™ (NO" + O,
— ONOO")."” The reported ONOO™ concentrations in vivo are
believed to be approximately 50 uM but, higher concentrations of
500 pM have been found in macrophages.'®* Furthermore, hypoxia
has been reported to facilitate HCys production in vitamin-deficient
diets*® where hypoxia leads to an upregulation of nitroreductase
(NTR) - a reductive enzyme upregulated in cells under hypoxic
stress.”** Therefore, the development of tools that enable an
understanding of the relationship of HCys with these biologically
important species would be highly desirable.

To achieve this, a number of fluorescent probes have been
developed that are capable of detecting two or more analytes.>*
These include AND logic gate based-fluorescence probes, which
require both analytes to work in tandem to produce a measur-
able optical output.>**® In our group, we have developed several
‘AND’ reaction-based probes for the detection of ROS/RNS and
a second analyte.”*** These ‘AND’ logic scaffolds have been used
to detect two analytes within the same biological system.****
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Owing to the pathological role of HCys, we set out to develop
the first example of a fluorescent probe for the detection of
HCys and biological related analyte. Aiming towards that target,
we became interested in a previously reported coumarin-based
fluorescent probe developed by Hong et al. CAH, with a salicy-
laldehyde (Fig. 1).** Salicylaldehyde is a known reactive unit
towards HCys/Cys, therefore we believed CAH could be used as
a scaffold for the development of ‘AND’-based systems for the
detection of HCys/Cys and a second analyte.** In the presence of
HCys, CAH exhibited a ‘turn-on’ fluorescence response which is
attributed to the nucleophilic nature of the nitrogen and sulfur
atoms resulting in thiazine ring formation (Scheme S1, Fig. S1
and S2+t).2*3¢

We believed that CAH was a useful core unit that can be used
to introduce the chosen reactive chemical trigger on the phenol
for the detection of the corresponding analyte with HCys/Cys.
Owing to the relationship between HCys and ONOO™ /NTR, we
set out on the development of a HCys AND ONOO™ probe and
a HCys AND NTR probe.

Therefore, we set out to prepare JEG-CAB and JEG-CAN,
which are able to detect HCys/Cys and peroxynitrite (ONOO™) or
nitroreductase (NTR), respectively (Scheme 1). For JEG-CAB,
a benzyl boronate ester was introduced as a ONOO™ reactive
unit.*” For JEG-CAN, a p-nitrobenzyl group was installed as it is
known to be an effective substrate for NTR.>**°

To afford CAH, compound 2 was synthesized by refluxing
umbelliferone and acetic anhydride at 140 °C. Compound 2 was
then dissolved in trifluoroacetic acid at 0 °C followed by the
addition of hexamethylenetetramine (HMTA). The mixture was
heated to reflux overnight and the solvent was then removed.
The intermediate was then hydrolyzed in H,O for 30 min at 60
°C. Upon isolating CAH, it was then alkylated using 4-bromo-
methylphenylboronic acid pinacol ester and K,CO; in DMF at
r.t. to afford JEG-CAB in 51% yield. JEG-CAN was produced by
alkylating CAH using 4-nitrobenzyl bromide and K,CO; in DMF
at r.t. to give 49% yield (Scheme 1).

We then evaluated the ability of JEG-CAB to detect ONOO™
‘AND’ HCys in PBS buffer solution (10 mM, pH 7.40). The
maximum absorption of JEG-CAB at 336 nm shifted to 323 nm
with the addition of HCys and then slightly shifted to 328 nm
following the addition of ONOO™ (Fig. S3t). As shown in Fig. 2,
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Fig. 1 (a) CAH — a core fluorescent unit that enables the synthesis of
‘AND’ based fluorescent probe for the detection of HCys/Cys and
a second analyte. (b) JEG-CAB enables the detection of HCys/Cys and
(ROS/RNS) while (c) JEG-CAN enables the detection of HCys/Cys and
NTR.
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Scheme 1 Synthesis of target probe JEG-CAB and JEG-CAN.

JEG-CAB was initially non-fluorescent, but the addition of HCys
(1 mM) led to a small increase in fluorescence intensity, the
subsequent additions of ONOO™ (0-24 uM) led to a significant
increase in fluorescence intensity (>17-fold, see Fig. S5t). These
results demonstrated the requirement for both ONOO™ ‘AND’
HCys to obtain a significant turn “on” fluorescence response.

