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Light induced reversible structuring of
photosensitive polymer films+

Joachim Jelken and Svetlana Santer @ *

In this paper we report on photoswitchable polymer surfaces with dynamically and reversibly fluctuating
topographies. It is well known that when azobenzene containing polymer films are irradiated with optical
interference patterns the film topography changes to form a surface relief grating. In the simplest case,
the film shape mimics the intensity distribution and deforms into a wave like, sinusoidal manner with
amplitude that may be as large as the film thickness. This process takes place in the glassy state without
photo-induced softening. Here we report on an intriguing discovery regarding the formation of reliefs
under special illumination conditions. We have developed a novel setup combining the optical part for
creating interference patterns, an AFM for in situ acquisition of topography changes and diffraction
efficiency signal measurements. In this way we demonstrate that these gratings can be “set in motion”
like water waves or dunes in the desert. We achieve this by applying repetitive polarization changes to
the incoming interference pattern. Such light responsive surfaces represent the prerequisite for providing
practical applications ranging from conveyer or transport systems for adsorbed liquid objects and
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Introduction

Designing programmable polymer substrates is an active and
growing field of research, continuously pushed by many
branches of nanotechnology seeking unprecedented and ever
more efficient solutions for developing novel types of sensors,
strategies for self-healing integrated structures, optical infor-
mation storage, solutions for creating adaptable and dynamic
optical devices (auto focusing lenses, DFB lasers, diffractive thin
films, diffusers and directional reflectors) or hybrid bio-electro-
mechanical systems.™ In even more exotic applications one
utilizes dynamically switchable surfaces for controlling the
adhesion and thus the position of adsorbed particles (a gecko
“in reverse”), or for moving and handling small amounts of
liquid within micrometer dimensions such as microfluidic
chambers, channels or surfaces that act as microarrays for
droplet deposition and screening."*™* In a general sense,
programmable polymer substrates may be defined as systems
the surface topography and morphology of which, including
local surface energy and ordering, can be switched between
distinct states by applying external stimuli such as electrical
fields, temperature or light.'**® Photo-switchable surfaces offer
greater simplicity and convenience in manipulation, since light
as an external stimulus can be tuned and controlled spatio-
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colloidal particles to generation of adaptive and dynamic optical devices.

temporally without undesired contact with electrodes, wires or
heating elements.'”** One of the strategies to render a polymer
photo-responsive is to modify it with photo-reactive groups
among which azobenzenes are the most common. Azobenzene
containing polymers belong to a class of functional materials
exhibiting a strong mechanical response upon applying external
radiation fields. Although the radiation only acts on the photo-
sensitive azobenzene moieties by inducing trans—cis isomeriza-
tion and thus configurational changes, as side groups in
a polymer chains they can affect the system as a whole. Such
materials have extensively been studied and were proposed for
the construction of holographic gratings and optical data
storage devices.' Very peculiar phenomena are obtained when
azobenzene modified physisorbed polymer films or the even
more exotic polymer brushes are exposed to irradiation exhib-
iting interference patterns (IP).>**> Following the IP's period-
icity either with respect to intensity or polarization distribution,
the polymer topography is modulated into a wave like form with
period equal to optical one.**** The mechanism of SRG
formation is related to the generation of strong, internal opto-
mechanical stresses. Since the polymer material is in a glassy
state, the opto-mechanical stresses needed for the deformation
of mechanically stable polymer films (Young modulus of several
GPa) must be quite high of 100 MPa up to ~1 GPa, as was
recently shown.*”*° The process can be viewed as follows: under
irradiation inducing cyclic trans-cis-trans isomerization,** the
azobenzene molecules rotate and re-orient perpendicularly to
the electrical field vector (formation of bulk birefringence
grating) causing a re-orientation of the polymer backbones to
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which they are attached. This creates local gradients in internal
stresses within the polymer material, varying with the distri-
bution of the interference pattern and thus induces a visco-
plastic deformations of the solid material (formation of
topographical grating).*>* In fact, the inscribed SRG topog-
raphy is stable over years at room temperature and can be
erased only by further intense treatment such as either irradi-
ation with a circularly polarized beam*® or by heating* the
polymer sample above the glass transition temperature.

Usually the dynamics of the SRG formation is probed by
measuring the changing diffraction efficiency of the formed
grating. Here a probe beam not affecting the azobenzene
moieties is focused on the relief structure and the change in
intensity of the first order diffraction peak is recorded as
a function of time. The surface grating and the birefringent
grating contribute to the signal and it is hard to separate these
two components.***> Another approach is to directly measure
the change in the SRG using an atomic force microscope
(AFM).>**-5> The drawback of the latter methodology is that
there will be no information obtained about the orientation
process in the bulk polymer. Here we present a novel set-up
which combines these two approaches.

