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The impact of an axial magnetic field on the heat transfer and nanofluid flow among two horizontal coaxial
tubes in the presence of thermal radiation was considered in this study. The impact of viscous dissipation
was also considered. The well-known KKL (Koo—-Kleinsteuer—Li) model was applied to approximate the
viscosity of the nanofluid and the effective thermal conductivity. Furthermore, proper transformations for
the velocity and temperature were applied in this study to obtain a set of ODEs (ordinary differential
equations) for basic equations governing the flow, heat and mass transfer. In addition, the 4th order
Runge—Kutta (RK) numerical scheme was applied to solve the differential equations along with the

associated boundary conditions. The impacts of different parameters, including Hartmann number,
Received 2nd May 2019 Reynold ber, radiati ter and t rati the heat transfer and flow feat
Accepted 22nd June 2019 eynolds number, radiation parameter and aspect ratio, on the heat transfer and flow features were
studied. According to the results, the value of the Nusselt number increases with an increase in the

DOI-10.1039/c9ra03286 radiation parameter, Hartmann number and aspect ratio and a decrease in the Reynolds number and

rsc.li/rsc-advances Eckert number.

1. Introduction

Effective heat transfer in liquids has become a challenging issue
in industries and academia because of its importance in the
improvement of the efficiency of different devices. Accordingly,
different approaches have been proposed by researchers to
improve the ability of heat transfer in fluids; one of the best
methods to advance the heat transfer rate in liquids is the use of
nanofluids, which are materials suspended with nanoparticles
(size = 50 nm). These nanoparticles significantly improve the
convective heat transfer in liquids by altering the basic features
of the base fluid. Carbides or carbon nanotubes (CNTs), metals
and oxides are usually used as particles. Because of the superior
features of nanofluids, extensive studies have been performed
to evaluate the effectiveness of this heat transfer approach. The
results obtained from different studies indicate that the effect of
addition of nanoparticles to the base fluid becomes more
significant under the influence of a magnetic field. To achieve
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the full potential of nanofluids, it is important to investigate the
impact of different impressive parameters that affect the
behavior of nanofluids.

Computational approaches have been broadly applied for
the simulation of engineering-related issues;'™ in the field of
nanofluids, researchers have applied these approaches to
investigate the behavior of these kinds of liquids to achieve the
full potential of nanofluids. The influences of the 2nd order
temperature jump and velocity slip B.Cs for 3rd-grade nano-
fluids over a coaxial tube have been investigated by Zhu et al.*®
Their findings show that thermophoresis movement and
Brownian motion cause the temperature to increase. For power-
law nanofluids, Lin et al have examined the Marangoni
convection flow and heat transfer driven by the temperature
gradient.” Furthermore, using a model that contains the
influences of thermophoresis and Brownian motion, the
boundary layer flow of a nanofluid over an extending plate was
studied by Khan and Pop.*® They have considered the Prandtl
number, Brownian motion, Lewis number and thermophoresis
in their study and demonstrated that the reduced Nusselt
number is a declining function of each nondimensional
number. Khan et al.* have also scrutinized the laminar 3D
nanofluid flow by a bi-directional stretching sheet. According to
this study, the convective heat transfer in different fluids
improves because of the presence of nanoparticles in the host
liquid.

When the value of the convection heat transfer factor is
insignificant, thermal radiation significantly affects the total
surface heat transfer. Bakier® investigated the influence of
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thermal radiation on mixed convection from a vertical surface
in a porous material. The corresponding equations were solved
by a 4th-order RK scheme in the abovementioned study. The
influence of magnetic field and radiation on the mixed
convection stagnation point flow over a vertical stretching plate
in a porous structure was investigated by Hayat et al.>* Accord-
ing to their findings, for both types of flows, i.e. assisting and
opposing, the values of the local Nusselt number and coefficient
of skin friction were tabulated. Hayat et al.*>* studied the impact
of thermal radiation and Joule heating on the MHD flow of
a Maxwell fluid in the presence of thermophoresis. The impact
of thermal radiation on heat transfer and magnetohydrody-
namics nanofluid flow was scrutinized by Sheikholeslami et al.**
Their findings show that an increase in the radiation parameter
causes a decrease in the thickness of the concentration
boundary layer.

