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In real-scale applications, where NPs are injected into the aqueous environment for remediation, they may
interact with natural organic matter (NOM). This interaction can alter nanoparticles' (NPs) physicochemical
properties, sorption behavior, and even ecological effects. This study aimed to investigate sorption of Pb(i)
onto multi-walled carbon nanotube (MWCNT) in presence of NOM. The predominant behavior of the
process was examined comparatively using response surface methodology (RSM) and boosted
regression tree (BRT)-based models. The influence of four main effective parameters, namely Pb(i) and
humic acid (HA) concentrations (mg L™%), pH, and time (min) on Pb removal (%) was evaluated by
contributing factor importance rankings (BRT) and analysis of variance (RSM). The applicability of the BRT
and RSM models for description of the predominant behavior in the design space was checked and
compared using statistics of absolute average deviation (AAD), mean absolute error (MAE), root mean
square error (RMSE), and multiple correlation coefficient (R?). The results showed that although both
approaches exhibited good performance, the BRT model was more precise, indicating that it could be
a powerful method for the modeling of NOM-presence studies. Importance rankings of BRT displayed
that the effectiveness order of the studied parameters is pH > time > Pb(i) concentration > HA

concentration. Although HA concentration showed the least effect in comparison with three other
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Accepted 30th April 2019 studied parameters theoretically, the experimental results revealed that Pb(i) removal is enhanced in

presence of HA (73% vs. 81.77%), which was confirmed by SEM/EDX analyses. Hence, maximum removal
DOI: 10.1035/c9ra02881a (R% = 81.77) was attained at an initial Pb(i) concentration of 9.91 mg L™, HA concentration of

rsc.li/rsc-advances 0.3 mg L™, pH of 4.9, and time of 55.2 min.

The concerns are mainly their non-biodegradable nature,
tendency to accumulate in living organisms, and toxicity and
carcinogenicity.' Among metals of particular concern,” lead
(Pb(u)) is categorized as a prevalent toxic metal and can easily
enter the food chain via either drinking water or crop irrigation. It
accumulates in vital body organs such as bones, muscles, liver,
kidney, and brain. Excessive lead results in mental retardation,
kidney problems, anemia, and severe damage to the nervous
system, reproductive system, liver, and brain and causes sick-
ness, sterility, abortion, stillbirths, and neonatal deaths.* The

1. Introduction

The increase of heavy metal contamination in environmental
matrices originating from industrial wastewater discharges,
such as metal electroplating facilities, mining operations,
fertilizer industries, tanneries, etc., has received great attention.
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maximum contaminant level (MCL) and maximum contaminant
level goal (MCLG) established by the USEPA for lead are
0.015 mg L™ and zero, respectively.* In industrial wastewaters,
Pb(u1) concentrations can reach 200-500 mg L', which exceed
water quality standards and must be reduced to 0.05-0.10 mg L ™"
before release into aqueous ecosystems or sewage facilities.
Thus, efficient removal of heavy metals from water bodies is
still a challenging task facing environmental engineers. Among
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developed remediation technologies for heavy metals, including
chemical precipitation, ion exchange, adsorption, membrane
separation, and electrochemical processes,® adsorption is still
known as one of the most efficient approaches and many
adsorbents have been studied in recent decades.” Among
introduced adsorbents, carbon nanotubes (CNTs) have attrac-
ted considerable research attention due to their highly porous
and hollow structure, large specific surface area, light mass
density, and capability to establish strong electrostatic inter-
action with various kinds of pollutant molecules. These features
have led to CNTs seeming a very promising candidate for
adsorption of various kinds of pollutants from wastewater,
including heavy metal ions.'®'* Depending on both CNT and
solution chemistry, the apparent adsorption capacity for Pb(u)
has been reported from several mg g~ to about 100 mg g~ *.*?

However, in real-scale applications where the nanoparticles
(NPs) are injected into the aqueous environment for remedia-
tion, interaction with natural organic matter (NOM) may occur.
Hence, it is crucial to study the adsorption behavior of heavy
metals by NPs in the absence or presence of NOM. NOM is one
of the most abundant materials on earth and ubiquitously
present in natural water bodies at concentrations ranging from
a few mg L' to a few hundred mg L~ '.** Interaction between
NOM and NPs can alter the physicochemical properties, sorp-
tion behavior, and even ecological effects of the adsorbents.™
For this reason, in many studies, NOM has been introduced into
the process to investigate its effect on NPs performance in
sorption of a target pollutant. Therefore, in recent years,
growing numbers of studies have reported the effects of NOM
on heavy metals removal by CNTs.*

