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dynamics simulations to evaluate
active designs of cephradine hydrolase by
molecular mechanics/Poisson–Boltzmann surface
area and molecular mechanics/generalized Born
surface area methods†

Jing Xue,a Xiaoqiang Huanga and Yushan Zhu *ab

The poor predictive accuracy of current computational enzyme design methods has led to low success

rates of producing highly active variants that target non-natural substrates. In this report, a quantitative

assessment approach based on molecular dynamics (MD) simulations was developed to eliminate false-

positive enzyme designs at the computational stage. Taking cephradine hydrolase as an example, the

apparent Michaelis binding constant (Km) and catalytic efficiency (kcat/Km) of designed variants were

correlated with binding free energies and activation energy barriers, respectively, as calculated by

molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics/

generalized Born surface area (MM/GBSA) methods with explicit water considered based on general MD

simulation protocols. The correlation results showed that both the MM/GBSA and MM/PBSA methods

with a protein dielectric constant (3p ¼ 4) could rank the variants well based on the predicted binding

free energies between enzyme and the substrate. Furthermore, the activation energy barriers calculated

by the MM/PBSA method with an 3p ¼ 24 correlated well with kcat/Km. Thus, false-positive variants

obtained by the enzyme design program PRODA were eliminated prior to experimentation. Therefore,

MD simulation-based quantitative assessment of designed variants greatly enhanced the predictive

accuracy of computational enzyme design tools and should facilitate the construction of artificial

enzymes with high catalytic activities toward non-natural substrates.
Introduction

As efficient biocatalysts, enzymes are used widely in industry to
accelerate chemical reactions and obtain high selectivity and
specicity under ambient conditions.1,2 However, native
enzymes cannot meet the increasing demands of green process
developments. The use of native enzymes toward non-natural
substrates oen suffers from low activity and production of
worthless by-products.3 In the last two decades, directed
evolution approaches have succeeded in adapting native
enzymes to catalyze non-natural chemical transformations
through high-throughput screening.1 An alternative and more
economical way to adapt native enzymes is the structure-based
computational enzyme design approach. With the help of
molecular modeling and high-performance computing,
researchers can optimize or create enzyme structures that
hua University, Beijing 100084, China

inghua University, Beijing 100084, China.

tion (ESI) available. See DOI:

7

preferentially stabilize the transition state relative to the ground
state, thereby reducing the major free energy barrier along the
reaction coordinate. Computational enzyme design can be
divided into two subclasses: the de novo design of new active
sites and the redesign of existing active sites. The de novo design
approach requires the construction of an active site model
(theozyme)4 for the new reaction. This model is then placed in
a suitable protein scaffold5 and the binding pocket is rede-
signed to stabilize the anchored active site. De novo design has
been used successfully to generate articial enzymes for the
Kemp elimination reaction,6 retro-aldol reaction,7 and Diels–
Alder reaction.8 Although the catalytic activities of the de novo
designed enzymes are always modest, this approach produces
good starting points for further evolution of the enzyme by
experimental approaches. In the redesign approach, the native
enzyme active sites are tailored to catalyze reactions for non-
natural substrates. The computational active site redesign
strategy is capable of replacing the substantial workload of
directed evolution to adapt native enzymes with enhanced
activity and selectivity for non-natural substrates.9–14

Although the computational enzyme design strategy has
been effective and shown potential in these cases, the success
This journal is © The Royal Society of Chemistry 2019
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rate has not improved. Generally, assumptions such as a rigid
backbone, discrete amino acid side chain rotamers and discrete
ligand placement, and continuum solvent are adopted in
current enzyme design algorithms. These trade-offs facilitate
the search of the sequence space but sacrice the model accu-
racy for a protein–ligand interaction. This results in the algo-
rithms producing a large number of false positive variants
besides the few benecial variants. To lter out the false posi-
tive variants at the computational stage, various methods such
as mixed quantum and molecular mechanics (QM/MM),15,16