The investigation of the electrically conductive fluid flow,
called magnetohydrodynamic (MHD), is a topic of numerous
studies reported in the literature because of its various appli-
cations. The study of solar plasma, terrestrial cores and stellar
structures are examples of its applications in astrophysics and
geophysics. Moreover, MHD has numerous industrial applica-
tions such as in the extraction of geothermal energy, nuclear
reactors, heat and mass transfer and the stability of convective
flows. Sheikholeslami et al.>* have studied the heat transfer and
nanofluid flow characteristics among two horizontal parallel
sheets in a rotary system and proved that an increase in the
Reynolds number and volume fraction of the nanoparticle leads
to an increase in the Nusselt number. However, the Nusselt
number reduces as the Eckert number, rotation and magnetic
parameters increase. Sheikholeslami and Ganji*® have investi-
gated the magnetohydrodynamic and ferrohydrodynamic
influences on convective heat transfer and ferrofluid flow and
found that depending on the value of the Rayleigh number,
magnetic number has a different influence on the Nusselt
number. The influence of magnetic field on the CuO-water heat
transfer and nanofluid flow in a chamber that is heated from
beneath was scrutinized by Sheikholeslami et al.>® According to
their findings, at high Rayleigh numbers, the influence of heat
source length and Hartmann number is more obvious. Reddy
et al.® scrutinized the MHD flow, heat and mass transfer
features of water combined with Cu and Ag nanoparticles above
a rotary disk via a porous media by chemical reactions, thermal
radiation and partial slip. They studied the impact of significant
parameters, including chemical reactions, temperature slip,
thermal radiation, velocity slip, nanoparticle volume fraction
and magnetic and porous parameters, on concentration,
temperature, azimuthal velocity and radial velocity evaluations
in the boundary layer zone. The influence of the above-
mentioned parameters on local Sherwood number, local skin
friction coefficient and local Nusselt number was further
examined. According to their findings, an increase in the
volume fraction parameter of the nanoparticles results in the
elevation of the temperature.

Reddy and Chamkha®® have further scrutinized the MHD
flow and heat and mass transfer of a viscous incompressible
nanofluid over a uniform sheet through a porous medium
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considering the chemical reaction, thermal radiation, heat
generation/absorption, thermo-diffusion and diffusion-thermo
effect. They examined the impact of important parameters,
such as Dufour parameter, Soret parameter, magnetic param-
eter, Prandtl number, the volume fraction of nanoparticles,
space-dependent and temperature-dependent heat source/sink
parameters, on the Sherwood number, Nusselt number, skin-
friction coefficient, nanoparticle concentration fields, velocity
and temperature. Al-Mudhaf and Chamkha® used a numerical
approach to scrutinize the Marangoni convection flow over
a smooth surface because of the existence of a temperature and
concentration gradient. They studied the impact of the thermo-
solutal surface tension ratio, heat generation or absorption
coefficient, Hartmann number, the chemical reaction coeffi-
cient and the suction or injection parameter on the quantities
belonging to the Sherwood and Nusselt numbers, boundary-
layer mass flow rate, wall velocity, concentration profiles,
temperature and velocity. Based on their results, it can be
concluded that Sherwood and Nusselt numbers and the wall
velocity increase by a first-order chemical reaction. However, it
has a regressive effect on the mass flow rate in the boundary
layer. Furthermore, it is predicted that the Sherwood and Nus-
selt numbers, the wall velocity and the boundary-layer mass
flow rate are augmented with an increase in the thermo-solutal
surface tension ratio. The KKL correlation was used by Shei-
kholeslami Kandelousi for the simulation of heat transfer and
nanofluid flow in a permeable channel.** According to the
findings, the augmentation of heat transfer is directly related to
the Reynolds number when the power law index vanishes.
However, for other amounts of power law index, a reverse trend
was observed. Recently, different researchers have scrutinized
heat transfer improvement in nanofluids.**~**

In this study, the influence of an exterior axial magnetic field
used for the obliging convection nanofluid flow among two
horizontal concentric tubes was numerically investigated
considering the impacts of thermal radiation and viscous heat
dissipation. A rotary internal tube with a low constant angular
velocity value induced the forced flow, and the external tube was
fixed. The impacts of numerous parameters, namely, aspect
ratio, radiation parameter, Hartmann number and Reynolds
number, on the characteristics of heat transfer and flow were
studied.

