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The reversible cross-linking of nucleic acids has been investi-
gated for use in biochemical and medicinal studies. For
instance, a cross-linking reaction through imine bonds that
reversibly formed at lower temperatures and dissociated at
higher temperatures has been reported.' Metal ion-mediated
base pairs have recently attracted interest. In DNA and RNA
duplexes, metal ions are placed between bases, and coordina-
tion bonds between metal ions and bases stabilize the
duplexes.” Metal ion-mediated base pairs are reversibly formed
at lower temperatures and dissociated at higher temperatures.
Oligonucleotides with thiol tethers have been used to cross-link
duplexes and hairpin structures by forming disulfide bonds.?
Disulfide bonds are reversibly formed by oxidization and
dissociated by reduction. Disulfide bond formation between 4-
thiouracil (*U) and 6-thiohypoxanthine (°*H), and between *SU
and 6-thioguanine (°G), has been reported.* Disulfide bond
formation between *SU and °°G in duplexes has been inves-
tigated¥ and applied for mechanistic studies of flap endonu-
cleases.” In the reports, I, (an oxidizing reagent) was used to
accelerate disulfide bond formation. In this paper, we report
a novel crystal structure of a DNA duplex containing two
consecutive cross-linked **G-°5G pairs. Notably, disulfide bond
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ions and glutathione. To our knowledge, this is the first reaction in which metal ions efficiently
accelerated disulfide bond formation between thio-bases in duplexes.

formation between 6-thioguanine bases in a duplex was accel-
erated in the presence of Cu(u) ions.

A DNA dodecamer (ODN-I) with a pseudo-self-
complementary sequence d(CGCGAXXBCGCG) (X = %G, B =
5-bromouracil) formed a duplex (duplex-I) consisting of C-G
and A-B Watson-Crick base pairs and X-X pairs (Fig. 1). The B
residue was incorporated in ODN-I to apply single-wavelength
anomalous dispersion (SAD) method for crystal structure
analysis.

Thiobases, including 2-thiothymine (*T), 4-thiothymine
(*T), and 6-thioguanine (°°G), form metallo-base pairs.®
Duplexes containing *5T pairs and **T pairs are stabilized in the
presence of Hg(u) and Ag(i) ions. The formation of the *5T-
Ag(1),="*5T pair in which two Ag(1) ions are placed between *5T
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Fig. 1 A scheme for preparation of a DNA duplex containing 6-thio-
guanine—6-thioguanine disulfides.
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bases was revealed by a crystal structure.” Additionally, metal
ion binding of *5G has been reported.***¢ Consequently, it is
expected that duplex-I, which contains *>G-M-°5G metallo-base
pairs, could be formed by mixing metal ions and ODN-L
However, in the presence of Cu(u) ions, we observed crystals of
duplex-Iss including cross-linked ®G-°5G pairs.

Prior to crystallization, 2 mM ODN-1 was mixed with 2 mM
CuCl, at room temperature. Single crystals of ODN-1 were ob-
tained for a few days in a droplet prepared by merging 1 ul of
ODN-1/Cu(u) mixed solution and 1 ul of crystallization solution
containing 50 mM MOPS (pH 7.0), 10 mM spermine, 250 mM
ammonium nitrate, and 10% 2-methyl-2,4-pentanediol, which
was equilibrated against 250 pl of 40% 2-methyl-2,4-
pentanediol. In the crystal, two DNA fragments formed an
antiparallel right-handed helix, as expected (Fig. 2a). The DNA
duplex contains seven canonical Watson-Crick G-C and two
A-B base pairs. At one end, two complementary residues, 5’-end
C1 and 3’-end G12/, do not form Watson-Crick G-C base pairs,
bulge out from the helix, and are involved in crystal packing
contact (Fig. 2b). At the center of the duplex, two contiguous 6-
thioG residues, X6 and X7, form disulfide-bonded base pairs
with the X7’ and X6’ residues on the opposite strand, respec-
tively (Fig. 2b and d). As a result, the DNA duplex is largely
kinked at the center (Fig. 2d) where the minor groove of 6-thioG