However, all have focused on the investigation using the one-
variable-at-a-time (OVAT) approach, in which the impacts of the
main effective parameters are presented individually. This
strategy suffers from not showing the interactions between all
contributing variables. Multivariate statistical strategies have
been preferred to the OVAT approach to identify the optimal
combination of parameters and interactions between variables,
improve cost- and time-effectiveness, develop a mathematical
model, forecast the response, assess the model adequacy, and
determine the optimal conditions for a given response.'®"
Response surface methodology (RSM) is known as an efficient
procedure applicable not only to experimental design but also
to development of a mathematical model (linear, square poly-
nomial functions, etc.) for each response based on the obtained
results.”® Boosted regression tree (BRT) model is a recently
developed procedure for either multivariate classification or
regression. This approach offers the benefits of both classical
regression models and machine learning techniques. BRT
adjusts complex linear and nonlinear responses to multiple
categorical and continuous parameters even where the data
suffer from collinearity-based challenges.” Such tree-based
methods were generally developed to optimize predictive
performance by combining a large number of simple trees into
a powerful model instead of considering a single tree based on
conventional regression trees.”® These advantages led to appli-
cation of RBT for the present study's modelling and optimiza-
tion in addition to BBD strategy.
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The objectives of this work were (i) to investigate the effect of
NOM on MWCNTs in Pb(u) sorption by considering the param-
eters of Pb(n) and HA concentrations (mg L"), pH, and time
(min), (ii) to model the process and compute the impacts in
terms of main effects and interactions using both RSM and BRT
strategies and compare the results in terms of absolute average
deviation (AAD), mean absolute error (MAE), root mean square
error (RMSE), and multiple correlation coefficient (R*), and (iii) to
introduce the optimal conditions of the process and the expected
efficiency at such point. It should be emphasized that, although
an increasing number of studies have been conducted in recent
years to evaluate the effect of NOM on sorption-based processes
of NPs, to the best of our knowledge none of them have investi-
gated the process from modeling and/or interactions point of
view. Therefore, this study highlighted the application and
comparison of the RSM and BRT models on the process behavior.

2. Material and methods
2.1 Chemicals and instruments

All chemicals utilized in this research were reagent grade. The
100 mg L' stock solution of Pb(n) was achieved by dissolving
an accurately weighed mass of Pb(NOj3), (Merck, Germany) in
deionized water. Humic acid (HA, Sigma-Aldrich, Germany) was
selected to represent NOM. HA stock solution (100 mg L™ ') was
achieved by dissolving 0.01 g of HA powder in alkaline distilled
water (pH 9.0, adjusted with concentrated NaOH). The solution
was then filtered through 0.45 pm Whatman paper, sealed with
aluminum foil, and kept at 4 °C.** Required daily concentra-
tions of Pb(n) and HA were achieved by dilution of the corre-
sponding stock solutions. The initial pH was adjusted with
H,SO, or NaOH (Merck-Millipore, USA) using HACH model
sensionl pH meter. HA concentrations were measured spec-
trophotometrically (model 1700, HACH) at 254 nm. The wave-
length was chosen after scanning HA solutions over the range
200-800 nm. Pb(u) was detected using a Metrohm computrace
voltammetric analyzer (model 797 VA with Software Version 1.0,
Metrohm, Switzerland). Multi-walled carbon nanotubes
(MWCN) were purchased from a local company (Neutrino, Iran)
with claimed length ~20 um, outer diameter 30-50 nm, purity >
95%, specific surface area 60 m”> g™ ', ash < 1.5 wt%, electrical

conductivity > 100 s cm™*, and tap density 0.22 g cm™>.

2.2 Characterization of MWCNT

A scanning electron microscope coupled with an energy-
dispersive X-ray microanalyzer (SEM/EDX, model) was used to
study the surface morphology and surface elemental composi-
tions of the MWCNTSs.”” The adsorbent was also structurally and
chemically characterized with X-ray diffraction (XRD, model).
The pH value at the point of zero charge (pHp,.) of MWCNT was
determined experimentally. For this purpose, 0.02 g of MWCNT
was added to 10 mL of solutions with different initial pH values
(2-10). The dispersions were stirred for 48 h and withdrawn
supernatants were measured for final pH. The pH,, was
calculated by plotting the obtained pH against the initial pH.
The point at which the two lines crossed is pHp,..*

This journal is © The Royal Society of Chemistry 2019
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2.3 Experimental design, analyses, and protocol

