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Owing to their extremely high surface-to-volume ratio, carbon nanotubes (CNTs) are excellent adsorbents
for the removal of organic pollutants. However, retrieval or collection of the CNTs after adsorption in
existing approaches, which utilize CNTs dispersed in a solution of pollutants, is often more challenging
than the removal of pollutants. In this study, we address this challenge by packaging vertically aligned
CNTs into a PTFE heat-shrink tubing. Insertion of CNTs into the tubing and subsequent thermal
shrinkage densified the CNTs radially by 35% and also reduced wrinkles in the nanotubes. The CNT-
based adsorption tube with a circular cross-section enabled both easy functionalization of CNTs and
facile connection to a source of polluted water, which we demonstrated for the removal of phenolic
compounds. We purified and carboxylated CNTs, by flowing a solution of nitric acid through the tubing,

and obtained adsorption capacities of 115, 124, and 81.2 mg g~* for 0.5 g L™! of phenol, m-cresol, 2-
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Accepted 12th July 2019 chlorophenol, respectively. We attribute the high adsorption capacity of our platform to efficient

adsorbate-CNT interaction within the narrow interstitial channels between the aligned nanotubes. The

DOI: 10.1039/c9ra03948a CNT-based adsorption tubes are highly promising for the simple and efficient removal of phenolic and
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Introduction

The removal of organic wastes is important in mitigating envi-
ronmental pollution. Among various approaches, including
flocculation,' ion exchange,” ozonation,® and reverse-osmosis,*
adsorption has been widely used because of its convenience,
low cost, and high efficiency for capturing organic pollutants.
Previous studies have used charcoal, clay, zeolite, activated
carbon, and silica gel as adsorbents.” Graphene oxide-based
composites have also been reported useful for the removal of
organic contaminants and rare earth elements.*” Carbon
nanotubes (CNTs) have been recently demonstrated to be effi-
cient adsorbents because of their extremely high surface area,
reaching 700-800 m> g~ " for double-walled CNTs,® as well as
their atomically smooth surface causing velocity slip on the
surface.’ The selectivity and capacity of the CNT adsorbents can
also be tuned by chemical modifications.*
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CNT-based adsorbents have typically been prepared in the
form of CNT powders dispersed in solutions of adsorbates.
Owing to the hydrophobicity of CNTs, such a process requires
the use of surfactants or functionalization of the nanotubes,
which may cause undesired degradation of the adsorbent
properties. Retrieval or collection of the powdery CNTs after
adsorption imposes further challenges to utilizing CNTs as
adsorbents.’ Another popular platform for CNT-based adsor-
bents is a membrane consisting of CNTs embedded in a poly-
meric matrix. As the use of only the interior channels of CNTs
suffers from high transmembrane pressure for operation,'
researchers have employed membranes utilizing both the
interior and exterior walls of CNTs, which not only operate at
lower pressure but provide a larger surface area for the effective
adsorption of pollutants.”® However, the membrane platform
requires specific facilities for operation,"' and its fluidic
interface with the adsorbate solution or analytical instruments
is inconvenient due to the planar geometry of the CNT
membrane. Therefore, it is necessary to devise a CNT-based
adsorbent platform that ensures both the efficient adsorption
of organic pollutants and facile connection with other
platforms.

Phenolic compounds are released into the environment
while manufacturing industrial products such as plastic,
leather, paint, and pharmaceuticals. As the phenolic
compounds pose a significant environmental hazard,'®"” their
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concentration in industrial effluents is restricted to less than
0.001 ppm by the World Health Organization (WHO).'® Devel-
oping technologies for the removal of phenolic pollutants is
therefore highly important.

In this study, we developed a CNT-based adsorption tube by
packaging a vertically aligned CNT forest into a heat-shrink
tubing. A tubular platform with a circular cross-section
enables convenient connection with fluids at the upstream,
which we demonstrate by connecting the platform to aqueous
solutions of phenolic compounds. The adsorption capacities for
phenol and m-cresol were increased by 1.5 and 2 times,
respectively, compared with values obtained in other studies.
We attribute such enhanced performance to the alignment of
CNTs in the flow direction as well as to the tight spacing
between CNTs caused by heat-shrinkage, ensuring efficient
adsorbate-adsorbent interaction. The platform also allows the
convenient functionalization of sidewalls of CNTs. Purified and
carboxylated CNTs, prepared by flowing a nitric acid solution
through the adsorption tube, further improved the adsorption
capacity of the adsorption tube. Here, we validated the perfor-
mance of the CNT-based adsorption tube using phenolic
compounds as model pollutants, but numerous studies
reporting excellent adsorption capability of CNTs suggest that
our platform will be applicable to removal of a broad range of
organic and inorganic pollutants.'*°