Fig. 2 Secondary (a) and tertiary (b—d) structures of the DNA duplex
containing two disulfide-bonded base pairs between 6-thio-G resi-
dues. X and B residues are 2’-deoxy-6-thioguanosine and 2'-deoxy-5-
bromouridine, respectively. Views are from a phosphate-ribose
backbone (b) and from the minor groove (c and d) of the two
consecutive disulfide-bonded base pairs.
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residues is widely exposed (Fig. 2c). A similar bent structure of
a duplex containing an artificial disulfide pair has been solved
by NMR spectroscopy.® Such structural disorders might be
necessary for incorporating the disulfide pairs. Electron density
maps clearly indicate the formation of a disulfide bond between
the S6 atoms of the X6-X7' and X7-X6' base pairs (Fig. S17). In
the X6-X7' and X7-X6' base pairs, two 6-thio-G residues align
almost perpendicularly.

To investigate disulfide bond formation in solution, solu-
tions containing ODN-I' in the presence of oxidation reagents,
Cu(u) ions and I,, were analysed by high-performance liquid
chromatography (HPLC) with a reverse-phase silica gel column.
In ODN-I, the B base in ODN-I was replaced by a T base. One
minute after Cu(u) ions were added to the ODN-I' solution,
a peak with a longer retention time was observed (Fig. 3B). The
peak was separated and analysed by electron spray ionization
time-of-flight mass spectrometry, and the result indicated the
formation of duplex-I'ss. The addition of a large excess of I, did
not induce the formation of duplex-I'ss (Fig. 3C), which differs
from previous reports in which I, was successfully used for
disulfide bond formation between 4-thiouracil and 6-thio-
guanine residues in DNA and RNA duplexes.”# Also, duplex-I'ss
was not generated by using KBrO; as an oxidation reagent in
24 h (Fig. s41).

Glutathione have been used for cleave disulfide bonds and
thioethers on nucleobases.® Glutathione was added to the
solution containing duplex-I'ss and the reaction was analyzed
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by HPLC. The peak for duplex-I'ss was immediately diminished
and a peak for ODN-I' was observed (Fig. S2ct). In contrast, the
addition of EDTA to a solution of duplex-I'ss did not alter the
HPLC profile (Fig. S2bf). Consequently, X-X pair formation
(disulfide bond formation) was accelerated in the presence of
Cu(u) ions.

As duplex-I'ss formed, the thiocarbonyl groups of the 6-thi-
oguanine residues converted into disulfide groups; conse-
quently, the absorbance at approximately 340 nm decreased
(Fig. 4).7

In conclusion, we determined the crystal structure of a DNA
duplex containing consecutive 6-thioguanine-6-thioguanine
disulfides. This is the first crystal structure of a nucleic acid
duplex containing covalently linked bases through disulfide
bonds. The DNA duplex is largely kinked at the disulfide base
pairs where the minor groove of 6-thioG residues is widely
exposed. The disulfide bonds were reversibly formed and
cleaved in the presence of Cu(u) ions and glutathione. Inter-
estingly, oxidizing reagents such as I, and KBrO; did not
accelerate disulfide bond formation. The arrangement of 6-
thioguanine residues in the duplex structure may be related to
their reactions. To our knowledge, this is the first reaction in
which metal ions efficiently accelerated disulfide bond forma-
tion between thio-bases in DNA duplexes. Studies of disulfide
bond formation of thio-bases (*T, *T, ®5G, etc.) in the presence
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Fig. 4 Absorbance spectra of (A) duplex-I' (4 uM), (B) duplex-I'ss
(approximately 1 uM). (C) The spectra were overlapped. For easily
compared, four times lager value of duplex-I'ss's absorption is plotted.
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of metal ions and metallo-base pair formations (interactions of
thio-base pairs and metal ions) are currently in progress.
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