2.3.1 Box-Behnken design. A Box-Behnken design (BBD)
was utilized for investigation, modeling, and optimization of NOM
influence on sorption of Pb(u) from aqueous environment by
MWCNTs. Four main effective parameters, namely Pb(u) and HA
concentrations (mg L"), pH, and time (min), were considered in
this study at three levels. BBD is most frequently applied under
RSM, in which each contributing variable is embedded at one of
three equally spaced values, typically coded as —1, 0, and +1, as
lower, center, and upper settings, respectively.> The design of this
approach together with the mentioned points is presented in
Fig. 1. The middle points are employed not only to calculate the
experimental residuals but also to check the model adequacy.”
The BBD can simultaneously estimate the relationship between
various effective parameters or even their interactions on a given
response and optimize the experimental results of multi-
influencing variables. Additionally, this rotatable quadratic
method is a cost-effective design with excellent predictability, due
to requiring fewer experimental runs and covering enough of the
design space, respectively. For these reasons, BBD has received
great interest and been widely applied for assessment of critical
experimental conditions in recent years.>* The number of experi-
ments (N) required in this approach is calculated as follows

N =2k(k — 1)+ C, (1)

where k and C, are the factorial and central point replicate
numbers, respectively.””

According to eqn (1), a total of 29 experiments including 12
factorial points (Stds 1-25) and five replicates at the center
points (Stds 25-29) were defined and their experimentally ob-
tained results (summarized in Table 1) were used to describe
the governed behavior in the process by fitting to the quadratic
polynomial model presented in eqn (2).
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where Y is the forecasted response by the model (removal
percentage of Pb(i)); X; and X; are the independent parameters;
by denotes the offset term; b;, b; and b;; are the linear, quadratic,
and cross-product coefficients of the model, respectively; ¢
refers to the residual term; and & corresponds to the number of
factors. All analyses were accomplished using Design Expert
software (version 8.1, Stat-Ease, Inc., Minneapolis, MN). The
chosen levels for the contributed variables in coded and actual
forms, along with the BBD-based experimental matrix, are given
in Table 1. The significance levels and interaction among the
process variables were estimated by analysis of variance
(ANOVA) according to their p-values and F-values at 95%
confidence intervals. The fitness quality of the model was
checked by the multiple correlation coefficient (R*), adjusted
coefficient of determination (R.q;”), adequate precision (AP),
and coefficient variation (CV) and the model's statistical
significance was checked by Fisher's F-test (F-value). The asso-
ciation between the involved variables and Pb(u) removal was
graphically interpreted by response surface plots.

2.3.2 BRT. Numerous modelling approaches have been
applied to predict contaminant removal from (waste)water,
including multiple linear regression,® artificial neural
networks,* support vector machines,** the radial basic func-
tion,* adaptive neuro-fuzzy inference system (ANFIS),*> and
random forest models.>® Despite that, application of more
advanced models based on the random forest (RF), including
RBT, are still rarely reported in the literature.

RF is an ensemble learning method for regression that
consists of many decision trees and was first introduced by Tin
Kam Ho of Bell Labs in 1995. The RF technique combines
Breiman's “bagging” idea and the random collection of
features. Several advantages have been reported for RF-derived
models over other statistical approaches: they are able to
handle missing values and high-dimensional data, recognize
complex interactions among factors and the most important
parameters measurements, and anticipate with high accuracy
(low-bias models in addition to low-variation results) even for
large databases.*®> However, RF suffers from inherent limita-
tions, such as overfitting for some datasets and unreliable
variable importance scores, especially for categorical factors
with different numbers of levels. These disadvantages can be
overcome by employing boosting methods such as BRT.** The

2
¥ X1

Fig.1 Design space at a three-level Box—Behnken approach. The yellow and red circles in the left scheme lie on the factorial and center points,

respectively.
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Table1l The process parameters and their levels, the experimental BBD-
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derived matrix, and response of Pb(i) removal as obtained and predicted

values
Levels and ranges
Factor Name Units Upper level (—1) Middle (0) Lower level (+1)
A Pb concentration mg L! 2 6 10
B HA concentration mgL~" 10 20
c pH — 3 5 7
D Time min 10 35 60
Pb removal efficiency (%)
Pb concentration HA concentration