An AFM is integrated into a two beam interference set-up
generating the interference pattern. This allows the in situ
acquisition of surface topography changes. At the same time the
diffraction efficiency (DE) signal is measured to obtain infor-
mation about the bulk birefringence. Integrating a delay stage
into the two beam setup allows controllable spatio-temporal
shifts of the interference pattern, which locally appears as
a redistribution of the electrical field vector. In this way gradual
shifts or even more dynamic fluctuations in the polymer
topography and the bulk birefringence can be generated, for
instance, mimicking a passing wave train the speed of which
can be adjusted. One may, for instance, stop migration at some
point and resume at a desired later time just by switching light
on and off. Additionally, we introduce a fast method of optically
erasing SRGs by manipulating the illumination pattern in
a particular way. One may either completely erase the topog-
raphy and bulk birefringence grating or erase the primary
topography grating. The time needed for erasure (only a few
seconds) is much shorter than that needed for single beam
irradiation (several minutes to hours) and heating (several tens
of seconds during direct heating by laser irradiation*® to several
minutes and hours under external temperature increase) to
achieve a comparably flattening.

Experimental part
Materials and methods

Photosensitive  polymers.  Poly[1-[4-(3-carboxy-4-hydrox-
yphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt]
(Pazo) and poly[(methyl methacrylate)-co-(disperse red 1 acry-
late)] (poly(MMA-co-DR1A)) were purchased from Sigma-
Aldrich. The chemical structures of Pazo and poly(MMA-co-
DR1A) are shown in the inset of Fig. 2a and b. The Pazo polymer
solution was prepared by dissolving 170 mg Pazo in 1 ml solu-

tion containing a mixture of 95% methoxyethanol and 5%
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ethylene glycol. The poly(MMA-co-DR1A) polymer was dissolved
in chloroform to achieve a concentration of 60 mg ml™". The
polymers were chosen to represent two extrema, i.e. Pazo-
polymer does not have T, and cannot be flattened by arising
temperature (as discussed in the paper), poly(MMA-co-DR1A)
has T, around 100 °C, and can be flattened thermally.

Sample preparation. The polymer films were prepared by
spin casting 100 pl of the polymer solution on thin glass slides
at 3000 rpm for one minute. This results in a film thickness of 1
um in the case of the Pazo polymer and of 600 nm for the pol-
y(MMA-co-DR1A). The film thickness was directly obtained with
the help of an atomic force microscope and the cross-section
analysis of a scratch within the polymer film.

Methods

The interference pattern is generated using a homemade two-
beam interferometer with a continuous wave diode pumped
solid state laser of the wavelength 491 nm (Cobolt Calypso). The
beam diameter is set to 4 mm and the total intensity to 200 mW
cm 2, To probe the diffraction efficiency a 633 nm HeNe-Laser
(Uniphase) with a beam diameter of 3 mm and an intensity of 30
mW cm ™2 is focused on the sample.

The in situ atomic force microscope (AFM) measurements
are performed using a PicoScan (Molecular Imaging) AFM
working in intermittent contact mode. The scan-speed of the
AFM is set to 1 Hz with a scan-area of 10 x 10 um and a reso-
lution of 512 x 512 pixel. Commercial tips (Nanoworld-Point
probe) with a resonance frequency of 130 kHz, and a spring
constant of 15 N m~ " are used for measurements.

Commercially available Si-Detectors (Thorlabs DET 100A/M)
are used in the diffraction efficiency (DE) set-up to measure the
intensity of the diffracted probe beam. A longpass filter (600
nm) was placed in front of each photodiode in order to be only
sensitive to the probe beam. The set-up is controlled and the
signals are recorded by an AD/DA converter (Kolter Electronic,
PCI-AD12N-DAC2). The software Profilab-Expert (Abacom) for
visual programming is used to synchronize the DE and two-
beam-interference set-up. The intensity of the diffracted light
is recorded every 200 ms.

In order to change the position of one mirror in the two-
beam-interference set-up to introduce a phase delay between
the two interfering beams, a piezo stack actuator (PiezoSys-
temJena, PA8-14 SG) with a closed loop feedback system and
a travel maximum of 9.5 pm, controlled by a piezo-controller
(Piezo System Jena, 12V40SG), is used. Additionally a Pockels
cell (Thorlabs, EO-PC-550) acting as an optical switch is inte-
grated into the system for fast switching between the two-beam-
interference lithography and single beam erasure experiment.
The voltage is supplied by a high voltage amplifier (Trek 610D)
which also allows driving the Pockels cell as a lambda quarter or
lambda half wave plate depending on the applied voltage.

