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Silver nanoparticle-based catalysts are used extensively to kill bacteria in drinking water treatment. However
secondary contamination and their high cost require scientists to seek alternatives with non-toxicity, high
activity and low cost. In this article, we develop a new hydrogel-immobilized lysozyme (h-lysozyme) that
shows excellent antibacterial performance, including high activity duration of up to 55 days, inhibition
efficiency as high as 99.4%, good recycling capability of up to 11 cycles, a wide temperature window and
extremely low concentration. The immobilized lysozyme displayed greatly improved bacterial inhibition
with both Gram-negative E. coli and Gram-positive B. subtilis, which enables broad antibacterial
applications in various water systems. In parallel, the non-toxic structure and high stability of the h-
lysozyme without additional contamination make it a promising alternative to nanoparticle catalysts fur

rsc.li/rsc-advances use in drinking water purification.

Conventional disinfection technologies for drinking water
include physical treatments, such as microfiltration, ultrafiltra-
tion and UV irradiation, and chemical methods using chlorine,
bromine, silver, copper, zinc and ozone."* However, most tech-
nologies generate by-products and heavy metal residues along
with high cost, which largely limit their further applications.*®
Recently lysozyme has been attracting attention in the preserva-
tion of foods and the inhibition of bacterial and virus growth.*®
Lysozyme is an antimicrobial enzyme produced by animals that
forms part of the innate immune system,”** and which exists in
secretions, including tears, saliva, human milk, and mucus. In
addition to its antimicrobial activity,">** lysozyme also shows
potential in anti-biofouling and water disinfection."*™*

Most isolated enzymes pose a challenge in terms of stability,
sensitivity to environmental change and recycling.’®"” In
particular, applying lysozyme onto a membrane using chemical
methods drastically reduces its activity.®>® Scientists thus
attempt to immobilize enzymes to improve their performance
and expand their applications.”** Saeki et al. immobilized
lysozyme on a reverse osmosis (RO) membrane via an amine
coupling reaction with a reduced water flux.”* Forming a robust
chemical cross-linking configuration using glutaraldehyde
molecules” and Lentikats® polymers*® can improve the
stability, but it will deform the initial structure and thus lose
some activity. Immobilizing lysozyme into a polymer network
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can enhance the interaction area with biological contaminants
and thus improve the removal efficiency at a low dosage.”®>*

Here, we developed a new hydrogel-immobilized lysozyme (h-
lysozyme) to inhibit both Gram-negative (E. coli) and Gram-
positive (B. subtilis) bacterial growth in water. The immobilized
lysozyme showed greatly improved activity, efficiency and recycling
capability at room temperature.**>® Owing to the strong bonding to
the hydrogel and the porous structure of the cross-linked network,
the antibacterial activity can be retained for a long period, e.g,
months to years.”®” The large surface area of the hydrogel also
increases the bacterial molecular capture ability and thus increases
the reaction opportunities with lysozyme. The excellent antibacterial
performance along with the non-toxicity and low cost of the h-
lysozyme make it a promising alternative to replace the current
silver particles in various water environments.*

As illustrated in Fig. 1a, a cross-linked porous hydrogel
network is formed after the polarization of poly(ethylene glycol)
methyl ether acrylate (PEGMA) monomer vig UV irradiation.
During this process, the lysozyme molecules are immobilized
into the matrix. The largely exposed surface increases the inter-
action with bacteria while the porous structure provides suffi-
cient space to capture bacteria (Fig. 1b). Then the presence of
lysozyme introduces a catalytic reaction of the hydrolysis of
peptidoglycan, which is the major component of the cell wall of
most bacteria, as well as counteracting the osmotic pressure of
the cytoplasm and binary fission during bacterial cell reproduc-
tion. Upon the reaction, the 1,4-beta-linkages between N-acetyl-p-
glucosamine (NAG) and N-acetylmuramic acid (NAM) in pepti-
doglycan are broken (Fig. 1c). As a result, the hydrolyzed NAG and
NAM molecules lead to the lysis of the bacteria.’>*>
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Fig. 1 Schematic diagram of hydrogel-immobilized lysozyme for antibacterial membrane modification. (a) The synthesis process, (b) the

antibacterial process and (c) mechanism for killing bacteria.