Standard order Run order Leverage (mgL ™) (mg L™ pH Time (min) Actual value Predicted value Residual
13 1 0.786 6 0 3 35 10.423 11.76 —1.33
21 2 0.635 6 0 5 10 20.5018 16.56 3.94
6 3 0.647 6 10 7 10 -8 —-9.42 1.42
9 4 0.619 2 10 5 10 58.23 60.02 -1.79
28 5 0.2 6 10 5 35 23.8281 23.83 —0.0052
8 7 0.704 6 10 7 60 23.5944 20.81 2.79
25 8 0.2 6 10 5 35 25.2748 23.83 1.44
11 9 0.645 2 10 5 60 47.645 46.86 0.7843
18 10 0.612 10 10 3 35 64.3901 60.34 4.05

12 0.648 10 20 5 35 61.362 60.51 0.8522
1 14 0.714 2 0 5 35 56.5768 57.77 —-1.19
22 15 0.758 6 20 5 10 39.394 37.72 1.68
24 16 0.67 6 20 5 60 21.7446 24.01 —2.27
27 17 0.2 6 10 5 35 22.5867 23.83 —-1.25
19 18 0.656 2 10 7 35 38.7484 41.13 —2.38
10 19 0.619 10 10 5 10 40.0267 42.15 —2.12
5 20 0.597 6 10 3 10 26.1443 29.27 —-3.13
17 21 0.612 2 10 3 35 45.2172 41.71 3.5
29 22 0.2 6 10 5 35 22.0096 23.83 —1.82
26 23 0.2 6 10 5 35 25.4672 23.83 1.63
14 24 0.786 6 20 3 35 41.0664 42.4 —1.33
3 25 0.648 2 20 5 35 60.5635 59.49 1.07
2 26 0.714 10 0 5 35 61.362 62.78 —1.42
12 27 0.645 10 10 5 60 71.2188 70.76 0.4561
20 28 0.656 10 10 7 35 26.7023 28.53 —1.83
7 29 0.628 6 10 3 60 12.745 14.51 —-1.76

process of BRT application includes fitting the model using
random independent bootstrap replicates which are then
combined by averaging the output for regression. In fact, BRTs
are an ensemble strategy wherein many simple models are
combined to improve the model performance (“boosting”) by
means of recursive binary splits to related response to inde-
pendent factors (regression trees). These approaches robustly
factor collinearity, outliers, and missing data and can take both
categorical and continuous parameters.>®

So far, BRT approaches have been successfully used in
different fields of chemistry with large data volumes, including
reflectance spectroscopy,® blood-brain barrier modelling,*”
and cancer diagnostics.*® However, our literature survey shows
that there is no evidence for use of BRT approach in the
adsorption process from RSM data. It has been shown that the
BRT model is one of the most powerful statistical approaches
reported in science since the 1990s; the efficiency of BRT
regression usually depends on three parameters: the number of
trees (nt), tree complexity (tc), and learning rate (lr).** However,
the success of a BRT model relies on optimal sets of these

16086 | RSC Adv., 2019, 9, 16083-16094

regularization parameters. Hence, BRT models with various nt
(1 to 100), tc (1, 4, 16) and Ir (0.1, 0.25, 0.50, and 1.00) values
were considered in the training to select the best BRT model
with maximum R* and minimum error.

2.4 Experimental producer (ultrasonic assisted removal
procedure)

Ultrasonic-assisted adsorption experiments were conducted
according to the matrix designed by BBD (Table 1) in a batch
mode. For each run, a working solution with the desired
concentration of Pb(1) and/or HA was prepared by dilution of
the stocks, adjusting for pH using 0.1 M H,SO, or NaOH.
Then, 0.01 g of MWCNTs was added into 100 mL of the
working solution in an aluminum foil-sealed flask. The flask
was finally ultrasonicated at 40 Hz for a specific time
interval. The adsorbent was then removed using 0.22 pm
syringe filter and measured for Pb(u) concentration. The
removal efficiency (%) was calculated as stated previously.*®
The obtained data from this stage was used to develop the
models.

This journal is © The Royal Society of Chemistry 2019
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3. Results and discussion
3.1 Characterization of MWCNTSs

The XRD pattern (Fig. S1t) showed that the MWCNTs were
made of carbon. The peak position at 25.52° is a characteristic
of hexagonal graphite and is attributed to the existence of
tubular structure of carbon atoms with (002) planes. Moreover,
the diffraction peak at 43.2° corresponded to the (100) planes of
the nanotube structure.**