semi-empirical valence bond17 and molecular dynamics (MD)
simulations18–22 have been applied. The results of these studies
show that MD simulations can be used to evaluate enzyme
designs effectively.16 However, evaluation criteria applied in
these studies such as active site root-mean-square deviations
(RMSDs), water coordination numbers, hydrogen-bond
distances and angles along the simulation trajectories can
only be used to rank the designed variants qualitatively. In this
report, we develop a direct way to correlate the free energy
changes calculated based on the MD trajectories with kinetic
parameters, i.e., the turnover number kcat and the apparent
Michaelis constant Km, of the designed variants to rank these
variants quantitatively. Several MD simulation based methods
are developed to calculate ensemble averaged thermodynamic
quantities, such as the linear interaction energy (LIE),23 ther-
modynamic integration (TI),24 free energy perturbation (FEP),25

and Molecular Mechanics/Generalized Born or Poisson–Boltz-
mann Surface Area (MM/GBSA and MM/PBSA).26,27 Although
LIE, TI and FEP provide relatively accurate free energy calcula-
tions, the computational cost of these methods is very unfa-
vorable. In contrast, the MM/GBSA and MM/PBSA methods are
computationally economical and have been used successfully to
predict ligand binding free energies28,29 to screen small mole-
cule inhibitors in drug design. Here, we use MM/GBSA andMM/
PBSA methods to calculate the binding free energies between
enzyme active sites and the substrates at various states based on
MD simulation trajectories to evaluate the designed variants
quantitatively.

In our previous study,30 a new scaffold (PDB ID: 1JU3), which
is a Rhodococcus sp. cocaine esterase (EC 3.1.1.84, Uniprot ID:
Q9L9D7), was identied from structural databases to catalyze
the hydrolysis and synthesis of cephradine, an important semi-
synthetic b-lactam antibiotic. The hydrolytic reaction of ceph-
radine catalyzed by the enzyme is shown in Fig. 1A. The catalytic
hydrolysis of cephradine by the wild-type enzyme is low. Several
hundred variants were designed by our computational enzyme
design program PRODA to increase the activity31–34 and the
kinetic parameters of the top-ranked eleven variants were
experimentally measured. Among the eleven designed variants,
only one variant showed higher catalytic efficiency (kcat/Km)
than the wild-type enzyme, indicating a success rate of less than
10%. To eliminate all or at least part of the false positive
predictions by PRODA, an MD simulation was used here to
evaluate the active designs of cephradine synthase by MM/GBSA
and MM/PBSA methods quantitatively.
This journal is © The Royal Society of Chemistry 2019
Materials and methods
Structure modeling

The crystal structure of wild-type cocaine esterase from Rhodo-
coccus sp. (PDB ID: 1JU3) was taken directly from the Protein
Data Bank (PDB) without further minimization. The water
molecules were removed, and hydrogen atoms were added
using PRODA by virtue of the topology parameters of the all-
atom CHARMM 22 force eld. The crystal structure of ceph-
radine was taken directly from the Cambridge Structural Data-
base and the heavy atom names of cephradine are shown in
Fig. 1B. The geometries of cephradine in the transition and
Michaelis binding states (Fig. 2A) were calculated by PRODA.