2. Problem definition

To resolve engineering-related problems, the main governing
equation should be initially derived, and effective terms must
be determined. Then, the applied boundary conditions are
defined according to the physics of the problem.**~** Since most
of the engineering-related problems contain nonlinear terms in
the main governing equations, various techniques®*”® have
been developed to solve these equations.

A steady, laminar and unidirectional flow is considered.
Thus, the components of the velocity in axial and radial direc-
tions as well as the derivatives of the velocity with respect to ¢
and z vanish. In this situation, the equations governing the flow

This journal is © The Royal Society of Chemistry 2019
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of the nanofluid and heat transfer in cylindrical coordinates
become
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r=r:v(r)=Qr, T=T, 3)
r=r:v(r)=0,T="T,
where g, represents the radiation heat flux that can be specified
40, OT*
according to the Rosseland estimation as g, = _20e —_—
3Bg Or

Furthermore, 8z and o, represent the mean absorption factor
and Stefan-Boltzmann coefficient, respectively. With
adequately small alterations in the fluid temperature inside the
flow, a linear function of T can be used to express T%.”> We can
use the well-known Taylor's series expansion to expand 7*
around T,. By ignoring higher order terms, T* = 47,°T — 37"
was obtained. Hence, the effective density, electrical conduc-
tivity and heat capacity of the nanofluid can be stated as follows:

Pnt = (1 - ¢)pf + ¢pp7
(pCo) e = (1 =) (pCy), + ¢(PCp)pv

Brownian motion significantly affects the effective thermal
conductivity. According to Koo and Kleinstreuer,* two different
components, i.e. a Brownian motion part and the particle's
conventional static part, compose the effective thermal
conductivity. The influences of base fluid combinations, types
of particle, temperature, particle volume fraction and particle
size are considered in this double-component thermal
conductivity model.

keff = kslalic + kBrownian
3(%_ 1)¢ 5
, f
Ktatic -1+

ke k k
-p I e

where kg denotes the Maxwell-based static thermal conduc-
tivity. The improved thermal conductivity constituent created
by the micro-sized convective heat transfer of a particle's
Brownian motion and influenced by the surrounding fluid
motion was acquired by analyzing the Stokes' flow around
a spherical domain (i.e. nanoparticles). Koo and Kleinstreuer®
presented two experimental functions (8 and f) and combined
the interaction among nanoparticles in addition to the
temperature influence in the model, which resulted into
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Various base fluids and nanoparticles have various func-
tions. In this study, only nanofluids based on water were
considered. The following format is valid for CuO-water nano-
fluids:

g(T,¢,d,) = (by + by In(d,,) + b3 In(¢) + by In(¢)In(d,,)
+ bs In(dy))In(T) + (bg+b; In(dy) + bg In(¢)
+ by In(@)In(dy) + by In(dy)?) (8)

where the constants b; (i = 0 to 10) are based on the types of
nanoparticles. Since the CuO nanoparticles are widely applied
in different applications, such as in electronic and optoelec-
tronic devices, field-effect transistors, gas actuators and solar
cells, we used this type of nanoparticles in this study. Moreover,
based on the values defined in Tables 1 and 2 for the coefficients
of the CuO-water nanofluids, the values of R? for the CuO-water
nanofluids were found to be 96% and 98%, respectively.*®
Consequently, the KKL correlation is represented as follows:

KbT ’
pdf (T, ¢.d,). 9)

p

kBrownian =5x 104¢pfcp.f

The laminar nanofluid flow in micro heat sinks was further
studied by Koo and Kleinstreuer®® using the effective nanofluid
thermal conductivity model introduced by them. The authors
suggest the following relation for the effective viscosity because
of micromixing in suspensions:

kBrownian

_ _ Mg
Meffective = Mstatic + MBrownian = Mstatic + kf

Pr; (10)

LZS denotes the viscosity of the nanofluid.
(1-¢)
Hence, we can write the governing relation and the corre-
sponding B.Cs, i.e. from eqn (1)-(3), in a dimensionless format
as follows:

where Mstatic =

v+

9r*?