The SEM images of MWCNTs and MWCNT/HA before and
after Pb(u) sorption are shown in Fig. 2. As can be seen, the
MWCNTs were smooth and free from impurities (Fig. 2a). The
bulk morphology of the long particles is filament-like and
oriented with uniform diameters, which indicates homoge-
neous MWCNTs. It can be seen from Fig. 2b (MWCNT/HA
before adsorption of Pb(u)) that the extent of aggregation
between MWCNTs in MWCNTs/HA was clearly reduced
compared to raw MWCNTSs, which can be attributed to hydro-
phobic and w-m attractions of HA with MWCNTs.”” The
uniformly distributed MWCNTs/HA nanohybrid can greatly
increase the surface-to-volume ratio and the efficiency of Pb(u)
ion capture, thus greatly improving the removal properties of
the prepared adsorbent.”” However, after the adsorption
process, the tubes displayed swelling from the open ends of the
MWCNTs (Fig. 2c). The functional groups (e.g. hydroxyl or
carboxyl groups) created during the adsorption process will

View Article Online
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attach to these or to any other available defect sites. Therefore,
the surfaces of MWCNTSs after adsorption were less smooth in
comparison with pristine MWCNTS, mainly due to the surface
modification induced by adsorption.*

The sorption of Pb(u) was also confirmed by the comparison
of EDX spectra of the MWCNTs before and after exposure to
Pb(u)- and HA-containing solutions (Fig. S21). In nanoparticles
before sorption and those exposed to HA solution, no lead was
detected, as can be seen from Figs. S2a and b, whereas a sharp
peak of lead appeared in the EDS spectrum of nanoparticles
after the process (Fig. S2ct).

3.2 Analysis of BDD

ANOVA is a critical option for demonstration of model adequacy,
in addition to showing the most important effects and interac-
tions. The ANOVA results of Pb(u) removal by MWCNT in pres-
ence of HA are summarized in Table 2. From these, a semi-
empirical expression for Pb(u) removal is given as eqn (3). The
developed model was found to be significant at a 95% confidence
interval as its F-value was 68.61. Table 2 revealed that the terms C
(pH) and D (time) and the interaction effects of AC, AD, BC, BD,
CD, A%, B%, and C” were the significant model terms (P-value <
0.05). The F-value of lack of fit (LOF) was 6.01, implying there is
a 5.12% chance that a LOF F-value this large could occur due to
noise. Insignificant LOF confirms the suitability of the full
quadratic model for forecasting the actual process behavior.

M8 ne

Fig. 2 SEM images of pristine optimum MWCNTSs (a) and MWCNTs/HA before (b) and after (c) adsorption of Pb(i).

This journal is © The Royal Society of Chemistry 2019
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Table 2 ANOVA results for the developed quadratic model®

Source Sum of squares (SS) df Mean square F-value p-Value Status

Model 9685.71 14 691.84 68.61 <0.0001 Significant
A-Pb 27.24 1 27.24 2.70 0.1285

B-HA 0.11 1 0.11 0.01 0.9178

C-pH 587.40 1 587.40 58.26 <0.0001

D-Time 146.11 1 146.11 14.49 0.0029

AB 3.97 1 3.97 0.39 0.5430

AC 243.66 1 243.66 24.16 0.0005

AD 436.33 1 436.33 43.27 <0.0001

BC 358.04 1 358.04 35.51 <0.0001

BD 273.59 1 273.59 27.13 0.0003

CD 506.11 1 506.11 50.19 <0.0001

A? 5416.76 1 5416.76 537.20 <0.0001

B> 183.90 1 183.90 18.24 0.0013

c? 661.20 1 661.20 65.57 <0.0001

D’ 5.54 1 5.54 0.55 0.4743

Residual 110.92 11 10.08

Lack of fit 101.29 7 14.47 6.01 0.0512 Not significant
Pure error 9.63 4 2.41

Cor total 9796.63 25

“ R* = 0.9887, R agjusted = 0.9743, and R predictea = 0.9106, AP = 33.2441, and CV = 8.79.

Pb removal (%) as coded form

= 23.8333 + (1.50675 x A) + (—0.137164 x B) + (—8.09783 x C)
+ (3.86432 x D) + (—0.996687 x AB) + (—7.80475 x AC)
+(10.4443 x AD) + (—15.4589 x BC) + (—10.7171 x BD)
+(11.2484 x CD) + (30.1244 x A% + (6.17927 x B
+ (=11.0312 x C?) + (0.989705 x D?). 3)

The large R* values (R*> = 0.9887, Radjustea = 0.9743, and
Rpredicted2 = 0.9106) prove high correlation and agreement
between the anticipated and obtained results. AP evaluates
adequate model discrimination. In this study, the AP ratio of
33.24 indicates that the signal is sufficient to model.