The addition of HCys and ONOO™ were then performed in
reverse where JEG-CAB exhibited a negligible increase in fluo-
rescence intensity upon addition of ONOO™ (16 uM). However,
in a similar manner to that shown in Fig. 2, a large increase in
fluorescence intensity was produced after the subsequent
addition of HCys (0-5.5 mM) (Fig. 3 and S61). LC-MS experi-
ments were carried out to ascertain the reaction mechanism
and the results confirmed the sequential formation of the
thiazine ring in the presence of HCys followed by boronate ester
cleavage in the presence of ONOO™ or vice versa (Scheme S2 and
Fig. S19-S21%).

As expected, probe JEG-CAB was shown to have excellent
selectivity with ONOO™ against other ROS in the presence of
HCys (1 mM) (Fig. S9 and S10f). Furthermore, JEG-CAB
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Fig. 2 Fluorescence spectra of JEG-CAB (15 uM) with addition of
HCys (1 mM) and incubated for 40 min then measured. Followed by
incremental additions of ONOO™ (0—24 uM). The data was obtained in
PBS buffer solution (pH 7.40, 10 mM) at 25 °C. Xex = 371 (bandwidth
20) nm. Dashed line represents JEG-CAB and Hcys addition only. Blue
line represents highest intensity after addition of ONOO™.
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Fig. 3 Fluorescence spectra of JEG-CAB (15 uM) with addition of
ONOO™ (16 uM) and followed by incremental additions of HCys (0-5.5
mM) measurements were taken after 40 min of both additions. The
data was obtained in PBS buffer solution (pH 7.40, 10 mM) at 25 °C. A,
= 371 (bandwidth 20) nm. Dashed line represents JEG-CAB and
ONOO™ addition only. Blue line represents highest intensity after
addition of HCys.

exhibited a high degree of selectivity towards a series of amino
acids where only HCys and Cys led to a fluorescence response in
the presence of ONOO™. This is due to the formation of stable
five or six-membered thiazine rings (Fig. S7 and S8%).>*

We then evaluated the changes in the fluorescence of JEG-
CAN with both HCys and NTR in PBS buffer solution (10 mM,
PH 7.40, containing 1% DMSO). As shown in Fig. 4, addition of
HCys led to a small increase in fluorescence intensity. However,
subsequent addition of NTR (4 pg mL™ ") led to a large time
dependant increase in fluorescence intensity. To ensure both
analytes were required, NTR and NADPH was kept constant (4
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Fig. 4 Fluorescence spectra of JEG-CAN (15 pM) with initial addition
of HCys (2 mM) and incubated for 60 min. Followed by addition of
nitroreductase (4 ng mL™%) and NADPH (400 pM) and measured over
90 min in PBS buffer solution (pH = 7.40, 10 mM, containing 1%
DMSO). Xex = 363 nm. Ex slit: 5 nm and em slit: 5 nm. Dashed line
represents JEG-CAN and HCys addition only. Blue line represents
highest intensity after addition of NTR.
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Fig. 5 Fluorescence spectra of JEG-CAN (15 uM) with initial addition
of nitroreductase (4 ug mL™Y) and NADPH (400 pM) and incubated for
60 min. Followed by addition HCys (2 mM) and measured over 90 min
in PBS buffer solution (pH = 7.40, 10 mM, containing 1% DMSO). Aex =
363 nm. Ex slit: 5 nm and em slit: 5 nm. Dashed line represents JEG-
CAN and NTR addition only. Blue line represents highest intensity after
addition of HCys.

pg mL™" and 400 uM respectively) resulting in a 3.4 fold fluo-
rescence increase (Fig. 5). We attribute the large initial increase
to background fluorescence of NADPH.* NTR then facilitates
reduction of the nitro group of JEG-CAN releasing the core
probe CAH via a fragmentation cascade (Scheme S37).%%*
Subsequent addition of HCys (2.0 mM) led to a 2 fold increase in
fluorescence intensity. Again, LC-MS experiments confirmed
the proposed reaction mechanism (Fig. S227).

Kinetic studies for JEG-CAN with both NTR and HCys were
carried out (Fig. S11-S18tf) where it is clear that JEG-CAN
exhibits a dose dependant fluorescence increase in response of
both HCys and NTR.

Unfortunately, the probes failed to give good data in cells,
which could be due to their short excitation wavelengths or the
extremely low intracellular HCys concentrations (5-15 pM). We
are now pursuing the development ‘AND’ logic fluorescence
probes with longer excitation and emission wavelengths suit-
able for in vitro and in vivo applications.

In summary, we have developed two coumarin-based ‘AND’
logic fluorescence probes (JEG-CAB and JEG-CAN) for the
detection of HCys/Cys and ONOO™ or NTR, respectively. CAH is
a useful platform that enables easy modification for the devel-
opment of ‘AND’-based fluorescent probes for the detection of
HCys/Cys and a second analyte. Both JEG-CAB and JEG-CAN
were shown to be ‘AND’-based fluorescent probes.
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