A lysozyme with high activity and long stability is critical in
antibacterial applications. It was found that the activity of
lysozyme powder can remain for as long as two years.”**>
However, the activity of freestanding lysozyme will begin to be
mitigated after being dispersed in water solution over a long
time.**** In order to compare their activity, pure lysozyme
powder, lysozyme in deionized (DI) water and h-lysozyme
samples were checked by an ultraviolet (UV) spectrophotom-
eter. In parallel, the samples under —20 °C, —4 °C, room
temperature (RT) and high temperatures of 60 °C, 65 °C, 70 °C,
80 °C were also measured.

Lysozyme activity was checked via a typical process using
whole cells of Micrococcus lysodeikticus (ML) as substrate.>>3¢
The ML was dissolved in 0.1 M phosphate buffer saline (PBS)
solution (pH = 6.24) at RT. Then the concentration was
adjusted until the measured UV density at 450 nm reached
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approximately 1.3. The optical density (OA) evolution vs. time
was recorded to calculate the activity:

Activity (U mg ') = AODyso x 1000/m (1)
Here AODy,;, is the difference in optical density between 15 s
and 75 s, and m is the mass (mg) of lysozyme in 0.5 mL solution.
The relative activity (R%) is obtained:
R% = (Ai/Ay) x 100 (2)
A; stands for the measured activity of samples (U mg™ %), and 4¢
represents the activity of freestanding lysozyme under same
conditions.
It was found that h-lysozyme exhibits a 120-250% higher
relative activity compared to lysozyme powder or lysozyme in
water solution (less than 100%) at RT (Fig. 2a), —4 °C (Fig. 2b)
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Fig. 2 The activity of h-lysozyme at (a) room temperature, (b) —4 °C, (c) —20 °C and (d) high temperatures (60 °C, 65 °C, 70 °C, 80 °C).
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and —20 °C (Fig. 2c), respectively. Activity retention of up to 55
days was also recorded, indicating long-term stability. The
fluctuation in the relative activity of the immobilized lysozyme
is due to variations during sample preparation and UV
measurement. At high temperature, 60 °C, the h-lysozyme dis-
played similar activity to lysozyme powder while it was higher
than that of lysozyme in water (Fig. 2d). A relatively high activity
at higher temperatures of 65, 70 and even 80 °C was still
maintained, which demonstrates that h-lysozyme has good
temperature tolerance. The hydrophilicity and large surface
area of the PEG polymer based hydrogel attract plenty of
bacteria, thus increasing the contact interface between the
lysozyme and the ML molecules. As a result, a clearly improved
activity under varying environments and temperatures was
achieved.

The activity of the lysozyme in water at different concentra-
tions was investigated.?”*® It was found that the lysozyme has
high activity at 0.04 mg mL™" (Fig. 3a, black). The activity of
killing bacteria was decreased until an extremely low concen-
tration of 0.0004 mg mL ™" (Fig. 3a, blue). The recycling activity
of the pure lysozyme was studied, as shown in Fig. 3b. It can be
observed that most activity was lost after two cycles, which was
caused by the decreased contact between lysozyme and ML due
to the accumulation of debris on the surface. As a comparison,
the hydrogel network with large spaces enhances the accom-
modation of debris and dead bacteria, resulting in a large
exposed interface remaining. The recycling activity of both
lysozyme and h-lysozyme is shown in Fig. 3c. It can clearly be
seen that the immobilized lysozyme showed a high activity of
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about 30% even after 11 cycles, while the activity of the lysozyme
without immobilization dropped to less than 10% after 8 cycles.
These results further confirm that the porous hydrogel frame-
work delivers sufficient contact interface between the lysozyme
and bacteria to drastically improve the activity. In addition, the
cross-linked net matrix also expands the acceptance capacity of
the killed bacteria, avoiding surface coverage causing a loss of
activity, which is a generic problem in the traditional silver
particle killing process.

The antibacterial capability was first tested by exposing the
h-lysozyme to the Gram-negative bacterial module E. coli. In
order to fast check the bacterial regrowth, a lysogeny broth
media (LB) bacterial culture solution was used.* Fig. 4a illus-
trates that UV-lysozyme (red) has the highest inhibition
compared to hydrogel (blue), lysozyme (green) or control (black)
samples. Specifically the E. coli was completely inhibited by
lysozyme in the first 2 hours and showed a negligible increase
even after 8 hours, which indicates a remarkable inhibition of E.
coli. 1t should be noted that UV-irradiated lysozyme showed
slightly improved inhibition due to the activation of lysozyme
under irradiation. Interestingly, the hydrogel also displayed
certain inhibition to E. coli growth (blue). Large amounts of
bacteria were trapped inside the matrix and thus further growth
was prevented due to the change of environment.