The AFM measurements performed ex situ (measurements of
film thickness and SRG height before and after thermal treat-
ment) are carried out using an NTEGRA (NT-MDT) AFM oper-
ating in intermittent contact mode. Commercial tips
(Nanoworld-Point probe) with a resonance frequency of 320

This journal is © The Royal Society of Chemistry 2019
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kHz, and a spring constant of 42 N m ' are used for these
measurements. All experiments are carried out under yellow
light in the laboratory (to avoid undesirable photo-
isomerization) and under ambient conditions, ie., at room
temperature with a relative humidity of 55%. The whole set-up
(see Fig. 1) was covered with a non-transparent encapsulation in
order to avoid any influence of the environment on the
measurement (room light, air circulation).

Results and discussion

In order to study the surface relief grating (SRG) formation
a novel set-up consisting of three parts is designed enabling in
situ recording the change of the SRG-height and diffraction
efficiency (DE) as a function of irradiation time (Fig. 1). The first
part contains a two beam interference set-up that permits to
generate well-defined spatiotemporal intensity or polarization
interference patterns by changing polarization of two inter-
fering beams in a controlled manner. In this part of the set-up
the laser beam (A = 491 nm) is spatially expanded and then
collimated with a pair of focusing and collimating lenses and
a pinhole (Fig. 1). Additionally, a 50 : 50 beam splitter is added
in order to separate the initially single beam into two beams of
the same intensity. These two beams then pass through a set of
wave plates and polarizers allowing independent control of
intensity and polarization. For instance, adding a lambda
quarter plate to each of the beam paths of the interference set-
up, one with an angle of +45° and the second with an angle of
—45° with respect to the optical axis, results in the right-left-
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circular interference pattern (RL). The second part of the
home made set-up is an atomic force microscope (AFM)
enabling measurements of the polymer topography changes in
situ, i.e. even while irradiation conditions are varying. The
sample is orientated with the polymer surface pointing towards
the AFM tip, such that irradiation is “from below”, i.e., through
the glass surface (Fig. 1).

To obtain at the same time information about the alignment
of the azobenzene side chains in the polymer film, a red probe
laser beam (HeNe, 633 nm) is integrated into the set-up. Its wave
length of 633 nm falls out of the absorption bands of both
polymers studied in this work and does not affect the polymer
film, so that diffraction efficiency (DE) of the formed SRG can be
recorded simultaneously. With our set-up we can acquire the
intensity of the diffraction pattern in reflection mode in order to
determine the DE of the first order diffraction (Fig. 1). To cali-
brate the DE, a beam splitter with the ratio of (T90/R10) is used
in the DE set-up, such that 90% of the light arrives on the
sample and 10% on a photodiode. The signal of this photodiode
is recorded during the whole measurement for controlling the
stability of the probe beam (and its intensity I, prior to arrival at
the sample) during the experiment. The diffraction efficiency is
defined as the ratio of the intensity of diffraction order (Ipc) and

. . . R I .
the intensity of the incoming light (I,): n = %, where I, is 90%
0

of the total intensity of the probe beam. The DE set-up addi-
tionally includes a lambda quarter wave plate converting the
polarization of the probe beam from linear to circular. By
adding a polarizer one can deliberately set the polarization state
of the probe beam (e.g. S- or P-polarization). By adding

D4

Fig. 1 Sketch of the experimental set-up consisting of three parts: (i) a two beam interference part for generation of the interference pattern
(blue laser line), (ii) an atomic force microscope (AFM) for in situ (during irradiation) recording of the surface morphology and (iii) a diffraction
efficiency (DE) set-up (red laser line) enabling the collection of information about the birefringence grating in situ. The mirror My is combined
with a piezo actuator to shift the position of the mirror and thereby to introduce a phase delay between the two interfering beams resulting in
a lateral shift of the whole interference pattern along the polymer film. In order to erase the SRG by irradiation, a Pockels cell is placed in one of
the two interfering beam lines (S = shutter, M = mirror, D = detector, P = polarizer, H = half-wave-plate, BS = beam splitter, Q = quarter-wave-
plate, CL = collimating lens, FL = focusing lens, PH = pin hole).

This journal is © The Royal Society of Chemistry 2019 RSC Adv., 2019, 9, 20295-20305 | 20297
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a polarizer in front of the photodetector, one can measure both
components of the diffracted light: polarized in plane (further
denote as 1% order DE (P), measured by photodiode D;) and out
of plane (cross-polarized, further denote as 1% order DE (8S),
measured by photodiode Ds) with the probe beam. From the
cross-polarized component one can directly obtain information
about the birefringent grating, i.e. alignment of the azobenzene
side chains within the polymer film. The set-up allows also to
record the 2™ order DE (photodiode D,) and the directly re-
flected light (0™ order of diffraction, photodiode D,). Adding
a piezo actuator to the set up permits nanometer sized position
control of mirror M, (see Fig. 1) for shifting the interference
pattern across the polymer film plane in a defined way. Repo-
sitioning the mirror simply introduces a phase delay between
the two interfering beams, resulting in a change of the local
distribution of the polarization vector within interference
pattern. A Pockels cell and a polarizer are further placed in the
second beam line acting as a fast optical switch. Applying the
“lambda half” voltage periodically to the Pockels cell one can
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rotate the polarization of the writing beam by 90° such that the
light either passes the polarizer or is blocked. In this way, we are
able to switch rapidly between two-beam interference and the
single beam “erase” configuration of the set-up. The three
different set-ups: two beam interference, AFM and DE acquisi-
tion are controlled and operated with software specifically
designed by us to record signals of the photodiodes, control the
irradiation shutter, position the mirror and apply voltage on the
Pockels cell. The computer generated signals regulate, with the
help of an AD/DA converter, the irradiation, the voltage send to
the piezo-controller and the high-voltage-amplifier used for
driving the Pockels cell. These signals are recorded in the
diffraction efficiency set-up as well as with the AFM by sending
the signals to the aux-input of the AFM controller.