The geometry of cephradine at the transition state (TS) is
shown in Fig. 2A, where the central atom (C15) adopts a tetra-
hedral intermediate form. The catalytic geometrical relation-
ships between the TS and the catalytic residues of the protein
scaffold are shown in Fig. 2A. The catalytic triad (Ser117–
His287–Asp259) forms the nucleophilic attacking group while
the backbone amido group of Try118 and the hydroxyl group of
Tyr44 constitute the oxyanion hole that stabilizes the negatively
charged O16 atom. To represent the translational, rotational
and conformational freedoms of the TS in the active site,
a rotamer library of the TS with 5470 conformers was generated
using the targeted small molecule placement approach devel-
oped in our earlier work,33 which is based on the catalytic
geometrical constraints (Table S1†) and placing rules (Table
S2†). The atomic parameters for cephradine were obtained from
the model compounds of the CHARMM 22 force eld and the
atomic partial charges were assigned based on the PARSE
model. In the active site of the protein scaffold, a total of 36
residues (N42, Y44, W52, T54, Q55, S56, H87, V116, S117, Y118,
L119, V121, S140, M141, S143, L146, A149, P150, W151, A162,
W166, L169, I170, W220, W235, D259, F261, E264, S265, W285,
S286, H287, S288, L290, L407, F408) were subjected to side
chain conformational optimization. A backbone-independent
rotamer library compiled by Xiang and Honig,35 which
contains 11 810 original rotamers, was used to model the side
chain conformations of the design sites. The atomic and
internal coordination parameters for amino acids were taken
from the all-atom force eld CHARMM 22. The protein–ligand
interaction for the enzyme–TS complex in PRODA was calcu-
lated using the MM/GBSA form of the free energy function. The
enzyme–TS complex was repacked and global minimum energy
conformations (GMEC) were identied using the combinatorial
optimization algorithm developed in our previous work.33 The
optimized conformation was used as the starting geometry of
cephradine for the subsequent MD simulations at the TS. The
geometry of cephradine at the Michaelis binding state (Fig. 2B)
was obtained in a similar way to that described above. However,
the amide bond in the geometry of cephradine adopted the
planar form and the distance between the C15 atom of ceph-
radine and the OG atom of Ser117 was extended to van der
Waals contact ranges. The catalytic geometrical constraints and
placing rules for small molecular placement at the Michaelis
binding state are presented in Tables S3 and S4,† respectively.
RSC Adv., 2019, 9, 13868–13877 | 13869
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Fig. 1 Hydrolysis of cephradine catalyzed by enzyme. (A) Reaction scheme. 7-ADCA: 7-aminodesacetoxycephalosporanic acid, DHPG: D-
dihydrophenyl-glycine. (B) Structural formula of cephradine marked with heavy atom names.
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Molecular dynamics simulation

The MD simulations were carried out with the Desmond
package.36 In each case, an orthorhombic solvent box was con-
structed with a distance of 10 Å from the solute, and up to
15 000 water molecules represented by TIP3P37 were added to
the box. The charge of the system was neutralized by addition of
an appropriate number of Na+ or Cl� counter ions to the solvent
box. The atomic partial charges of cephradine were tted using
the RESP techniques38 by the AmberTools module antechamber,
where the electrostatic potential of cephradine was calculated
using the Hartree–Fock (H F)/6-31G* basis set by Gaussian 09.39

In the molecular mechanics energy calculation, the Amber force
eld ff99SB-ILDN40 was used for enzymes and the general Amber
force led gaff41 was used for cephradine. The system was
relaxed at 10 K by 100 ps Brownian dynamics NVT simulation
with restraints on the solute heavy atoms (50 kcal mol�1). The
solvent box was then equilibrated at 10 K by 12 ps of NVT
simulation and 12 ps of NPT simulation with restraints on the
solute heavy atoms (50 kcal mol�1). The system was then heated
to 300 K and full equilibration was performed in the NPT
ensemble for 12 ps with restraints on the solute heavy atoms
(50 kcal mol�1). The last relaxation procedure was a 24 ps NPT
dynamics run at 300 K without restraints. Finally, unrestrained
production runs were performed at 300 K for 20 ns, which is
13870 | RSC Adv., 2019, 9, 13868–13877
a length that is considered adequate for similar calculations.16

The M-SHAKE42 algorithm was used to restrain bonds involving
hydrogen atoms to their equilibrium lengths. Non-bonded
interactions were truncated at 9 Å and the Gaussian split
Ewald method43 with a 60 � 40 � 60 mesh was used for elec-
trostatic interactions. The constant temperature and pressure
were controlled using a Berendsen thermostat or manostat.44

Approximately 20 000 snapshots were deposited with a time
space of 1 ps. The Desmond built-in post-analysis utility Simu-
lation Event Analysis was used to extract statistics information,
including distances, angles and RMSDs from the MD records.
The MD simulation was run on a computer cluster with 64 cores
and usually took 35 h to nish.
Binding free energy calculations by MM/PBSA and MM/GBSA