Materials and methods
Synthesis of vertically aligned carbon nanotubes (VA-CNTSs)

VA-CNTs were synthesized by catalytic chemical vapor deposi-
tion (CVD) as reported previously.> Circular patterns with
diameter of 1.6 mm were made on silicon wafers (DASOM RMS,
Korea) by photolithography. Subsequently, a 10 nm Al,O; film
was deposited by RF sputtering (SRN-120, SORONA, Korea),
followed by the deposition of a 1 nm-thick film of Fe by an e-
beam evaporator (WC-4000, WOOSUNG Hi-vac, Korea). Verti-
cally aligned multi-walled CNTs (MWNTSs) were then synthe-
sized in a custom-made CVD system under a flow of 600 sccm of
argon, 400 sccm of hydrogen, 100 sccm of ethylene, and a trace
amount of water vapor at 820 °C for 30 min. Transmission
electron microscopy (TEM) images showed that the CNTs had
outer and inner diameters of 7.71 + 2.24 nm and 5.25 +
1.57 nm, respectively (Fig. S11).

Fabrication of CNT-based adsorption tubes

A forest of VA-CNTs with a forest diameter of 1.6 mm was
carefully detached from the silicon substrate using tweezers.
The CNT forest was inserted into a PTFE heat-shrink tubing of
diameter 1.7 mm, and heat treatment was performed at 300 °C
or higher using a soldering iron. To purify and carboxylate the
CNTs (Fig. S2 and S3t), the adsorption tube containing pristine
VA-CNTs was connected to a PharMed® BPT tube (Masterflex,
Germany), following which a 20% (w/w) nitric acid solution
(Sigma Aldrich, USA) heated at 80 °C was supplied by a peri-
staltic pump (FH10, Masterflex, Germany) for 1 h. The sche-
matic for the fabrication is shown in Fig. 1.
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Fig. 1 Experimental scheme of fabricating CNT-based adsorption
tube.

Chemicals

Phenol, m-cresol, and 2-chlorophenol were purchased from
Sigma Aldrich (USA). A 0.5 g L™" phenol solution was prepared
by dissolving phenol in deionized (DI) water (Milli-Q, Millipore,
USA) for flow-rate-dependent experiments. For pH-dependent
experiments, 0.5 g L™ phenol, m-cresol, and 2-chlorophenol
solutions were prepared, and the pH was adjusted using 1 M
NaOH and 1 M HCI solutions. For experiments at varied initial
concentrations, 30 ¢ L™ phenol and 20 g L™" m-cresol and 2-
chlorophenol solutions were prepared as stock solutions and
diluted to obtain the desired concentration. The pH values of
the solutions were adjusted based on the results of the pH-
dependent experiments.

Characterization of CNT-based adsorption tubes

The morphology of the CNTs within the adsorption tube was
imaged using a cold field emission scanning electron micros-
copy (FE-SEM, S4800, Hitachi, Japan). Concentrations of
adsorbates during the adsorption experiments were confirmed
using a gas chromatography (GC, 7890B system, Agilent, USA)
with a flame ionization detector and a DB-1 column (Agilent,
USA). The oven temperature was maintained at 200 °C, and the
injection port and detector were maintained at 250 °C and
280 °C, respectively. For GC analysis, 1 uL of the phenol sample
was mixed with 9 uL of acetone, and 3 pL of the m-cresol and 2-
chlorophenol samples were each mixed with 7 pL of acetone.
For quantitative analysis, calibration curves were created by
selecting five points within the concentration range.

This journal is © The Royal Society of Chemistry 2019
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Adsorption experiment

For pre-conditioning the CNT-based adsorption tubes, DI water
was flowed for 10 min and pH-adjusted DI water was flowed for
5 min using the peristaltic pump. The adsorption tubes were
connected to a gas-tight syringe (Hamilton, USA) using a tubing
(Upchurch, USA). This assembled syringe was installed on
a syringe pump (KDS 100, KD Scientific, USA).