Fig. 2 shows the in situ recorded SRG height and DE signal
for the Pazo and poly(MMA-co-DR1A) polymer films as a func-
tion of irradiation time. The probe beam is p-polarized for all
results discussed in this paper, while one photodiode measures
the intensity of the first order diffraction in-plane (1° order DE
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Fig. 2 (a) In situ recorded SRG height and diffraction efficiency of the 15 order of the Pazo polymer film (hpa,o = 1 um) irradiated with RL
interference pattern as a function of time. The polarization analysis of the 15 order DE signal is shown for two different irradiation times (1= 30's, Il
= 3 min) on the right. At the beginning the diffracted light is circularly polarized, but with time the component pointing along the polarization of
the probe beam dominates. (b) In situ recorded SRG height and 15 order DE of the poly(MMA-co-DR1A) polymer film (Ppoly(MmA-co-DR1A) = 600
nm) irradiated with RL IP as a function of irradiation time. (c) AFM micrograph of the Pazo polymer film during irradiation, the direction of
scanning is from top to bottom documenting the temporal evolution of polymer topography (the direction of scanning is indicated by the red
arrow at the bottom right corner) as a function of irradiation time. The AFM scanning starts without irradiation (flat topography), at the position
marked by the dashed white line the irradiation with RL interference pattern (1 = 491 nm, / = 200 mW cm?; 4 = 2 um) is switched on. The
distribution of the electric field vector relative to the topography maxima and minima is shown by white arrows.

20298 | RSC Adv., 2019, 9, 20295-20305 This journal is © The Royal Society of Chemistry 2019


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra02571e

Open Access Article. Published on 28 June 2019. Downloaded on 1/17/2026 9:38:33 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

(P)), and the second one measures first order diffraction out-of-
plane (1* order DE (S)). The presence of the out-of-plane
component of the signal indicates that due to the interaction
with the sample the polarization of the p-probe beam is rotated.
In the case of the Pazo polymer, the DE signal of the first order
diffraction on both photodiodes (red and blue curves in Fig. 2a)
continuously increases during irradiation with a RL interfer-
ence pattern (IP). The DE signals in-plane (red curve, 1°° DE (P))
and out of plane (blue curve, 1% DE (8)) start to decrease when
the SRG height reaches 120 nm and 60 nm, respectively. This
behavior follows directly from the Raman-Nath theory>**” and
gives rise to describe intensity variation as a function of SRG
height by Bessel function first kind of order. The ratio of the in-
plane and out-of-plane component of the 1% order DE is
changing with time. At the beginning (after 30 s of irradiation)
the first order diffraction is circularly polarized (Fig. 2a(I)),
while for longer irradiation times (more than 3 min) the in-
plane component is dominating (Fig. 2a(Il)). The polar plot in
Fig. 2a(I and II) is measured by switching off the pump beam
and recording the intensity of the first order diffraction as
a function of rotation angle by rotating the polarizer in front of
photodiode D; (in plane component). After 1 hour irradiation
the SRG height is 260 nm. The saturation in the SRG growth
under irradiation with RL interference patterns for a 1 um thick
film is achieved after ca. 10 hours of irradiation at which the
height is around 900 nm.

In the case of the second polymer studied here (poly(MMA-
co-DR1A)), the saturation of the SRG height is already achieved
after 15 minutes of irradiation with the final value of 550 nm
(total film thickness of 600 nm). The DE is showing similar
behavior as in the case of the Pazo polymer film, but due to the
rapid evolution of the grating, the characteristic 1* order DE (P)
peak is reached faster, i.e. after 86 seconds of irradiation, at
which the SRG height is again 120 nm (Fig. 2b). There is also no
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significant out of plane component in the first order DE
noticeable (see blue curve 1°° DE (S) in Fig. 2b).