In the MM/PBSA or MM/GBSA methods, the binding free energy
(DGbind) between the substrate (S) and the enzyme (E) to form
a complex ES is calculated as:

DGbind ¼ DEMM + DGpol + DGnp � TDS (1)

where DEMM represents the gas-phase molecular mechanics
energy, including bond stretching, angle bending, torsion
rotation, van der Waals and electrostatic contributions, as:
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 (A) Catalytic geometrical constraints of cephradine hydrolase.
The hypothesized bond between atoms C15 and OG is shown in
hashed line. Hydrogen bonds are shown in dashed lines. (B) Reaction
coordinate of enzymatic reaction. E + S represents the unbound form
of enzyme and substrate, ES for the Michaelis binding state, and ES‡ for
the transition state. R indicates the gas constant, Km is the apparent
Michaelis parameter, kcat is the turnover number, and A is the pre-
exponential factor.
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DEMM ¼ DEbond + DEangle + DEtors + DEvdw + DEelec (2)

The DGpol term represents the polar contribution to the solva-
tion free energy, while the DGnp term stands for the non-polar
contribution. The DS term represents the conformational
entropy, which can be estimated by normal-mode analyses. The
conformational entropy contribution to the binding free energy
is controversial45–47 and this term was neglected to reduce
computational cost. In this work, the binding free energies were
calculated using the single trajectory approach based on theMD
simulation of the protein–ligand complex, as this computa-
tional strategy can reduce noise and errors in simulations.28

Therefore, the internal energy terms (DEbond, DEangle, DEtors) in
eqn (2) cancel and the gas-phase interaction energy (DEMM)
between the enzyme and the substrate is the sum of van der
Waals (DEvdw) and electrostatic (DEelec) interaction energies. All
analyses by MM/PBSA and MM/GBSA were implemented using
the MMPBSA.py48 python script in the AmberTools17 package.
This journal is © The Royal Society of Chemistry 2019
The analyses were carried out on 100 evenly spaced snapshots
extracted from the production MD run trajectory between 10
and 20 ns, where the trajectory les from Desmond were
transformed into Amber coordinate les via VMD soware.49 In
MM/PBSA, the DGpol term was calculated by solving the linear-
ized Possion–Boltzmann equation; the default nite-difference
PB solver with default parameters was adopted. In MM/GBSA,
the DGpol term was calculated by the modied GB models
developed by Onufriev50 and his colleagues, where the atomic
radii (igb ¼ 5) were chosen. In both PB and GB calculations, the
salt molar concentration was set at 0.1 M in solution. The DGnp

term was determined based on the solvent accessible surface
area (SASA): DGnp ¼ suren � DSASA, where the default
parameter (suren ¼ 0.0072 kcal mol�1 Å�2) was adopted. In
this work, explicit waters around the substrate were considered
in the MM/PBSA and MM/GBSA analyses, and the correspond-
ing MD trajectories were obtained using the Amber module
cpptraj51 with the keyword “closest”, which retains the requested
number (Nwat) of water molecules that are closest to the
substrate.

Results and discussion
Validation of the MD simulation

The rapid MD simulation protocols introduced in the preceding
section were veried by testing the stability of the wild-type
(WT) cocaine esterase (cocE). The ligand and the water mole-
cules in the crystal structure (PDB ID: 1JU3) of cocE were
removed. The RMSD of all backbone atoms and side chain
atoms of cocE relative to their initial crystal structural positions
were monitored over the course of 20 ns MD simulations, and
the resulting plots of RMSDs are shown in Fig. 3A. Aer 10 ns,
the observed RMSDs for backbone and side chain atoms lie
within a low and narrow range of approximately 1.25–1.75 Å and
2.0–2.5 Å, respectively. The time averaged RMSD for each
residue of cocE is shown in Fig. 3B, where the ve catalytic
residues are indicated by red lines. Ser117 is the most exible
residue in the active site with a RMSD value of 1.82 Å. Ser117
plays the nucleophilic attacking role in the catalytic machinery
and its structural exibility is consistent with this function. All
other catalytic residues, i.e., His287 (1.00 Å), Asp259 (1.37 Å),
Tyr44 (1.80 Å) and Tyr118 (0.96 Å), displayed very low RMSDs as
they contribute hydrogen bonds to stabilize either the catalytic
triad or the oxyanion. The whole structure and the active site
geometries were well maintained during the simulation.
Moreover, the system volume kept stable during the 20 ns MD
simulations (Fig. S2†). We concluded that the MD simulation
protocols recapitulate the crystal structure of cocE and this
protocol should behave equally well in the presence of
substrates.

