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Efficient solid-state emission and reversible
mechanofluorochromism of a tetraphenylethene-
pyrene-based B-diketonate boron complext

Ting Sun,®® Feng Zhao, (2 *3* Gaolei Xi, Jian Gong,® Mengyu Sun,® Chang Dong®

and Jingyi Qiu®

A new twisted donor—acceptor (D—A) dye (BF,-TP) that was composed of tetraphenylethene and pyrene
connected with a B-diketonate boron moiety has been synthesized and characterized. Such a dye showed
unique intramolecular charge transfer (ICT) features, which were evidenced by spectral analysis and
BF,-TP exhibited an
mechanofluorochromic (MFC) behavior. Upon grinding with a spatula, the as-prepared powder sample
illustrated a remarkable red shift of 62 nm, with considerable color contrast from yellow (562 nm) to orange
red (624 nm). lts fluorescence color can be reversibly switched by repeating both the grinding—fuming and
grinding—annealing processes. The mechanochromism is attributed to the phase transformation between

theoretical  calculations. More importantly, solid samples obvious

amorphous and crystalline states. The results obtained would be helpful for designing novel MFC materials.

Introduction

Mechanofluorochromic (MFC) dyes refer to a kind of “smart”
material that exhibits tunable and switchable solid state fluo-
rescence in response to mechanical stimuli including pressing,
grinding, crushing, or rubbing, and can be reverted to the
original state by recrystallization, thermal treatment, or expo-
sure to solvent vapors.™” Currently, these dyes have sparked
tremendous interest owning to their unique properties and
promising applications in the fields of optoelectronic devices,?
mechanical sensors,® security ink,” rewritable media,® and
fluorescent switches,” and so on. MFC dyes convert the fluo-
rescence color via changing their chemical structure or aggre-
gate morphology.® The former is a general method to alter the
emission of a dye, but obtain limited success because of the
irreversible and incomplete chemical reactions in the
condensed phase. Most of the reported MFC dyes, the fluores-
cence color change are achieved through switch of their
morphology under mechanical stimuli. These dyes can convert
from crystal phase to amorphous state, or between two different
crystalline phases upon modification of the intermolecular
interactions, and produce a meta-stable state before and after
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the application of mechanical forces.**® Generally, the dyes
possess nonplanar m-conjugated structures and hence afford
a looser molecular packing pattern in the crystal states, and can
be easily damaged under external stimuli. As is well known, the
derivatives of tetraphenylethene,** triphenylacrylonitrile,"
triphenylamine,” and cyanoethylene,* as well as some boron
complexes™ are preferentially considered to act as MFC mate-
rials. Although the mechanisms for mechanochromism are
somewhat clear, MFC dyes with extremely large MFC shifts (>60
nm) and obvious color contrast under simple mechanical force
are still rare.” Lots of MFC materials, showing the MFC shifts
within tens of nanometers, have been synthesized.'**'*'®* MFC
materials with bright solid-state emission and considerable
color contrast are crucial for their usage in real world."” It is very
important to rationally design and synthesize such new dyes
with excellent MFC performances.

As one class of typical fluorescent dyes, B-diketonate boron
complexes display impressive optical properties including high
fluorescence quantum yields in the solution and in the solid
states, large molar extinction coefficients, electron mobilities,
and high electron affinities.*®* Therefore, they possess potential
applications in laser dyes, imaging cells fluorophores, organic
field effect transistors, and organic light emitting diodes
(OLEDs).** Recent studies show that some B-diketonate boron
complexes exhibited excellent MFC behavior, and numerous
derivatives belonging to this family have been described. For
example, Nguyen and co-workers* prepared a series of B-diket-
onate boron derivatives, and the photophysical properties of
these dyes were reported to be related to the alkyl chains length.
Gao et al”*? synthesized a series of P-diketonate boron
complexes, the excellent photoluminescence properties in the
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solid state and sensitive to mechanical forces can generally be
observed. Usually, the dyes with moderate intramolecular charge
transfer (ICT) properties exhibit high MFC capability. Moreover,
it is worth mentioning that the extended w-conjugated dyes
constructed by two m-conjugated structures intersecting at a -
diketonate boron core have recently attracted significant interest
since their rigid m-conjugated skeletons bring a range of desired
attributes. This phenomenon compelled us to explore novel MFC
dyes based on B-diketonate boron complexes. In addition, pyrene
derivatives are considered to be excellent luminogens due to their
polarity sensitive vibronic emission, high charge carrier mobility,
long fluorescence lifetime, chemical stability and also possessing
large planar surface through effective - stacking between the
molecules.”” Herein, we designed and synthesized a novel D-A
type MFC dye BF,-TP, which composed of two chromophores of
a pyrene unit and a tetraphenylethene moiety (Scheme 1). The
steric hindrance comes from the two bulky substituents attach-
ing on the central PB-diketonate boron core endows the
compound with a high torsional molecular conformation,
resulting in effective inhibition of close m-packing and
enhancement of emission quantum yields in the solid states.
Results demonstrated that BF,-TP gave strong emission in solu-
tion and in the solid state. In addition, BF,-TP exhibit reversible
mechanofluorochromic behavior upon the treatment of
grinding/fuming or thermal annealing, and the emission color
changed between yellow and orange red with large MFC shifts
(AAmax = 62 nm), showing a remarkable mechanochromism.
These results are important for the development of novel MFC
dyes that respond to mechanical stimulation, and extending the
viability of MFC function into organic fluorescent materials.