With the above described set-up we are able to generate
a reversible switching of the polymer topography between
a structured and a flat state utilizing irradiation with changing
interference patterns. This was achieved by changing the posi-
tion of the mirror M4 (see Fig. 1) during irradiation which
results in a lateral shift of the whole interference pattern along
the polymer topography. Fig. 3 shows the results of shifting the
interference pattern by half of the optical period for Pazo
polymer film. The experiment is performed as follows: first the
sample is irradiated for 180 seconds with RL polarization IP
(onset of irradiation is shown by 1°* dashed white line at the top
of Fig. 3a). Polarization IP means that the intensity along the
sample is constant, while the orientation of the electric field
vector (see white arrows in Fig. 2c and 3a) varies locally with
a certain period (optical period, A). This first irradiation step
generates a grating height of 40 nm (Fig. 3a). Afterwards the
local distribution of the electrical field vector is shifted by half
of the optical period, which corresponds to 90° rotation of local
electrical field vector (see white arrows in Fig. 3a). After the shift
the SRG height continuously decreases till a flat topography is
reached (dashed white line at the bottom of Fig. 3a). At this
point the irradiation is stopped. This erase process is slightly
faster (160 s, ie. 0.29 nm s ' of topography flattening)
compared to SRG inscription (180 s, 0.20 nm s~ of topography
increase). A possible explanation is that the initial state of both
processes is different. During irradiation with IP and corre-
sponding cyclic trans-cis photoisomerization the azobenzene
groups rotate to align perpendicularly with their main axis to
the electrical field vector resulting in locally ordered domains.
Since in the case of the SRG formation the azobenzene mole-
cules are initially randomly orientated within the polymer film,
the time needed for local azobenzene alignment is larger than
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Fig.3 (a) In situ recorded AFM micrograph of the Pazo polymer film during irradiation with RL IP (1 = 491 nm, | = 200 mW cm~2; 4 = 2 pm), the
local distribution of polarization is indicated by white arrows. AFM scanning starts at the top in dark with flat topography; at the point marked by
the 1% (I) white dashed line, the irradiation with IP is switched on for 180 s; at the point marked by “shift" at the 2" (Il) dashed white line, the
interference pattern is shifted by half an optical period. The new distribution of the electrical field vector relative to the polymer topography is
shown as above. The shifting of the interference pattern is equivalent to a rotation of the local electric field vectors by 90°. At the bottom of the
micrograph marked by 3™ (Ill) dashed white line, the irradiation is switched off. (b) In situ recorded SRG height and diffraction efficiency as
a function of irradiation time. At the point where the interference pattern is shifted, the increase in the SRG height becomes noticeable (black
curve), while the diffraction efficiency decreases (red and blue curves). The SRG is erased with time accompanied by the formation of a new
birefringent grating in the bulk.

This journal is © The Royal Society of Chemistry 2019 RSC Adv., 2019, 9, 20295-20305 | 20299


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra02571e

Open Access Article. Published on 28 June 2019. Downloaded on 1/17/2026 9:38:33 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

in the case of irradiation with shifted interference patterns. In
this case, due to local rotation of the electric field vector by 90°,
the probability to absorb light by the aligned azobenzene
molecules is larger thus resulting in a faster kinetics of topog-
raphy response. At the point where the interference pattern is
shifted, a fast jump in the SRG height of 5 nm became notice-
able followed by a linear decrease (Fig. 3b, black curve). The
explanation for this behavior is based again on local pre-
orientation of the azobenzene molecules during the first step
of irradiation. At the point of IP shifting all the aligned mole-
cules are able to absorb incoming light resulting in noticeable
increase of the free volume in polymer film and as a conse-
quence its height increases.

The in-plane component of the diffraction efficiency of the
first order diffraction (red curve, 1% order DE (P), in Fig. 3b)
continuously increases with SRG height. The out of plane
component (blue curve, 1°° order DE (S), in Fig. 3b) saturates
after a certain time. At the point where the interference pattern
is shifted, there is fast drop (within 6 seconds) of out-of-plane
component (blue curve in Fig. 3b), at this point the SRG
height and the out-of-plane component contribute to the overall
DE signal. After 37 seconds the in-plane component (red curve
in Fig. 3b) settles to zero, while the increasing 1°* order DE (S)
component and the left SRG result in DE signal of 0.4%.