3.3 Effect of the studied parameters

Of the studied parameters, pH was found to be the most
effective factor. The effects of HA concentration, Pb concentra-
tion, time, and pH were found to be alternately positive and
negative. The presence of NOM has shown a controversial effect
on the pollution's sorption by different adsorbents. Although
some studies reported a positive impact, others discuss the
negative effects of NOM species on removal of different
pollutants. Heavy metals’ (ad)sorption by nano-based adsor-
bents in presence of NOM, however, showed an enhancement
trend in almost all of the reports.** As can be seen from Fig. 3¢
and eqn (3), HA presence could drastically enhance Pb(u)
sorption. Despite the study of Tian et al,” who reported
increased removal efficiency of Cd(u) only in high concentra-
tions of HA (>10 mg L"), the results of our work showed
a positive effect in all the studied concentrations. This
welcomed presence can result from the gradual binding of HA
onto the sorption sites of the nanotube surfaces which were
unfavorable for Pb(u). This fraction of CNT-bound HA could
then improve the sorption of Pb(u). In fact, only a small portion

16088 | RSC Adv., 2019, 9, 16083-16094

of the “sorbed” carboxylic and phenolic groups of the macro-
molecular HA directly interact with the available surface sites on
the nano material and the remaining fractions of the sorbed
groups are free and ready to interact with the metal ion.** The
findings were also supported by EDX analyses. The enhance-
ment of Pb(u1) sorption onto the nanoparticles in the presence of
HA can also be attributed to the existence of Mo and Co addi-
tions due to HA in the solution (Fig. S2b¥). It is reported that Mo
and Co residues in the HA-contacted MWCNTSs can facilitate
apparent Pb(u) sorption onto the adsorbent via formation of
PbMoO, precipitate between Pb(u) and MWCNTs-released
Mo0,.*® The elemental weight ratio of Mo/Co in the MWCNTSs
increased about ten-fold after Pb(u) sorption (Figs. S2b and ct),
indicating Mo and Co were involved in the improvement. Mo
was released into the solutions mainly as MoO,>~, which could
precipitate back on the sorbents via formation of PbMoOy,,
whereas Pb(i1) could enhance the release of Co cations from the
sorbents through ion exchange.*® In fact, the enhancement can
be attributed to better Co exchangeability in the MWCNTs-HA
complex than in MWCNTs alone. The negative effect of Pb(u)
concentration would be attributed to occupation of achievable
sites for the Pb species. At low initial concentration of Pb(u),
most of the species will interact with the binding sites of either
nanoparticles or HA-based available sites, resulting in higher
percentage removal. At high initial concentrations, only some of
the ions will combine with the limited available binding sites.
In fact, the limitation of vacant sites on MWCNTS or provided by
HA leads to the pollutant remaining in the solution at such
concentrations.*

Removal of Pb(u) was critically dependent on the solution pH
value, which influences not only the surface charge of the
MWCNTSs but also the degree of ionization and speciation of the
adsorbate. Fig. 3a shows that, with increase of pH from 3.0 to
5.0, the removal efficiency increased. The effect of pH can be

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Response contour plots: effects of (a) initial Pb concentration and pH, (b) initial HA concentration and pH and (c) initial Pb concentration

and time.

simultaneously related to the following reasons: at pH = 3.0,
adsorption effect is very weak as a result of the competition of
H' with Pb(u) on the adsorption sites; at pH = 5.0, the
adsorption capability increases due to the role of functional
groups on the MWCNTs surfaces; and at pH = 7.0, the
adsorption capacity increases remarkably. The higher adsorp-
tion capacity of the NPs at pH 7.0 may also result from the
cooperating roles of adsorption and precipitation. Since the
pHp,. of NPs was found to be 6.32 (Fig. S31), the removal effi-
ciency would be expected to decrease because of the positive
charges of MWCNTSs at pH < pHp,.. However, in real experi-
ments, we found that at lower pH values the efficiency
increased. This may correspond to interactions of HA on the
nano surface that prevent the expected phenomena. As pH
increases, the weakly acidic HA with carboxylic and phenolic
moieties turns to a more negatively charged species. Therefore,
at higher pH values, repulsion of HA and MWCNTs increases,
hindering further sorption of HA to MWCNTs. This results in
a decreasing trend of removal at high pHs. Fig. 3c illustrates the
sorption of HA on MWCNTs in terms of pH values. In fact, the
improvement of HA sorption on the adsorbent, and therefore of

This journal is © The Royal Society of Chemistry 2019

Pb(u) removal, decreased with increasing pH values. The
competition between Pb(u1) and HA in occupation of active sites
made their interaction insignificant as outlined by red in
Fig. S4t (p-value = 0.54), while the interactions related to Pb(u)
or HA with other parameters are all significant. In fact, such
a plot visualizes the interaction between a pair of variables
through the slope difference among them in relation to the
response. When two variables' lines show a parallel trend, it is
assumed that there is no interaction between their corre-
sponding variables.*” As can be seen from Fig. S4,} except Pb(u)
and HA concentrations, all the lines follow an unparallel trend,
indicating interaction between them.