The explicit waters around the substrate were considered in
the binding free energy calculations by MM/PBSA or MM/GBSA.
In addition, explicit water molecules that surround the
substrate were considered in this study because these water
molecules may inuence energetic parameters. Computations
were performed on the WT cocE–cephradine complex to probe
the inuence of the number of explicit water molecules on the
RSC Adv., 2019, 9, 13868–13877 | 13871
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Fig. 3 (A) The RMS deviations between the crystal structure and the MD snapshots for wild type cocE during 20 ns. The RMSDs of backbone
atoms are represented by black line, while the RMSDs of sidechain atoms are shown in red line. (B) The 20 ns averaged RMSDs of heavy atoms are
shown in per-residue form. Five catalytic residues Tyr44, Ser117, Tyr118, Asp259, and His287 are labeled in red. (C) The effect of number of
explicit waters (Nwat) considered in MM/GBSA and MM/PBSA methods on the predicted binding free energies of WT. The black line indicates the
results from the MM/GBSAmethod, while the red, blue, and green lines for results from the MM/PBSA methods based on 3p ¼ 1, 4, or 24. (D) The
active site geometry with 50 explicit water molecules. The protein secondary structure is shown in silver ribbon. The cefradine is shown in ball-
and-stick model. The hydrogen bonds are represented by green dashed lines. Oxygen atoms are colored in red, nitrogen atoms in cyan, and
carbon atoms in grey.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
M

ay
 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 8
:2

4:
28

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
calculated binding free energies. The calculated results of the
binding free energies by MM/PBSA and MM/GBSA against the
number of explicit waters from 0 to 100 with increments of 10
are presented in Fig. 3C. The calculated binding free energies
decreased drastically when considering only a few explicit water
molecules in the MM/PBSA and MM/GBSA methods. This result
may be due to the closest water molecules forming hydrogen
bonds with the substrate (Fig. 3D). The calculated binding free
energies were essentially constant once the number of explicit
water molecules (Nwat) increased above 30. Since changes in the
electrostatic environment of the active site of cocE variants may
change, 50 explicit waters were considered in the following
binding free energy calculations by both MM/PBSA and MM/
GBSA methods.
13872 | RSC Adv., 2019, 9, 13868–13877
Ranking variants by calculated binding free energy

Wild-type cocE and its variants belong to the family of serine
proteases. For the amide hydrolysis reaction that is catalyzed by
serine proteases,52 the acylation process is always the rate-
limiting step when compared with that of the deacylation
process. Moreover, WT cocE and its variants are poor enzyme
catalysts towards the hydrolysis of cephradine,30 indicating that
the kinetics of cephradine hydrolysis is reaction-controlled
rather than diffusion-controlled. This can be explained that
the scaffold of the esterase cocE and its variants lacks of suitable
hydrogen bonding acceptor to stabilize the leaving amino group
of cephradine in the transition state for proton shuttling with
His287 and results in low amidase activity.54,55 Therefore, the
Michaelis–Menten equation for cephradine hydrolysis can be
greatly simplied and the Michaelis constant, Km, can be
This journal is © The Royal Society of Chemistry 2019
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approximated by the dissociation constant KS of the enzyme–
substrate complex. The binding free energy DGbind corresponds
to the Gibbs free energy change between the enzyme–substrate
bound form (ES state in Fig. 2B) and the unbound form (E + S
state in Fig. 2B). Based on the MD simulations, the binding free
energies (DGbind) of WT cocE and variants were calculated by the
MM/PBSA and MM/GBSA methods. Importantly, the MM/PBSA
and MM/GBSA methods are used here to rank the binding free
energies of the variants rather than give accurate predictions of
the absolute binding free energies.