A short time after shifting of the IP, both components of the
DE, i.e. in- and out-of-plane, start to increase, while the SRG
height decreases. At the point where the topography becomes
flat there is nevertheless still significant DE signal indicating
the formation of a new birefringent grating from alignment of
azobenzene groups in the bulk. In this case the erase process
with shifting the interference pattern can be understood as
erasing the primary, topographical SRG and forming a new
birefringent grating in the bulk. Further irradiation will create
a new SRG but shifted by half an optical period as described
below (see Fig. 5).
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A similar behavior is also observed in case of poly(MMA-co-
DR1A) polymer films (Fig. 4). Since the response of this polymer
on irradiation is faster, the first exposure to RL IP lasts for only
48 seconds resulting in a grating height of 80 nm (speed of
grating increase is 1.7 nm s~ ). After shifting the interference
pattern by half a period, the topography is flattened within only
34 seconds (speed of grating decrease is 2.1 nm s ') (Fig. 4). At
the point where the topography is flat again, there is a small
signal in the 1°* order DE indicating the formation of new bulk
phase grating. The out-of-plane component in the DE (blue
curve, 1% order DE (S), in Fig. 4b) is negligible. In contrast to the
Pazo polymer film there is no jump in the SRG height detected
at the point where the interference pattern is shifted. One
possible explanation for this is that due to the fast response on
irradiation, the topography jump is completed within a time too
short for the AFM to detect it.

In the previous experiments the irradiation is stopped when
the surface is flattened, but in case of further irradiation after IP
shifting, the formation of a new SRG is observed with positions
of maxima and minima interchanged (Fig. 5). Moreover, when
the IP is shifted back to its initial distribution, the primary SRG
is recovered. This procedure can be conducted repeatedly, as
shown in Fig. 5, where the continuous scan with repeated shifts
leads to a checkerboard pattern in the AFM recording. For the
Pazo polymer, the irradiation is stopped after 4 cycles of IP
shifting, at a point where the surface has just been rendered flat
again (Fig. 5a).

The presence of the diffraction efficiency signal (red and blue
curves in Fig. 5b) indicates the existence of bulk birefringent
grating due to local alignment of the azobenzene side groups.
This phase grating decreases in the dark indicating orientation
relaxation of the azobenzenes with time. A similar experiment is
performed in the case of poly(MMA-co-DR1A) polymer films that
permits the same reversible surface structuring (Fig. 5c and d).
In this case, the shifting is carried out seven times as indicated
in Fig. 5c. Here, the irradiation time for each step is increased

J ) 1I '\.. l—1st. ord:ar DE (P)|

O,S'IE |—1st. order DE (S) -80
§ — SRG height
= |— irradiation
2 0,61 |— mirror pos. -60
c €
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£ 0,4 (40
5 ©
] e
0241 Imr 20
£ ]\ e
® ol F————
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Fig. 4 (a) In situ recorded AFM micrograph of the SRG formation and erasure within the poly(MMA-co-DR1A) polymer film (hpoiyMma-co-DR1A) =
600 nm) during irradiation with a RL interference pattern (A = 491 nm, | = 200 mW cm™2; 4 = 2 pm). The AFM scanning proceeds from top to
bottom (the direction is indicated by red arrow in the lower right corner), during scanning in dark, the topography is flat. At the position marked
with the 1! (I) dashed white line the irradiation with RL IP is switched on for 48 seconds. At the second dashed line (Il) the interference pattern is
shifted by 1/2 (half of the optical period). The local distribution of the electric field vector relative to the topography extrema is shown by white
arrows for both cases. After erasing of the polymer grating (34 seconds of irradiation), the laser is switched off (at the point marked by the 3™ (Il)
dashed white line). (b) In situ recorded SRG height (black line) and 1°* order diffraction efficiency in plane (red line, 15 order DE (P)) and out of plane

(blue line, 1% order DE (S)) as a function of time.
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Fig.5 (a) In situ recorded AFM micrograph of the Pazo polymer film (Ap,,0 = 1 pm) during irradiation with RL IP (A = 491 nm, / = 200 mW cm™~2; 4
= 2 um). The interference pattern is shifted four times by 1/2 of the optical period each after 60 s of irradiation. After each shifting of the IP the
initial SRG is erased and a new SRG is formed with interchanged position of topography maxima and minima. The irradiation was stopped at the
point where the surface was flat again, marked by dashed white line (I1). (b) The evaluation of the 1% order DE recorded in plane (red curve) and
out-of-plane (blue curve) is presented as a function of time for four successive IP shifts. A drastic drop in the diffraction efficiency became
noticeable whenever the interference pattern is shifted. (c) AFM micrograph of poly(MMA-co-DR1A) film topography (ol MMA-co-Dr1a) = 600
nm) irradiated with periodically shifted RL IP with continuously increasing irradiation time: 7's, 14 s, 17 s, 32 s, 44 s, 56 s, 65 s. (d) The corre-
sponding 1% order DE recorded simultaneously with the topography change in (c). Red line in (a) and (c) indicates the direction along which the

cross-section was recorded as indicated in the corresponding plots below (a) and (c).

between successive shifting events resulting in a continuous
increase in SRG height showing also here the independency of
the erase process from the SRG height. By continuously shifting
the interference pattern, e.g. by applying a saw-tooth signal to
the piezo, one can shift the SRG over several micrometers
(Fig. 6).