Experimental
Materials and measurements

'H and "*C NMR spectra were recorded on a Bruker-Avance 400
MHz spectrometer by using CDCl; as the solvents. Elemental
analyses were performed with a PerkinElmer 240C elemental
analyzer by investigation of C, H, and N. MS spectra were
measured on Agilent Technologies 6224 spectrometer and
MALDI-TOF MS Performance (Shimadzu, Japan). UV-visible
spectra were carried out on a Shimadzu UV-2550 spectropho-
tometer. Fluorescence measurements were measured on a Cary
Eclipse = Fluorescence Spectrophotometer. The absolute

BF,-TP

Scheme 1 The molecular structure of BF,-TP.
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fluorescence quantum yield for the solid sample was obtained
using an Edinburgh FLS920 steady state spectrometer using an
integrating sphere. Density functional theory (DFT) calculations
were done employing the Gaussian 09W suit of programs at the
B3LYP/6-31G(d) level. XRD patterns were measured on a Bruker
D8 Focus Powder X-ray diffraction instrument.

Synthesis

Tetrahydrofuran (THF) was dried over sodium and distilled
under nitrogen immediately prior to use. Dichloromethane
(DCM) was distilled under normal pressure over sodium hydride
under nitrogen before use. The other chemicals were used as
received without further purification. Column chromatography
was carried out on silica (200-300 mesh). Compounds 3 and 5
were synthesized according to the literatures.>>*®

The synthetic routes for f-diketonate boron complex BF,-TP
were shown in Scheme 2. Firstly, the tetraphenylethene deriv-
ative 3 was synthesized by Suzuki-Miyaura coupling between 1
and boric acid 2. Then the key intermediate 6 was obtained
through the Friedel-Crafts alkylation reaction and the next
Friedel-Crafts acyl reaction by using pyrene 4 as the starting
material. Finally, the target molecules BF,-TP was prepared
between 3 and 6 in the presence of sodium hydride in anhy-
drous THF followed by complexation with boron trifluoride
diethyl etherate, to give a yield of 62%. BF,-TP has good solu-
bility in common organic solvents such as THF, DCM, chloro-
form, and toluene, but show poor solubility in aliphatic
hydrocarbon solvents (such as cyclohexane and n-hexane) and
protic solvents (such as methanol and ethanol). The interme-
diates and the final products have been carefully purified and
fully characterized by "H and *C NMR, MALDI-TOF mass
spectrometry, and C, H, N elemental analyses.

1-(2,7-Di-tert-butylpyren-4-yl)ethanone (6)

AlICl; (12.2 g, 91.8 mmol) is added in 1,2-dichloroethane (100 mL)
followed by the addition of acetyl chloride (7.2 g, 91.8 mmol)
slowly over 30 min at 5 °C. Compound 5 (9.42 g, 30.0 mmol) in
1,2-dichloroethane (40 mL) was then added slowly, and the
reaction mixture was stirred for 2 h at room temperature and kept
for 2 h at 35 °C. Then the mixture was cooled to room

: xCOOCH;