The adsorption experiments were conducted using solutions
of phenolic compounds with different concentrations. These
measurements were performed using both pristine and acid-
treated CNTs to study the role of functional groups in the
adsorption process. The flow rate through the adsorption tube
was chosen by measuring the adsorption capacity for phenol at
flow rates ranging from 10 uL h™" to 1000 uL h™* for the pristine
and acid-treated CNTs. In the adsorption experiments, the
target solution was flowed at 1000 pL h™' until the solution
reached the end of the CNTs, following which the flow rate was
changed to a predetermined value. After changing the flow rate,
10 pL of the sample was collected. The adsorption capacity was
calculated by subtracting the final concentration from initial
concentration as per the following equation:

(G- C - )

qg="V x
m

where g is the adsorption capacity, V is the volume of adsorbate
solution, C, is the initial concentration of adsorbates, C is the
final concentration of adsorbates, Cg is the concentration of
adsorbates decreased by the syringe and tubing, and m is the
mass of CNTs. Adsorption on the PTFE tubing was negligible
because doubling the tube length did not change the adsorp-
tion capacity.

Results and discussion

Fig. 2 shows the optical microscopy images and SEM images
acquired to observe the morphological changes in the CNTs.
Upon mechanical densification by heat-shrinkage, the diameter

a Before shrinkage

After shrinkage

Fig. 2 VA-CNTs packaged into a heat-shrink tubing. (a) Optical
images of the VA-CNTs in a heat-shrink tubing before and after the
heat treatment. Scale bar: 5 mm. (b) SEM images of the VA-CNTs in
a heat-shrink tubing before and after the heat treatment. Scale bar: 5
um.
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of the CNT forest decreased from 1.7 mm to 1.1 mm (Fig. 2a),
corresponding to a shrinkage ratio of ~35%. The microscopic
view of the VA-CNTs shows that the CNTs were highly wrinkled
prior to densification, but were aligned better and exhibited
significantly reduced wrinkles after densification (Fig. 2b). The
pore size was estimated based on simple calculation and SEM
images (Fig. S4t). Two types of pores are present in our CNT-
based adsorption tube; the interstitial pores between indi-
vidual CNTs and the pores between bundles of CNTs. For CNTs
with diameter of 7 nm and the inter-tube distance within
a bundle of 0.334 nm, we estimated based on previous
studies**™* that interstitial pores are 2.34 nm in diameter. The
pores between CNT bundles have a large variation in diameter
with the maximum of ~370 nm as determined by SEM images.
Brunauer, Emmett and Teller (BET) analysis (Fig. S5t) shows
a local maximum at pore diameter of 2.9 nm, which corre-
sponds to the estimated interstitial pores. The larger pores in
BET measurement correspond to the ones between CNT
bundles. The average pore diameter was 12.6 nm, and specific
surface area was 317.1 m* g~ .

Fig. 3 shows the dependence of the adsorption capacity of
the pristine and acid-treated CNTs on the flow rates of the
phenol solution. For both types of CNTs, the maximum
adsorption capacity for phenol (0.5 g L") was obtained at 10 uL
h™*; 43.3 mg g for the pristine and 109 mg g * for the acid-
treated CNTs. Here, the linear velocity of the solution at 10 pL
h~ ' was 66 um min*, corresponding to a flux of 3.92 L m >h™ ™.
Reducing the flow rate further would increase the adsorption
capacity but would not be practical due to the extremely low
flux. With the flow rate fixed at 10 uL h™*, the effect of solution
pH was explored at pH values of 3, 5, 7, 9, and 11. For phenol
(0.5 g L") and m-cresol (0.5 g L"), both pristine and acid-
treated CNTs showed an overall decrease in the adsorption
capacity at pH = 9, whereas the adsorption capacity of 2-
chlorophenol (0.5 g L") decreased at pH = 7 (Fig. 4a, left). Such
pH dependence was more pronounced in the acid-treated CNTs
than in the pristine CNTs (Fig. 4a, right). The results can be
explained based on the pK, values of phenol (9.88), m-cresol
(10.09), and 2-chlorophenol (8.48).2°2° The hydroxyl groups in
phenolic compounds become deprotonated and negatively
charged when pH > pK,. At low pH, protonation of CNTs occurs
in the presence of pre-adsorbed oxygen molecules on CNTs,*
and m-m or cation-r interactions*® would dominate the
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Fig.3 Dependence of adsorption capacity of pristine and acid-treated
CNTs on flow rates of phenol solution.
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Fig. 4 Adsorption of phenolic pollutants on CNT-based adsorption
tube. (a) Adsorption capacity of pristine (left) and acid-treated (right)
CNTs at different pH values. (b) Adsorption capacity of pristine (left)
and acid-treated (right) CNTs at varied initial concentrations.