Ta (M A 1L o
r* or* (1_»,,)2 Ay ¥
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Table 1 Thermophysical properties of water and nanoparticles*
-3 —1 1 —1 11 -1
p(kgm™) Co(Jkg " K) kWm K1) d, (nm) g (Qm)

Pure water 997.1 4179 0.613 — 0.05
CuO 6500 540 18 29 10
Table 2 The coefficient values of CuO-water nanofluids* r v r or

= — ¥ = a,on= —,Ha = Byd, |—,

. ] 1 r I
Coefficient values CuO-water t
a —26.593310846 0= ﬂ7 Re = Prénn
a, —0.403818333 T —T, Mg
as —33.3516805
a, —1.915825591 1 (pCyp) pe(Q11)
3

as 6.42185846658 x 107> Pr= Tf, Ec = ToCI AT Rd = 40.T. / (Brkr),
a6 48.40336955 Pkt (PCy),
a, —9.787756683 )
ag 190.245610009 Pt ot (0Co) e Kot

A= — Ay = /A3 = — LAy = — 14
aq 10.9285386565 or s ’ (pCp) ke ( )
a0 —0.72009983664

Fig.1 Geometry of the problem.

19 0 Ay (¢ v\ 4 3%
I 2t A - -
r* or* <’ ar*) + ECPrA4 (ar* r*) + 344 9r*?
A; , 30
_PrRe =2 y*— — 12
r eA4v e 0 (12)
r*:’r’ v*(r*) = 17(9: 1
r¥=1:v¥7r*) =0,0=0 (13)

whereas

22188 | RSC Adv,, 2019, 9, 22185-22197

Note that for the readers’ convenience, the star signs have
been dropped from the equations. The Nusselt number Nu and
the skin friction coefficient C¢ along the internal wall can be
expressed as follows:

4Rd\ 96
Nu=—-A4(1++—F | 15
u 4 ( 3A4 ) or* r¥=n ( )

av*
Cr = —A,— 16
= Al (16)
Various researchers have introduced different goal
parameters.”*%*
10
- m] Present work

B ———————— Aberkane et al.

Fig. 2 Comparison of the results obtained by Aberkane et al.”® and
present results of the velocity profile for n = 0.5 and Ha = 4.
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Fig. 3 Effect of Hartmann number on the velocity and temperature profiles when Pr = 6.8, n = 0.5, Ec = 0.01, Rd = 0.1, Re = 1, ¢ = 0.04.

3. Numerical method

The corresponding equations in this study were solved by the
4th order RK scheme. To use this numerical method, initially,
the governing differential relations must be reduce into a set of
av* a0
1st order ODEs. Let y; = r¥,y, =v*,y; = W,ﬂ =40,y5 = -
Various numerical techniques can help researchers in
modeling.”**** The following system of equations can be ach-

Next, eqn (17) along with the initial conditions (18) can be
solved using the 4th order RK integration scheme. Note that
to approximate the proper values for the unknown initial
conditions u; and u,, Newton's scheme was used, and the
process was repeated till the B.Cs at v*(1) = 0, (1) = 0 were
satisfied. MAPLE was used to perform the computations.
Furthermore, the supreme value of r* = 1 for each set of
factors was recognized when the values of the anonymous
B.Cs at r* = 9 did not alter to an effective loop with error less

ieved: than 107°. Optimized models can be used for better
accuracy.'*1*°
1
V3
N 1 Ha’ 45 |1 A
5 1
) -t | ———= -+ | +Re—p
yi = M1 <(1 - 77)2 A2 ylz) AZ (17)
y; Vs
Vs 2
1 A A
— |~ Is EcPrA—z(y3 — )ﬁ) + PrRe A—3y2y5
1+ 3 Rd Y1 4 Y1 4
o - 4. Results and discussion
and the related initial conditions are as follows:
»” 17 In the current study, the heat transfer and nanofluid flow
s 1 among two horizontal coaxial tubes was studied. Note that the
nl=1u (18) fluid flow influenced by an axial magnetic field and the impact
Va 1 of thermal radiation were also considered. The impacts of
Vs u aspect ratio, Hartmann number, radiation parameter and Rey-