B(OH)Z
Pd(PPhy)s, K,CO3, Bu.NBr
Toluene, H,0, reflux, 12 h
cczocu3

_tBuCl 0 _CHcoc Alck; “
AICI3, ,8h ,‘O cncuzcuzm 4h O
4 5

1)3, NaH, THF, reflux, 12 g 7p
2) BF3Et,0, CH,Cl,, reflux, 4h

Scheme 2 Synthetic routes of BF,-TP.
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temperature and the solvent was removed under reduced pres-
sure. An orange solid appeared after dilute HCI (200 mL) was
added to the flask. The solid is filtered and washed with water,
followed by recrystallization from ethanol to give a white solid
(9.63 g). Yield 90% mp 133.0-135.0 °C. "H NMR (400 MHz, CDCl,)
6 9.25 (s, 1H), 8.61 (s, 1H), 8.30-8.25 (m, 3H), 8.08-8.01 (m, 2H),
2.96 (s, 3H), 1.61 (s, 18H) (Fig. $37); *C NMR (100 MHz, CDCl;)
6 201.93, 149.50, 149.06, 134.73, 132.37, 130.78, 128.89, 128.33,
127.12, 126.69, 124.53, 123.90, 123.66, 123.52, 122.93, 121.88,
35.50, 35.22, 31.94, 31.88, 29.92 (Fig. S4t1); TOF LC/MS: m/z:
calculated for C,6H,30O: 356.2140; found: 356.2132 (Fig. S57).
Anal. calcd. for C,3H,,0: C 87.60, H 7.92; found: C 87.71, H 7.83.

6-(2,7-Di-tert-butylpyren-4-yl)-2,2-difluoro-4-(4-(1,2,2-triphenyl-
vinyl)phenyl)-2H-1,3,2-dioxaborinin-1-ium-2-uide (BF,-TP)

A mixture of 3 (2.00 g, 5.13 mmol) and 6 (1.66 g, 4.66 mmol) was
dissolved in dry THF (80 mL), and then NaH (60%, 1.03 g, 25.75
mmol) was added. Under an atmosphere of nitrogen, the
mixture was refluxed with stirring for 24 h. After the reaction
was over, the mixture was cooled to room temperature. And
then the mixture was acidified with dilute HCl and extracted
with DCM. After solvent removal, the solid residue was dried
under vacuum. The obtained solid was dissolved in dry DCM (80
mL), and boron trifluoride diethyl etherate (2.95 mL, 3.31 g,
23.30 mmol) was added to the solution. The mixture was stirred
for 24 h under an atmosphere of nitrogen at room temperature.
Then the mixture was poured into the water, and extracted with
DCM. After solvent removal, the crude product was purified by
column chromatography (silica gel, DCM/petroleum ether, v/v
= 2/3), affording a yellowish green solid (2.31 g). Yield 65%.
"H NMR (400 MHz, CDCI;) 6 8.94 (s, 1H), 8.65 (s, 1H), 8.34 (d,] =
5.2 Hz, 2H), 8.29 (s, 1H), 8.10-8.04 (m, 2H), 7.98 (d, J = 8.4 Hz,
2H), 7.25 (d,J = 8.4 Hz, 3H), 7.18-7.15 (m, 9H), 7.06 (s, 6H), 1.60
(s, 9H), 1.59 (s, 9H) (Fig. S61); "*C NMR (100 MHz, CDCl,)
0 186.69, 182.30, 151.96, 149.65, 149.50, 143.91, 142.88, 142.64,
139.50, 133.17, 132.20, 131.33, 131.23, 131.09, 129.65, 128.73,
128.54, 128.27, 128.05, 127.77, 127.33, 127.05, 126.62, 125.45,
124.34, 123.43, 121.09, 98.10, 35.54, 35.27, 31.84 (Fig. S81).
HRMS (MALDI-TOF) m/z: [M + H]" caled. for Cs3H,6BF,0,:
763.3559; found: 763.7036 (Fig. S91). Anal. caled. for
Cs3H,sBF,0,: C 83.46, H 5.95; found: C 83.54, H 5.81.

Preparation of the samples for mechanofluorochromism study

The grinding powders were obtained by grinding the as-
prepared powder with a pestle in the mortar. The fumed
samples were prepared by fuming the grinding powder with
DCM for 2 min. The annealing samples were obtained by
heating the ground powders at 200 °C for 5 min.

Result and discussion
Absorption and fluorescence studies

Optical properties of the compound BF,-TP in solvents with
different polarities was investigated by UV-vis and fluorescence
spectroscopy. The UV-vis absorption and fluorescence emission
spectra are demonstrated in Fig. 1, and the corresponding