adsorption, resulting in high adsorption capacity. At high pH,
phenolic compounds become negatively charged. For pristine
CNTs, having negligible hydroxyl or carboxyl groups as
confirmed by X-ray photoelectron spectroscopy (XPS) (Fig. S37),
the negative charge would make the cation-m interaction
weaker and decrease the adsorption capacity. Acid-treated CNTs
become negatively charged by the deprotonation of carboxyl
groups, and an electrostatic repulsion between CNTs and
phenolic compounds decreases the adsorption capacity,*3*
which also explains why the adsorption capacity of acid-treated
CNTs is more pH-sensitive. We also considered the effect of
hydrophobic interaction in our system. According to the octa-
nol-water partition coefficient (2-chlorophenol > m-cresol >
phenol), 2-chlorophenol is the most hydrophobic among the
three adsorbates, but the adsorption capacity of CNTs was the
highest for m-cresol (m-cresol > phenol > 2-chlorophenol) as
shown in Table S1.t The result suggests that hydrophobic
interaction is not significant.

To further confirm that the acid treatment improves the
performance of adsorption tube, the adsorption capacity was
measured at varied adsorbate concentrations while maintaining
the pH at 5 for phenol and m-cresol and pH at 7 for 2-chlor-
ophenol. Adsorption isotherms dictate that the adsorption
capacity increase at higher adsorbate concentrations until all
the adsorption sites on CNTs become occupied. Note that we
estimated the adsorption capacity by comparing the amount of
adsorbates before and after adsorption. Hence, when all the
sites are occupied and no further adsorption occurs, the
adsorption capacity cannot be estimated. Fig. 4b (left) shows the
adsorption capacities of pristine VA-CNTs for the three phenolic
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compounds at varied initial concentrations. The values
increased at higher concentrations as expected, and the
maximum measurable adsorption capacities were 589 mg g,
558 mg g ', and 483 mg g~ * for phenol, m-cresol, and 2-chlor-
ophenol, respectively. For the acid-treated CNTs, the adsorption
capacity was significantly higher for all the compounds,
reaching 1120 mg g~ ' at 30 g L™ * for phenol, 1100 mg g 'at20 g
L~" for m-cresol, and 748 mg g~ " at 20 g L ™" for 2-chlorophenol
(Fig. 4D, right). For m-cresol and 2-chlorophenol, the adsorption
capacity above 20 g L™ could not be tested because of their
limited solubility in water.

The enhancement in adsorption capacity by the acid treat-
ment is opposite to that observed in previous studies, which
reported that nitric acid treatment formed -COOH and -OH
functional groups on the CNTs. Such functionalization caused
a higher affinity of CNTs to water molecules than to adsorbates,
thus decreasing the adsorption capacity of the CNTs.**?%¢
However, the acid treatment in this study was conducted under
mild conditions using 20% (w/w) and 80 °C nitric acid. This
mild acid treatment focuses more on the purification of CNTs
rather than their heavy functionalization, as supported by
previous studies.’””* Purification removes amorphous carbons
and catalysts, thereby exposing adsorption sites on CNTs and
improving the adsorption capacity (Fig. S67).

Note that both the interior and the exterior of CNTs are
available for molecular adsorption, but the pressure drop is
expected to be much higher across the interior than the exterior.
Previous studies reported that the minimal pressure required
for water to enter and exit the interior of CNTs is 120 bar and
1000 bar, respectively.***' In a separate measurement per-
formed by us but not included in this work, we did not find any
evidence of water flow through the interior of CNTs embedded
into an epoxy matrix at 1 bar across the nanotubes. Hence, we
concluded that most of the adsorption should take place on the
exterior of CNTs.