In this way, we are able to induce fluctuations in the polymer
topography resembling propagation of the water wave (Fig. 6b).
To achieve continuous change in the polymer topography
without intermittent flat state, we shift the IP in each subse-
quent step by fourth of the optical period which results in
propagation of the primary topography maxima/minima over 14
pm to the right (see Fig. 6b). The corresponding changes in the
DE signal are shown in Fig. S2 (see ESIt).

Summarizing this part we can state that the erasure of the
polymer topography by applying shifts to the interference
patterns (i.e. rotating the local distribution of the electric field
vector by 90°) is an efficient and fast process which proceeds by

This journal is © The Royal Society of Chemistry 2019

overwriting the initial SRG by a new bulk birefringent grating.
In order to estimate the efficiency of this erase mechanism, we
compare in the following how erasure can be achieved alter-
natively by applying a single beam or by thermal treatment.

Erasing a SRG pattern with a single laser beam

A fast optical switch is integrated into the set-up in order to turn
off one of the two interfering beams. This is achieved by
employing a Pockels cell and an additional polarizer (see Fig. 1).
By applying the lambda-half voltage on the Pockels cell the
polarization of the writing beam is rotated by 90° so that the
light will be blocked by the subsequent polarizer. This estab-
lished a very fast switching between two-beam and single beam
erasure. Due to the two integrated lambda quarter plates of the
RL interference pattern, the single beam is also circularly
polarized, which can be expected to induce an effective erasure
process.*® Fig. 7 shows the results of the single beam experiment
performed with a poly(MMA-co-DR1A) structured polymer film.

RSC Adv., 2019, 9, 20295-20305 | 20301
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(@) AFM micrographs of the Pazo polymer irradiated by shifting the RL IP 26 x times by 1/4, which corresponds with a total shift of ca. 7

periods of the optical grating, i.e. over 14 um distance. The dashed red vertical line indicates the position of one of the primary topography
maxima. With the IP shifting the SRG propagates to the right resembling a traveling wave schematically shown in (b).

The film was first irradiated with RL IP for 1 minute resulting in
80 nm SRG height. Afterwards the writing beam is switched off
for 10 minutes. During this time the in-plane component of the
1% order DE drops exponentially while the SRG height stays
constant (Fig. 7). In the following step switching on the erase
beam results in fast decrease of the DE signal and SRG height.
The irradiation is stopped after 400 min when no diffraction
efficiency signal could be detected. At this point the polymer
film is found to be atomically smooth (see Fig. 7c). In the case of
Pazo polymer the erasure with the circularly polarized beam
does not result in a complete flattening of the polymer topog-
raphy as well as vanishing of DE signal even after 20 h of irra-
diation (see ESI, Fig. S11). Comparing these results with those
obtained by the shifting procedure (Fig. 3 and 4) shows that
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erasure via shifting is indeed much faster for both polymers,
but the final state of the flattened polymer film is different. In
the case of single beam erasure, the alignment of azobenzene
molecules introduced by the IP irradiation is getting destroyed
and transformed to a random orientation indicated by
decreasing of DE signal. Shifting the interference pattern
eliminates the grating topography by overwriting the initial
birefringent grating with a new one. At the point of a flat surface
the bulk is already reoriented with a pure phase grating which
can directly be seen in the DE (red and blue curves in Fig. 3b).

To compare the optically induced SRG erasure process to the
thermal one, we employed another home-made set-up consist-
ing of a hot plate with a temperature sensor onto which the
sample is placed, and an optical part facilitating red laser beam

single beam
erase ()

Fig. 7 Single beam erasure experiment of the SRG in a poly(MMA-co-DR1A) film. (a) In situ recorded SRG height (black curve) and in plane
component of the 15 order DE signal (red curve) as a function of time. The gray curve indicates irradiation steps. The polymer film is illuminated
with RL interference pattern for 1 min resulting in 80 nm SRG height (see AFM topography in “b"). Afterwards the irradiation is switched off for
10 min. The 15 order DE signal decreases with time, while the SRG height is constant. In the following step, the circularly polarized erase beam is
switched on resulting in a decay of the SRG height and DE signal. (b) In situ recorded AFM micrograph showing the change in the SRG height as
a function of time. The scanning is started at the top in dark where the topography is flat followed by 1 min irradiation with RL IP started at point
marked by 1% (1) and stopped at 2" (Il) dashed white line, after 10 minutes scanning in dark, the circular polarized erasure beam is switched on (3™
white dashed line (ll1)). (c) Polymer film surface after 400 min of single beam irradiation. The SRG (80 nm) is completely erased and the DE
reached its initial value of zero (lg. = 200 mW sz,' Isingle beam = 100 mW sz,' A=2um; hpoly(MMAfcofDRlA) =600 nm).
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Fig. 8 Thermal treatment of the surface relief grating: diffraction efficiency (red curves) of the Pazo (a) and poly(MMA-co-DR1A) film (b) as
a function of time during temperature increase. The Pazo film shows no significant drop in the DE as well as in grating height under heating up to
250 °C. The poly(MMA-co-DR1A) film shows a fast drop in the DE down to zero within 260 seconds initiated at 80 °C. The ex situ acquired AFM
micrographs show that the 400 nm SRG was completely erased (/ = 200 mW cm?; A4 = 2 ym; Ppoly(MMA-co-DR1A) = 600 NM; hp,yo = 1 um).