This journal is © The Royal Society of Chemistry 2019
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photophysical data are summarized in Table S1.1 From the UV-
vis absorption spectra (Fig. 1a), a relative strong absorption
band at A = 280-360 nm was attributed to m—m* local electron
transitions of the conjugate system, which did not shift with
increasing polarity of the deduced from the solvent-dependent
absorption spectra. For example, in hexane, the CT band of
BF,-TP centered at 411 nm and red-shifted gradually with
increasing solvent polarity, its emission band reached 429 nm
in DMSO. Form the fluorescence spectra (Fig. 1b), along with
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Fig. 1 Normalized UV-vis absorption (a) and PL (b, Aex = 420 nm)
spectra of BF,-TP in different solvents (1.0 x 10~> mol L™). (c) Lip-
pert—Mataga plot: fluorescence emission maximum energy of BF,-TP
as a function of solvent polarity.
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the increase of the polarity of the solvent, the emission bands of
BF,-TP red-shifted rapidly and became broad. In the same time,
the large Stokes shift is also observed. For example, BF,-TP
emitted blue light appeared at 507 nm in hexane and green light
located at 645 nm in DMSO with the band broadening, and was
accompanying with large Stokes shift from 4548 cm ™" in hexane
to 7806 cm ™! in DMSO. Combining the obvious transition to the
low-energy direction, the significant Stokes shifts, and the
extension of the emission bands indicated that ICT transitions
of BF,-TP take place in polar solvents.? It should be mentioned
that the fluorescence spectra of BF,-TP exhibited vibrational
structures in non-polar solvents, such as hexane and cyclo-
hexane, which recommends two separated close-lying excited
states. This phenomenon suggests that the locally excited (LE)
state is responsible for the emission of BF,-TP in nonpolar
solvents.?*® The effects of solvents on the emission features can
be further evaluated by the relationship between the emission
maximum energy and a function of the Lippert solvent polarity
(Lippert-Mataga). It illustrated the conformational change of
the excited state surface prior to the emission.* As shown in
Fig. 1c, the slope can be used to assess the change in dipole
moment upon excitation, and the break in the linear relation-
ship suggests the existence of two different excited states. The
deviation of the emission maximum energy in cyclohexane and
hexane from the linear relationship followed by those in other
solvents are in support of the fact that the emission of BF,-TP
origins from the LE state in non-polar solvents, and from the
ICT state in polar solvents.**> Moreover, the fluorescence
quantum yield (@) of BF,-TP (Table S1t) showed a notable
decrease with the increasing solvent polarity. The @ value was
from 0.369 to 0.083 when the solvent was changed from apolar
(e.g., hexane) to highly polar (e.g., DMSO), further confirming
unique ICT nature of compound BF,-TP.

To gain a better insight into optical properties of BF,-TP,
density functional theory (DFT) calculations was performed at the
B3LYP/6-31G(d) level basis in the Gaussian 09W program
package. As shown in Fig. 2, the HOMO is delocalized on the tert-
butyl substituted pyrene fragment, while the LUMO is mainly
distributed over the dioxaborine ring, as well as the tetraphe-
nylethylene group. Thus, it can be inferred from the orbital
distribution pattern that ICT occurs largely from the tert-butyl
substituted pyrene unit to the dioxaborine ring regardless of
whether tetraphenylethylene was present as a competing donor
unit. In addition, the geometry optimized structures of BF,-TP
demonstrate highly twisted spatial conformation. The dihedral
angles between tert-butyl substituted pyrene (B) and the dioxa-
borine ring (C) is 43.7°, and the dihedral angles between the side
benzene rings (A) in tetraphenylethene and the dioxaborine ring
(C) is 16.9°. Such torsional angles in BF,-TP will prevent the
molecules from packing in a close -7 stacking mode in the
solid state and thus may endow it with MFC feature.

Mechanofluorochromic properties

The crude product was purified on a silica-gel column to afford
an orange powder. The BF,-TP powder demonstrated strong
yellow emissions under 365 nm UV-light illumination, the
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Fig. 2 The frontier orbital contributions of BF,-TP calculated by DFT
in Gaussian 09 at the B3LYP/6-31G(d) level.

quantum efficiencies of the as-prepared solid states was 0.46.
Interestingly, after grinding with a mortar and pestle, the
powder changed its emission color into orange red, demon-
strating a property of mechanochromic fluorescence. After
exposure to the vapor of DCM for 2 min, the emission color of
the ground powder changed back to initial yellow and the as-
prepared powder obtained again. The mechano-
fluorochromic process is reproducible, which meant that the
fluorescence transformation between yellow and orange red is
reversible switched. As shown in Fig. S1,T the dye displayed
excellent reversibility with almost no fatigue in response
throughout the six cycles. The PL spectra measurement was
applied to monitor such a reversible color switching under
external stimuli. As depicted in Fig. 3a, the emission spectrum
of BF,-TP is obvious with the initial emission centered at A,
562 nm shifting to 624 nm after the mechanical grinding; that
is, a spectral red-shift of 62 nm occurred simply by grinding.
After fuming treatment, the emission peak of the ground solid
blue-shifted to the initial wavelength. It is noted that the vapor
fuming progress can be replaced by thermal annealing. When
the ground sample of BF,-TP is annealed at 200 °C for 5 min, it
could recover to the emission color of the original state corre-
sponding as-prepared sample. At the same time, the recovery of
the emission spectrum of BF,-TP could also be observed by
heating its ground sample.

was

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 (a) Normalized fluorescent spectra of BF,-TP in different solid-

states: as-synthesized, grinding and fuming, Ae, = 370 nm. (b) Photos
of BF,-TP color changes under grinding and fuming stimuli.