The long-term stability and re-usability of the CNT-based
adsorption tube need to be considered. The CNT-based
adsorption tube in dry state can be stored indefinitely without
any degradation of its performance. CNTs used in our study vary
between freshly synthesized and 6 month-old, and we did not
observe any difference in the adsorption capacity. However,
once the CNTs are wetted by liquid, either for acid treatment or
for adsorption experiments, nanotubes need to be stored in
a solvent to prevent their drying and subsequent densification.
In densified CNTs, channeling through enlarged pores between
CNT bundles may dominate the flow, thereby significantly
lowering the adsorption capacity. As for the re-usability, our
CNT-based adsorption tube is considered disposable because of
low cost and convenience of its fabrication. When necessary,
however, it would be possible to regenerate CNTs by heat
treatment or rinse with solvent.****

Finally, the adsorption capacities of the CNT-based adsorp-
tion tubes were compared with those from previous studies
(Table 1).**° The CNT-based adsorption tubes showed
outstanding adsorption capacities for phenolic compounds. As
for the adsorption of phenol and m-cresol, the pristine CNTs in
this study showed a comparable performance to chemically

This journal is © The Royal Society of Chemistry 2019
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Table 1 Comparison of adsorption capacity of CNT-based adsorbents for phenolic compounds between previous studies and this study

Optimized experimental condition

Adsorption capacity

Adsorbate Adsorbent Solution condition Initial conc. (mg L") (mgg™ Ref.
Phenol HNO; & H,SO, purified MWNTSs pH 4.65 50 64.60 45
HNO; & KMnO, MWNTSs 25 °C 500 76.92 46
KOH etch + annealed CNTs pH 6, 22 °C 10-1750 64.10 47
MWNTSs 25 °C — 64.56 (Gmax) 48
Oxidized SWNTs 25 °C 10-60 30.86 30
Pristine MWNTs pPH5 500 71.6 This work
HNO;-treated MWNTSs pH 5 500 115 This work
p-Cresol Al,O5-coated MWNT — 25-200 54.05 49
m-Cresol Pristine MWNTs PH 5 500 85.4 This work
HNO;-treated MWNTS PH 5 500 124 This work
2-Chlorophenol NH;-treated MWNTSs 25°C 50-500 110.3 50
Activated CNTSs 22 +1°C, pH 6 10-1750 239.8 (max) 47
SWNTs 25+ 3°C 2 24.9 (¢max) 34
Pristine MWNTs PH 7 500 65.9 This work
HNO;-treated MWNTS PH 7 500 81.2 This work

modified CNTs reported previously. When the CNTs in our
adsorption tube were acid-treated, the adsorption capacity
increased by 1.5 times for phenol and 2.3 times for m-cresol,
compared to the best values obtained under similar conditions
in previous studies. We attribute such a high adsorption
capacity to the vertical alignment of CNTs and their densifica-
tion by heat-shrinkage, which create a large number of
adsorption sites on the inner and outer walls, groove sites, and
interstitial channels between CNTs. In particular, the number
of interstitial channels is drastically higher in the densified VA-
CNTs than in the individual or randomly entangled CNTs in
other systems.** Studies on gas-phase adsorption reported that
aligned CNTs have higher adsorption capacities than aggre-
gated CNTs.*>* The results are further supported by Monte
Carlo simulations on the adsorption capacity of ethyl benzene,
which decreased as the distance between CNTs increased.>

Thus, we validated the performance of the CNT-based
adsorption tube using phenolic compounds as model pollut-
ants. Numerous studies reporting the excellent adsorption
capability of CNTs suggest that our platform will be applicable
to the removal of a wide range of organic and inorganic
pollutants.>** Note however, that in terms of 2-chlorophenol
adsorption, the performance of our adsorption tube was not
impressive, but can be improved by appropriate
functionalization.

Conclusions

In this study, CNT-based adsorption tubes aligned with the flow
direction were fabricated by packaging VA-CNTs into a PTFE
heat-shrink tubing, which removed wrinkles in the nanotubes
and helped enhance their adsorption capacity for phenolic
compounds. The adsorption tube, which has a tubular structure
with circular cross-section, can be easily connected not only
with adsorbate solutions but with chemicals for functionaliza-
tion of CNTs. A mild treatment with nitric acid greatly improved
the adsorption capacity of the adsorption tube, by purifying

This journal is © The Royal Society of Chemistry 2019

CNTs and making them more hydrophilic. Compared with
previously reported CNT-based adsorbents, in the form of CNT
membranes or CNTs dispersed in adsorbate solution, our
platform has advantages in terms of high adsorption capacity as
well as the convenience of forming a fluidic interface with other
platforms. This adsorption tube prepared by the heat-shrinkage
of VA-CNTs has immense potential for further optimization,
and will be applicable to the removal of a wide range of organic
and inorganic pollutants with high efficiency and convenience.
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