for measurements of diffraction efficiency to be directed at the
polymer sample. As can be seen from Fig. 8 the erasure of
a 400 nm high grating of poly(MMA-co-DR1A) sets in at ca. 80 °C
(Tg ~ 102 °C)*® and after ca. 260 seconds the diffraction effi-
ciency signal drops to zero (Fig. 8b). So, the thermal erasure
needs around 5 minutes and heating up to 100 °C, while optical
erasure by IP shifting takes place within 34 seconds at room
temperature. Single beam erasure requires the most time (400
min). In contrast, it was not possible to flatten Pazo film ther-
mally. Indeed, heating up to 250 °C, at which the decomposition
of the polymer materials sets in (see TGA measurement in ESI,
Fig. S3at), does not result in decrease of the diffraction effi-
ciency signal (red curve in Fig. 8a), the SRG height is also only
slightly affected: it drops from 300 to 250 nm within 30 minutes
of heating at 250 °C. As can be seen from DSC measurements
(ESI, Fig. S3bt), there is no clear indication of the glass transi-
tion temperature. This result is in contrast to the work pub-
lished by Ferreira et al., who measured 95 °C as T, for this
polymer,* but in a good agreement with the results of Stumpe
et al.®® where it was reported that the SRG inscribed in Pazo
could not be erased by heating at 200° over 6 hours. This is
explained by the presence of ionic interactions in the side
chains of the Pazo (see chemical structure in Fig. 2a).*~** Thus
with these results, we can state that the erasure of the surface
relief grating of Pazo polymer can be done quite easily and fast
(160 seconds of irradiation at room temperature) using the IP
shifting method (Fig. 3), with single beam the procedure takes
20 hours and does not result in complete elimination of the
grating, while the thermal erasure is not possible at all. These
experiments show that the temperature stability of the SRG
depends on the polymer structure itself.

Conclusions

Here we have reported on the reversible surface structuring of
photosensitive polymer films using a novel method of fast SRG
erasure simply by shifting the interference pattern by half an
optical period. This is achieved by utilizing a home-made set-up

This journal is © The Royal Society of Chemistry 2019

to record the changes in the surface relief grating (SRG) and the
diffraction efficiency (DE) signal upon irradiation with varying
interference patterns in situ. Our setup also permits to separate
the SRG part from the birefringent grating component in the
DE, so that we can directly probe the molecular orientation of
the azobenzene moieties in the bulk. Integrating a phase delay
stage into the two beam interference set-up allows for shifting
the interference patterns along the sample plane; in this way the
polymer surface can be rendered “dynamic”. A shift of half of
the optical period leads to erasure of the just created surface
grating by inscribing a new birefringent grating in the bulk.
Depending on the polymer material this leads to the generation
of a pure phase grating without any surface structure (with the
interesting example of the Pazo polymer studied here). The
reversibility of the surface structuring is demonstrated for two
different polymers. Attempts to erase the SRG by single beam
irradiation and a change in the temperature required signifi-
cantly more effort than optical shifting method. In the case of
thermal erasure, the Pazo polymer is found to be stable such
that both gratings, topographical and the bulk birefringence
withstand temperatures up to 250 °C over hours of heating,
while in the poly(MMA-co-DR1A) film the SRG is erased
completely with heating at the glass transition temperature Ty
during 5 minutes. Erasing SRGs with a single circularly polar-
ized beam is feasible, but requires 400 minutes of irradiation
time for poly(MMA-co-DR1A), while the more rigid polymer Pazo
takes more than 20 hours of irradiation. In contrast, the optical
shift method reduces these times to only 160 seconds and 34
seconds irradiation time for Pazo and poly(MMA-co-DR1A)
polymers, respectively. This phenomenon is simply related to
the fact that shifting the interference pattern produces a pure
phase grating with a flat topography, while erasing with a single
beam completely destroy the grating restoring the initial
amorphous state of the polymer film and thus requires more
time. The method proposed here bears one decisive advantage:
patterns in topography and other optical properties such as
birefringence are inscribed at the same time. By using the
peculiar dynamics and depending on the protocol of optical

RSC Aadv., 2019, 9, 20295-20305 | 20303
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settings we can end up with topographical and optical (bire-
fringence) patterns, or combinations thereof. This might lead to
hitherto unprecedented applications as indicated in the
introduction.
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