The experiment of time-resolved fluorescence was carried
out (Fig. S2at) and the corresponding data are illustrated in
Table S2.f The fluorescence decay curves were fitted by
a double-exponential decay for BF,-TP in solid states, which
revealed the mixture of two distinguished emission states in the
amorphous phase. The fluorescent lifetime of ground sample
and as-prepared sample were 7.57 ns and 3.61 ns, respectively.
The longer lifetime of 7.57 ns indicted the formation of exci-
mers after pressing.

Switchable mechanochromic dye of BF,-TP with a large shift
of 62 nm prompts us to evaluate it as a kind of smart material
with numerous potential applications. An example of such
applications is demonstrated in Fig. 4, after being simply
pressed by streaking a metal spatula on a piece filter paper with
sprayed as-synthesized powder, an orange red letter appeared
on the yellow background due to the amorphization of BF,-TP
in the written “A” area under UV light illumination (Fig. 4b).
Interestingly, after thermal annealing or vapor fuming the letter
“A” can be merged in the background because of the crystalli-
zation of BF,-TP in area of “A” (Fig. 4c), and the clear orange red
letter “B” can be written again (Fig. 4d). Such writing and
erasing process can be repeated many times through repeating
writing and fuming processes. The letters are invisible under
room lighting but become visible with UV illumination. On the
basis of its excellent MFC properties, BF,-TP may be utilized as
optical recording materials.

With the aim of getting insight into the mechano-induced
emission color changes, powder X-ray diffraction (XRD) was
used to study the crystalline states (Fig. 5a). Many sharp and
intense reflection peaks were observed in the diffraction pattern

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Photos of the luminescence writing/erasing process of BF,-TP
on filter papers under 365 nm UV light illumination: (a) fluorescence
emission of as-prepared powder; (b) the letter of "A" was written with
a spatula; (c) the paper was erased by vapor fuming or thermal
annealing; (d) rewritable the letter of “B” generated with a spatula.

of the untreated sample, indicating that the as-prepared BF,-TP
is well-ordered arrangement crystalline structure. In sharp
contrast, all of the diffraction peaks displays diffuse and
depressed reflections after grinding, verifying that the ground
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Fig.5 (a) XRD patterns of BF,-TP in different solid states: as-prepared,

grinding, annealing and fuming. (b) DSC curves of BF,-TP in the
ground and the crystalline states.
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sample is amorphous. Furthermore, when fumed with DCM or
annealed, sharp reflection peaks resemble to those of the as
prepared powder emerge out, suggesting the ground sample
can be readily converted back into an ordered crystalline lattice.
Accordingly to these results, the mechanochromism of BF,-TP
should be attributed to the crystalline-amorphous phase
transformations, which greatly influences photophysical prop-
erties. Analysis by differential scanning calorimetry (DSC) also
substantiates the above claim, and the results are presented in
Fig. 5b. The as-prepared sample of BF,-TP demonstrated
a strong endothermic peak at 362 °C, which corresponded to its
melt point. After grinding, there are two cold-crystallization
transition peaks at 167.0 °C and 195.0 °C before melting, indi-
cating that a metastable aggregation structure in the ground
sample is produced, and it would transfer to the more-stable
state. After treatment by annealing at 200 °C for 5 min or
solvent fuming by DCM for 2 min, the cold-crystallization
transitions vanish and the shapes of the DSC curve is very
similar to that obtain from the as-prepared sample. These
results further confirm that the grinding treatment causes the
transition in morphology of BF,-TP, meanwhile, the
morphology transition can easily be recovered through fuming
or annealing treatment.

Conclusion

In this work, a novel D-A structured compound BF,-TP showing
typical ICT characteristics has been successfully obtained and
potential application of BF,-TP has also been investigated. The
emission color of BF,-TP powders changed from initial yellow to
final orange red under simple mechanical force, accompanied
with the remarkable spectral shift of 62 nm. Moreover, the
spectroscopic properties and morphological structures of the
solid BF,-TP can be smartly switched in the grinding-heating or
grinding-fuming fluorochromic process. The result indicates
that the MFC behavior of BF,-TP is attributed to the reversible
phase transformation between crystal and amorphous states.
Thus, these intriguing properties enable BF,-TP for various
potential applications in security inks, rewritable sensors, and
light-emitting devices.
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