3.4 Analysis of BRT

The good performance of the BRT model, as a function of
prediction accuracy without overfitting, depends strongly on
regularizing the boosted trees options and stopping tree
growing parameters.” Regularization process typically
comprises optimizing three parameters, shrinkage or learning
rate (Ir), tree complexity (tc), and number of trees (nt), to obtain
a balance between bias and variance.*® The Ir represents the

RSC Adv., 2019, 9, 16083-16094 | 16089
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proportion of each successive tree to the ultimate model, as it
proceeds via iterations.* Although a small value of Ir better
minimizes loss function, it generally requires a larger number
of nt to ensure sufficient convergence.* Therefore, it is imple-
mented by employing a small number, generally between
0.0001-0.1.“*** The tc, also called the number of nodes (inter-
actions) in each tree, controls the size of trees via contributing
the interactions, if any, between variables. In fact, it determines
the degree to which predictors may interact together regarding
the response. More levels of interactions are explained with
a higher tc.> When tc = 1, each tree has a single decision stump
and models the effect of one variable (i.e. only main effects are
contributed in the model); when tc > 1, each tree fits a model
that anticipates the interactions of factors (i.e., a maximum of
two nodes in each branch) and so on.*® These above-mentioned
parameters (i.e. Ir and tc) control the nt that in turn is necessary
to optimize predictive accuracy. To reflect the complexity
between factors and utilize the strength of the BRT model, trees
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must be grown with higher levels of tree complexity. The
success of a BRT model therefore depends on the optimal
settings of the mentioned regularization parameters.*®

In this study, the nt (0-100) and Ir in BRT method were ob-
tained by a trial and error procedure for the datasets obtained from
the BBD-introduced matrix. The optimal values were selected
based on minimization of MSE at the tc of 1, 4, and 16 (Fig. 4).

Herein, the aim was to achieve the combination of tree
parameters, ie. Ir, tc, and nt, where a minimum MSE for the
estimations of the response could be found. A value bigger than
1.00 for Ir was not investigated because it was too fast and the
derived minimum MSE would most probably be due to BRT
overfitting. A similar phenomenon in Ir = 1.00 and 0.5 were
observed, namely that overfitting occurred but in relatively more
trees (nt < 10). On the other hand, the smallest values for Ir (i.e.
0.01 and 0.001) resulted in the best performance but needed
thousands of trees to reach the minimum MSE (results for Ir =
0.01 and 0.001 not shown). Elith et al. showed there was only

0.3

tree complexity = 4
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Fig. 4 The association between the nt and the predictive deviance with four lr and three levels of tc.
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Fig. 5 The relative importance of the variables in the BRT algorithms.
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Table 3 Relative importance of input factors on the output factor slight improvement in the prediction power on a large number (N
- = 500) of trees.*® Nevertheless, researchers suggest the optimum

Input variable . .. .
Ir must be selected to result in a minimum MSE value in the nt <
Pb concentration ~ HA concentration 100 for different tc. The MSE as a function of tree complexity for Ir
Model (mgL™") (mgL™) pH Time (min) = 0.1 for Pb removal is shown in Fig. 8. It can be seen from this
figure that the optimum tc for both training and testing dataset is
BRT 4.00 1.65 75.0019.35 4. The relative factor importance for each factor contributed is

RSM 3.95 1.50 75.35  19.20 ’ P

Table 4 Comparison of statistical parameters attained using the BRT
and RSM models

Statistical metrics (for TCS)

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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Fig. 6 Distribution of the observed vs. predicted responses for RSM
and BRT.
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shown in Fig. 5. The relative importance of factors can be eval-
uated by averaging the number of times that a parameter is
selected for splitting and the squared improvement resulting
from these splits.> As evident in Fig. 5, the maximum importance
in Pb(u) removal by MWCNT is assigned to pH.