The calculated binding free energies (DGbind) were semi-log
plotted against the experimentally measured Km values for the
cocE WT and variants in Fig. 4A for the MM/GBSA method and
Fig. 4B–D for the MM/PBSA method based on different protein
dielectric constants 3p. The results of the statistical signicance
test for these correlations were shown in Table S5,† and all these
ts passed the t-test. In Fig. 4A, WT cocE and the majority of the
variants concentrated around the regression line, resulting in
a correlation coefficient of R2 ¼ 0.7053. A hypothetical coordi-
nate system with the WT protein as the origin was added to
Fig. 4A, and the results of all variants, except Q6 and Q10,
resided in the rst and third quadrants, indicating that theMM/
GBSA method can differentiate variants with that of the WT
protein according to the predicted binding free energies
Fig. 4 The regression between the experimental Michaelis binding con
variants by MM/GBSA and MM/PBSA methods. The ordinate is scaled lo
dashed lines with the WT as the origin. (A) MM/GBSA method; (B) MM/PB
MM/PBSA method based on 3p ¼ 24.

This journal is © The Royal Society of Chemistry 2019
between enzyme and the substrate. However, results for the
variants lying in the rst and third quadrants were widely
distributed around the regression line, indicating that the MM/
GBSA method cannot rank the variants well. Fig. 4B shows the
predicted binding free energies calculated by the MM/PBSA
method based on 3p ¼ 1, and the correlation coefficient
improved (i.e., R2 ¼ 0.7531) when compared with that of the
MM/GBSA method. The results of all variants except Q10 in
Fig. 4B resided in the rst and third quadrants, and more
importantly the results for these variants concentrated on the
regression line, indicating that the MM/PBSA method not only
can differentiate variants from that of the WT protein, but can
also rank the variants. This can be attributed to the nite-
difference Poisson–Boltzmann method embedded in the MM/
PBSA method calculating the electrostatic component of the
solvation energy more accurately than the generalized Born
model. The active site of the enzyme is a typical anisotropic
electrostatic environment and the dielectric constant in the
active pocket should be higher than that in the hydrophobic
core of the protein since it is always directly in contact with the
polar solvent. In Fig. 4C and D, the binding free energies
between enzymes and substrate were calculated by the MM/
PBSA method based on 3p ¼ 4 and 3p ¼ 24, respectively. In
Fig. 4C, the correlation coefficient R2 ¼ 0.7728 was further
stants and the predicted binding free energies of WT and its eleven
garithmically, and the hypothetical coordination systems are shown in
SA method based on 3p ¼ 1; (C) MM/PBSA method based on 3p ¼ 4; (D)
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improved. The results for all variants except Q3 reside in the
rst and third quadrants. Note that variant Q6, which was
a false positive prediction in Fig. 4A, moved completely into the
rst quadrant, and variant Q10, which was a false negative
prediction in Fig. 4B, moved into the third quadrant, indicating
that these two variants were predicted correctly by the MM/PBSA
method based on 3p¼ 4. Moreover, variant Q11, whose apparent
binding constant was the smallest among all variants, ranked
best in Fig. 4C according to the predicted binding free energies.
The predicted binding free energies by the MM/PBSA method
deteriorated when the 3p was increased to 24. The correlation
coefficient decreased noticeably in Fig. 4D (R2 ¼ 0.6784), indi-
cating that selection of the appropriate protein dielectric
constant is critical for the MM/PBSA method to correctly predict
the binding free energies. In summary, a relatively high protein
dielectric constant (3p ¼ 4) is benecial for ranking purposes
using the MM/PBSA method, which is consistent with the
suggestion from Hou and his colleagues.53
Ranking variants by the calculated activation energy barrier

On the reaction coordinate for enzymatic catalysis shown in
Fig. 2B, the Gibbs free energy change (activation energy,
DG‡

cal) from the Michaelis binding state (ES) to the transition
Fig. 5 The regression between the experimental catalytic efficiencies and
MM/GBSA and MM/PBSA methods. The ordinate is scaled logarithmically
with the WT as the origin. (A) MM/GBSA method; (B) MM/PBSA method
method based on 3p ¼ 24.