This journal is © The Royal Society of Chemistry 2019

nolds number on the heat transfer and flow features were
studied (Fig. 1).
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Fig. 4

The results of the current study for the velocity profile
were compared with those of Aberkane et al.”® in Fig. 2.
According to this figure, a good agreement can be observed
between these findings, which shows the reliability of the
method used in this study. The flow velocity and tempera-
ture changes at different Hartmann numbers are shown in
Fig. 3. According to this figure, an increase in the value of
the Hartmann number causes a decrease in both the
temperature and the velocity. Furthermore, Fig. 4 demon-
strates the impact of Reynolds number on the velocity of the
fluid flow and temperature. The results show that as the
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(b)

Effect of Reynolds number on the velocity and temperature profiles when Pr =6.8, n = 0.5, Ha =1, Ec = 0.01, Rd = 0.1, ¢ = 0.04.

Reynolds number increases, the thermal boundary layer
thicknesses and velocity increases. The changes in the
Nusselt number and skin friction coefficient at different
Hartmann and Reynolds numbers are demonstrated in
Fig. 5. According to this plot, an increase in the Hartmann
number and a decrease in the Reynolds number result in the
augmentation of the Nusselt number. Moreover, in the case
of skin friction constant, similar trend can be detected in
this figure.

The impact of the Eckert number on the Nusselt number
and temperature profile is presented in Fig. 6. This graph

25

—H—— Re=

20

15

10

LA LA ALY L N B B L N B B L B B

(b)

Fig. 5 Effect of Reynolds number and Hartmann number on the Nusselt number and skin friction coefficient when Pr= 6.8, n = 0.5, Ec = 0.01,

Rd = 0.1, ¢ = 0.04.
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Fig. 6 Effect of the Eckert number on the temperature profile and Nusselt number when Pr =6.8, n =0.5,Rd =0.1, Re =1, ¢ = 0.04.

shows that the augmentation of the Eckert number causes
the thickness of the thermal boundary layer to reduce.
Hence, the Nusselt number is affected by the Eckert number
and reduced upon its augmentation. The change in
temperature and Nusselt number at different radiation
parameters is revealed in Fig. 7. According to this figure, the
value of temperature reduces when the radiation parameter
is taken into account, and an increase in the radiation
parameter results in the augmentation of the Nusselt
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number. The influences of the aspect ratio on the skin
friction constant and Nusselt number are presented in
Fig. 8. This plot displays that an increase in the amount of
the aspect ratio leads to a reduction in the space between the
hot and the cold walls. Hence, the value of the
Nusselt number increases with an increase in the aspect
ratio.
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Fig. 7 Effect of the radiation parameter on the temperature profile and Nusselt number when Pr = 6.8, n = 0.5, Ec = 0.01, Re =1, ¢ = 0.04.
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Fig. 8 Effect of aspect ratio on the Nusselt number and skin friction coefficient when Pr=6.8, n = 0.5, Ec =0.01, Rd=0.1, Re =1, ¢ = 0.04.

5. Conclusions

In the current study, the impact of axial magnetic field on the
heat transfer and nanofluid flow among two horizontal coaxial
tubes was examined. It was supposed that the magnetic field
considered in this study was uniform and constant. Moreover,
the influence of thermal radiation and viscous dissipation was
considered. The corresponding PDEs were initially converted to
a set of ODEs and then solved by the 4th-order RK scheme. The
impact of active parameters on the heat transfer and flow was
considered. The results indicate that an increase in the radia-
tion parameters and Hartmann number causes the velocity and
the temperature boundary layer thicknesses to decrease.
However, an enhancement in the Eckert number and Reynolds
number may lead to an increase in the velocity and temperature
boundary layer thicknesses.
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