As expected from sum of squares (SS, ANOVA results in Table
2), the pH and time were found to be the most effective

this purpose, the residuals of both methods were comprised of
RMSE, MAE, AAD, and R?, which are calculated by eqn (4)—(7).

R=1-

n |:(ypred_j - yexp.i) :| (4)

i=1 (ypredj - ym)2

=
<
©
N
L.n.
N
(=]
= Model R RMSE MAE AAD% . . o
<Q parameters, with relative contributions of 75.00% and 19.35%,
S BRT 0.999889 0.006464 0.005755 1.217286 respectively, according to the BRT model for Pb(u) adsorption
g RSM 0.9887 0.022771 0.007659 1.679938  (Table 3). The concentrations of Pb(ir) and HA had contributions
5 of 4.00% and 1.650%, respectively, showing their insufficient
% influence on Pb(u) removal. The relative importance obtained
2 from SS has good agreement with that achieved by BRT.
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Fig. 7 Distribution of the observed vs. predicted residuals for RSM and BRT.
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ADD% = |- L L 100 7
=1 Z( x )

i=1 Ypred,i

where n is the number of experiments and Ypreq,; and Yexp,:
indicate the predicted responses by each model and obtained
experimental responses, respectively.

R® represents how well the developed equation truly fits to
experimental data and is described by least-squares regression. It
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can be used for determining the degree of linear correlation of
parameters in a regression calculation and a higher value implies
more reliable prediction of the model.*****® AAD is the average
absolute deviation from a middle point and is considered a direct
way to measure deviations between predicted and obtained results
and, in contrast with R?, a smaller value is better.” Mean square
error (MSE) and RMSE are other statistics to check the quality of
a model which are positive values and are preferred to be smaller
and closer to zero. For a best-fitted model, sum of squared resid-
uals, and therefore MSE and RMSE, should be minimum. The
values for the mentioned statistics are listed in Table 4.

The plot of observed responses versus predicted ones can be
informative respecting model fitting to a data set.>® The good-
ness-of-fit between the mentioned responses given by the RSM
and BRT models are presented in Fig. 6. As is clear from Fig. 6,
there is good agreement between the obtained responses and
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the predicted values in both models, especially in the case of
BRT (R> = 0.999889). In an adequate model, in addition, no
major trend would be seen for the residuals against time or any
other parameters.” The plot of the internally studentized
residuals versus the experimental runs is depicted in Fig. 7 and
the residuals appear to behave randomly, suggesting their
independence from experimental runs.

Although both models presented appropriate statistics, the
BRT model is superior to that developed by BBD from fitness
and estimation capability point of views. However, RSM is still
advantageous to its studied counterpart due to showing the
experimental factors’ influence as main effects or interactions
and giving a regression equation on a process behavior in the
studied design space.*

4. Conclusion

The main purpose of this study was to develop a novel model
that could accurately and reliably both describe and predict the
effect of NOM on Pb(i) removal by MWCNTSs. Four main effec-
tive parameters (e.g. pH, HA and Pb(u) initial concentrations,
and contact time) were studied under the designed experiments
by BBD approach. BRT and RSM models were developed to
forecast the removal of Pb(u) in the presence of HA as a NOM
representative. The performances of the two developed models
were then compared using the statistics of RMSE, R>, MAE, and
AAD and analysis of the residuals. The results showed that,
although both models satisfactorily predicted the adsorption of
Pb(n) by MWCNTs from aqueous media, owing to RMSE =
0.022771, R* = 0.999889, MAE = 0.005755, and AAD = 1.217286,
the BRT model was much more accurate in its description of the
predominant behavior in the process.

Moreover, importance ranking for BRT displayed that pH and
time are the most effective factors, with relative contributions of
75.00% and 19.35%, followed by Pb(un) and HA concentrations at
4.00% and 1.650%, respectively. Although HA concentration
showed the least effect in comparison with three other studied
parameters, the experimental results revealed that Pb(i) removal
is enhanced in presence of HA (73% vs. 81.77%), which was
confirmed by SEM/EDX analyses. Therefore, it seems that even
though RSM is the most widely applied technique for optimiza-
tion adsorption-based studies, the BRT approach can give more
accurate and reliable results even with a smaller data set.

The findings of this work are potentially significant for
evaluation of a treatment method along with the modeling
capability. The BRT strategy is more appropriate due to taking
much less computational time and handling a smaller number
of contributing factors. However, as the bagging and boosting
approaches are meta-algorithms, they can be employed with
different kinds of trees or other regression models. The optimal
situation and relative importance of each parameter for Pb(u)
adsorption were determined and presented.
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