13874 | RSC Adv., 2019, 9, 13868–13877
state (ES‡) corresponds to the turnover number (kcat). The acti-
vation process involves formation of a bond between the OG
atom of Ser117 and the central C15 atom of cephradine during
the acylation step for the hydrolytic reaction of cephradine, and
that the molecular dynamics simulation using the ff99SB-ILDN
force eld cannot handle bond breaking and formation.
Therefore, we cannot use the MM/GBSA method or the MM/
PBSA method to calculate the activation energies of the vari-
ants. In fact, the experimental turnover numbers (kcat) and the
calculated activation energies (DG‡

cat) of WT and its eleven
variants by MM/GBSA and MM/PBSA methods were poorly
correlated (Fig. S1(A–D)†), and all ts did not pass the t-test but
for MM/PBSA method based on 3p ¼ 24 (Table S5†). However,
the acylated state is relatively stable when compared with that of
the transition state and the bond between the OG atom of
Ser117 and the central C15 atom of cephradine was formed.
Therefore, the MD simulation can be run for this state. The MD
simulation time (20 ns) is much longer than the actual lifetime
of the intermediate state (�fs). In the reference state (E + S), the
solvation processes of the isolated enzyme (E) and substrate (S)
can be performed by two individual MD simulations. Using the
trajectories of the three individual MD simulations for E, S and
ES‡, the free energy change (DG‡) between the transition state
the predicted activation energy barries of WT and its eleven variants by
, and the hypothetical coordination systems are shown in dashed lines
based on 3p ¼ 1; (C) MM/PBSA method based on 3p ¼ 4; (D) MM/PBSA

This journal is © The Royal Society of Chemistry 2019
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Table 1 The kinetic parameters of the cephradine hydrolase and its variants predicted by PRODA. The data is taken from the ESI of the ref. 30.
Reaction conditions are: pH 7.0 at 22 �C

Variants Mutations kcat (�10�3 s�1) Km (mM) kcat/Km (�10�3 M�1 s�1)

WT — 0.61 33.90 18.11
Q1 F261T 2.33 12.10 192.72
Q2 Q55R 0.02 25.16 0.61
Q3 F408L 0.65 70.03 9.26
Q4 P150E 2.11 151.34 13.93
Q5 F261T/F408L 2.32 198.12 11.68
Q6 F261T/P150E 0.44 51.16 8.63
Q7 F261T/L407Q 0.04 7.46 5.61
Q8 F261T/L407H 0.32 77.98 4.16
Q9 F261T/F408Y 0.19 19.47 9.84
Q10 F261T/L407Q/F408Y 0.26 23.68 10.99
Q11 F261T/L407H/F408Y 0.07 5.02 13.41
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(ES‡) and the reference state (E + S) can be calculated by the
MM/GBSA method or the MM/PBSA method. As this free energy
change (DG‡) corresponds to the catalytic efficiency (kcat/Km) of
the enzyme, we can use the calculated DG‡ to evaluate the
variants. Note that the covalent bond energy between the
enzyme and substrate was not included in the calculated free
energy change (DG‡) and was cancelled during the evaluation of
the variants. To obtain convergent results in the triple trajec-
tories, water molecules within a 10 Å range to the OG atom of
Ser117 were explicitly considered for the states (E) and (ES‡)
during the calculation of the solvation energy, whereas the
implicit method was used for the S state.