In order to mimic the real environment in drinking water,
a solution with an initial E. coli concentration of 10° CFU mL "
was prepared and exposed to different samples of control (E.
coli), lysozyme, h-lysozyme and hydrogel, respectively. It was
observed that h-lysozyme showed excellent E. coli inhibition

a 14 b 12
1.2
—=— 0.04 mg/ mL 1.0
1.0+ —e— 0.004 mg/ mL —=— Istcycle
2 0.8} 4 00004 mg/mL 2 0.8} —e— 2mdcycle
8 0.6 8
6 0.6
04+
02l 04F 1
y ' 0.2 ' : : : : ; "
0 20 40 60 80 100 120 0 100 200 300 400 500 600 700

=
3
o
—_
N

Time (s)

(@)
—_
)
(=)

100+

o)
S
T

B
S
T

Relative activity (%)
[\S) [
(=) (=)

—a— Lysozyme
—e— h-lysozyme

Cycles

Fig. 3 The recycling activity test of lysozyme. (a) The activity of lysozyme with different concentrations at OD4s0. (b) The activity test of lysozyme
in solution for two cycles. (c) The comparison of activity of pure lysozyme and h-lysozyme as function of cycles.
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Fig. 4 The antibacterial results with different samples. (a) ODggo regrowth curves of E. coli bacteria exposed to different samples (blank as
control, 3.2 mg mL~* UV irradiated lysozyme, blank hydrogel and 3.2 mg mL~! lysozyme) at 37 °C for 8 h. (b) The concentration of E. coli in DI
water (10° CFU initial concentration) after treatment with 3.2 mg mL™! lysozyme, blank hydrogel and h-lysozyme, the natural E. coli as control. (c)
The calculated removal efficiency of E. coli after treatment with 3.2 mg mL™* lysozyme, blank hydrogel and h-lysozyme. (d) The concentration of
E. coliin DI water (10° CFU initial concentration) after treatment with 1 mg mL~! lysozyme, blank hydrogel and h-lysozyme, the E. coli as control.
(e) The calculated removal efficiency of E. coli after treatment with 1 mg mL™* lysozyme, blank hydrogel and h-lysozyme.

similar to that of pure lysozyme (Fig. 4b). The E. coli inhibition
efficiency was calculated based on the measured concentration
vs. the control concentration (Fig. 4c). The inhibition efficien-
cies of h-lysozyme and lysozyme were 99.4% and 99.0% in the
first hour and they were still 96.3% and 98.8% after 30 hours,
respectively. The E. coli inhibition with a low lysozyme
concentration of 1 mg mL™' was also studied, as shown in
Fig. 4d. As can be seen from the figure, h-lysozyme shows the
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best inhibition performance in contrast to pure lysozyme,
hydrogel or control samples. The inhibition efficiency of h-
lysozyme after 26 hours was as high as 97.3%, which is higher
than that of pure lysozyme of 96.4% (Fig. 4e), indicating
promising potential in long-term antibacterial capability.

In order to expand the antibacterial applications, the Gram-
positive bacteria Bacillus subtilis (B. subtilis) in water were also
tested.**® As shown in Fig. 5a, h-lysozyme exhibited the lowest
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Fig. 5 (a) Concentration evolution of B. subtilis in DI water (10° CFU initial concentration) after treatment with 3.2 mg mL™? lysozyme, blank
hydrogel and h-lysozyme, the natural B. subtilis as control. (b) The removal efficiency of B. subtilis after treatment with 3.2 mg mL™* lysozyme,

blank hydrogel and h-lysozyme and B. subtilis as control.
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concentration, 1.6 x 10” CFU mL™?, of bacteria after 30 hours
(blue). A corresponding inhibition efficiency of >92% after 26
hours was achieved (Fig. 5b), enabling better antibacterial
durability.

In this work, we successfully developed a hydrogel-
immobilized lysozyme that showed greatly improved antibac-
terial capability with high inhibition activity, wide concentra-
tion and temperature ranges and long recycling performance in
drinking water. The increased interfaces between the lysozyme
and bacteria molecules due to the large surface area from the
porous structure of the hydrogel improve the inhibition of both
Gram-negative and Gram-positive bacteria such as E. coli and B.
subtilis. In addition, the industrial availability and non-toxicity
of the lysozyme with hydrogel provide a promising alternative
to the existing silver-based antibacterial catalysts for drinking
water treatment.
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