The calculated free energy changes (DG‡) are semi-log
plotted against the experimentally measured catalytic efficien-
cies (kcat/Km) for WT cocE and variants in Fig. 5A for the MM/
GBSA method and for the MM/PBSA method (Fig. 5B–D)
based on different 3p. In Fig. 5A, the MM/GBSA method showed
a very poor correlation coefficient (R2 ¼ 0.1095). The variants
Q4, Q5 and Q11 appeared to be false positives because they
showed even lower energy barriers than the WT enzyme even
though their catalytic efficiencies were lower. Moreover, the best
variant Q1 showed a ten-fold higher catalytic efficiency (kcat/Km)
than the WT protein (Table 1), but this was a false negative
because the predicted energy barrier of the variant was higher
than that of the WT enzyme. In Fig. 5B, the MM/PBSA method
based on 3p ¼ 1 yielded similar performances with only an
improvement observed for variant Q10, i.e., the result was no
longer in the false positive quadrant. These results indicate that
the protein dielectric constant might be set too low (3p ¼ 1) to
correctly reect the electrostatic environment in the active site
of the enzyme. Moreover, the correlation between kcat/Km and
DG‡ for MM/GBSAmethod andMM/PBSAmethod based on 3p¼
1 did not pass the t-test (Table S5†). In Fig. 5C and D, the 3p was
increased to 4 and 24, respectively. In Fig. 5C, the MM/PBSA
method based on 3p ¼ 4 showed a better correlation coeffi-
cient (R2 ¼ 0.5001) andmost variants were distributed along the
regression line. The best variant, Q1, ranked second among all
variants and its relative position to that of the WT protein was
predicted correctly, although the free energy gap was small. The
worst variant Q2 was predicted to have the highest energy
This journal is © The Royal Society of Chemistry 2019
barrier, which is also consistent with its experimental catalytic
efficiency. The variant Q4 was the only false positive prediction
and no false negative prediction was observed. When the 3p was
increased to 24 in Fig. 5D, the best variant Q1 ranked top and its
free energy gap relative to the WT enzyme increased when
compared with the results in Fig. 5C. Although the correlation
coefficient (R2 ¼ 0.5005) did not improve, the better prediction
results showed that the evaluation performance of the MM/
PBSA method could be greatly improved if higher protein
dielectric constants are selected in the active site. All eleven
variants were predicted by PRODA to have higher catalytic effi-
ciencies when compared with that of the WT enzyme, but the
results shown in Table 1 indicate that all variants except Q1
were false positive predictions. Based on MD simulations, the
energy barriers shown in Fig. 5D, which were calculated by the
MM/PBSA method under a suitable 3p (i.e., 24), can help to
eliminate all false positive variants except Q4 before experi-
ments were recorded. Therefore, MD based simulations can
greatly improve the accuracy of energy-based sequence predic-
tion tools, such as PRODA, for computational enzyme design.
Conclusions

In this paper, the computationally designed variants of a Rho-
dococcus sp. cocaine esterase for the hydrolysis of cephradine
were assessed quantitatively by MM/GBSA and MM/PBSA
methods based on MD simulations. The apparent Km of the
variants correlated well with the binding free energies calcu-
lated by the MM/GBSA and MM/PBSA methods with explicit
waters around the substrate considered. The catalytic efficien-
cies kcat/Km of the variants correlated poorly with the activation
energy barriers calculated by the MM/GBSA and MM/PBSA
methods when a low protein dielectric constant (3p ¼ 1) was
used. In contrast, when 3p ¼ 4 or 24 for the enzyme, the acti-
vation energy barriers calculated by the MM/PBSA method
correlated well with the catalytic efficiencies (kcat/Km) of the
variants, and most false positive predictions obtained by the
computational enzyme design program PRODA could be elim-
inated prior to experimental analysis. Although the methods
developed here need to be tested on more systems, we showed
RSC Adv., 2019, 9, 13868–13877 | 13875
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that MD-based quantitative assessment of cocE variants
provided an effective and efficient screening tool for energy-
based computational enzyme design.
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18 S. Osuna, G. Jiménez-Osés, E. L. Noey and K. N. Houk, Acc.
Chem. Res., 2015, 48, 1080–1089.

19 H. K. Privett, G. Kiss, T. M. Lee, R. Blomberg, R. A. Chica,
L. M. Thomas, D. Hilvert, K. N. Houk and S. L. Mayo, Proc.
Natl. Acad. Sci. U. S. A., 2012, 109, 3790–3795.

20 L. Mollica, G. Conti, L. Pollegioni, A. Cavalli and E. Rosini, J.
Chem. Inf. Model., 2015, 55, 2227–2241.
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