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To trace the sources and evaluate the health risks of heavy metals in paddy soils of Jiulong River Basin, seventy-
one samples of paddy soils were collected in July 2017. The heavy metals contents were determined using
inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrophotometry (AFS).
The geo-accumulation index (/ge) and potential ecological risk index (RI) methods were applied to evaluate
the contamination of heavy metals, principal component analysis (PCA) and absolute principal component
scores-multiple linear regression (APCS-MLR) were applied to trace the sources, and dose-response model
was applied to assess the health risks to the human body. The results indicated that the paddy soils were
moderately to heavily polluted by Cd and slightly polluted by Hg, Pb, As and Zn. Heavy metals in paddy soils
presented considerable to high potential ecological risk, mostly contributed by Cd and Hg with contribution
rates of 59.4% and 26.2%, respectively. The heavy metals contaminating paddy soils were derived from natural
sources, agricultural activities, industrial discharge, coal combustion and unidentified sources, with source
contribution rates of 31.37%, 24.87%, 19.65%, 18.05% and 6.06%, respectively. The heavy metals in paddy soils
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Aizzgtzd >8th A'a;ricl 2019 presented carcinogenic risks which humans can tolerate and no non-carcinogenic risks. The total non-
carcinogenic risks mainly derived from agricultural activities and coal combustion, with contribution rates of

DOI-10.1039/c9ra02333] 62.16% and 20.21%, respectively, while the total carcinogenic risks mainly derived from natural sources and
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1 Introduction

Heavy metals have drawn increasing attention from environ-
mentalists because of their persistence, non-degradability and
bioaccumulative characteristic." The contents of heavy metals
in the environment have increased with the rapid economic
development in China in the past decades.” The soil can act as
both a source and sink for heavy metals. Heavy metals accu-
mulated in soils can cause adverse effects on the human body
through direct routes, such as ingestion of soil, inhalation of
dust particles and dermal absorption,® and indirect routes, such
as the food chain.* Agricultural soil is the basis for the devel-
opment of agricultural economy. It is of great significance to
study the contamination characteristics, source appointment
and health risk assessment of heavy metals in agricultural soils.

In the past decades, methods for evaluating heavy metals
contamination have been developed by many environmental
scientists.” The I, method and RI method have been widely
used to evaluate the contamination of heavy metals in soils and
sediments.*” It is reported that the combination of I, method
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industrial discharge, with contribution rates of 51.17% and 18.98%, respectively.

and RI method can improve the relative accuracy of assessment
results by considering the lithology, toxicity and comprehensive
effect of heavy metals together.’ The dose-response model,
recommended by USEPA, has been widely applied to soils to
evaluate the human health risk (non-carcinogenic or carcino-
genic) due to heavy metals."

It is important to identify the sources of heavy metals for
prevention and control of heavy metal pollution. Multivariate
statistical analyses have been widely used to trace the sources of
heavy metals.””"® Principal component analysis (PCA) is
a commonly used tool. Absolute principal component scores-
multiple linear regression (APCS-MLR) has been widely
applied for quantitative analysis of pollution sources based on
principal component analysis (PCA)."”**

Jiulong River Basin is located in the southwest area of Fujian
Province and includes the cities Longyan, Zhangzhou and Xia-
men. The safety of the environment around Jiulong River Basin
is important to the Western Taiwan Straits Economic Zone." It
is reported that there are more than 3.8 million inhabitants in
the basin.* It is also reported that Jiulong River has been
polluted by heavy metals due to human activity and rapid
development of industry and agriculture.****** Fujian Province
is a major rice-producing province in southern China. The Jiu-
long River Basin plays an important role in the economic
development of Fujian Province, contributing about a quarter of

This journal is © The Royal Society of Chemistry 2019


http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra02333j&domain=pdf&date_stamp=2019-05-11
http://orcid.org/0000-0001-5674-9297
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra02333j
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA009026

Open Access Article. Published on 13 May 2019. Downloaded on 1/23/2026 12:44:55 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

its GDP. Taking into account the importance of the Jiulong
River Basin, it is necessary to study the contamination and
effects of heavy metals in paddy soils of this area.

In this study, the contents of eight heavy metals in the paddy
soils were analyzed with the following aims: (i) to assess the
contamination of heavy metals in the paddy soils; (ii) to trace
the potential sources of heavy metals and quantify the contri-
bution rates of the identified sources; (iii) to assess the human
health risks and quantify the contribution rates of the identified
sources.

2 Materials and methods
2.1 Soil sampling and preparation

Surface paddy soil samples of depth 0-20 cm were collected
from seventy-one sites in Jiulong River Basin, Southeast China
(Fig. 1) in July 2017. Five sub-samples were taken randomly
around the area (10 m x 10 m) of each sample site and mixed
into a composite sample. The paddy soils (about 1 kg per
sample) were taken to a clean laboratory and dried. They were
then ground with an agate mortar and sieved with a 200 mesh
nylon sieve to remove impurities.

2.2 Determination of heavy metals and quality control

Approximately 0.2 g of paddy soil was placed in a 30 mL Teflon
digestion vessel and microwave digested with 2 mL HF, 2 mL
HCI and 6 mL HNO;. The contents of heavy metals Cr, Ni, Cu,
Zn, Cd, and Pb were determined by ICP-MS (Agilent 7700x,
Agilent Technologies, USA), while for Hg and As, AFS (AF-640,
Ruili Analytical Instrument, China) was used. Blank and soil
sample measurements were replicated 3 times. A standard
reference (China GBW07405) was analyzed alongside the soil
samples for quality control of the analytical method. The
recovery rates of all heavy metals were 91.1-108.2% and the RSD
values were all less than 5%.

2.3 Analytical method

2.3.1 Contamination assessment method. The I,., method
was proposed by Miiller.”® It is widely applied to evaluate the
pollution level of a single heavy metal in soils and sediments.*®
The value of I, was calculated by formula (1):
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Fig. 1 Sampling locations of paddy soils from Jiulong River Basin.
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where I ., was the geo-accumulation index of heavy metal n, C,
was the determined content of heavy metal n in paddy soil and
B, was the background value. The background value in Fujian
soils was taken from a previous study.** The classifications of
Iy, are listed in Table 1.

The RI method was proposed by Hakanson.* It is widely
used to evaluate the potential ecological risk of heavy metals in
soils and sediments.®?® The values of E. and RI were calculated
by formulas (2) and (3):

Ei=E X = (2)

RI= Z El (3)

where EL was the potential ecological risk index of heavy metal i,
C; was the determined content of heavy metal i in paddy soil and
Ci was the background value* and T. the biological toxic
response factor of heavy metal i. The values of T. were as
follows: 1 for Zn; 2 for Cr; 5 for Cu, Ni and Pb; 10 for As; 30 for
Cd; 40 for Hg.>® RI is the comprehensive index of all heavy
metals in this study. The RI standard was adjusted based on the
species of examined heavy metal according to Yu et al.*® The
classifications of E! and RI are listed in Table 1.

2.3.2 Source apportionment method. The correlation
coefficients of heavy metals can be used to indicate the inter-
relationship between them. It was reported that heavy metals
which have significantly positive correlations may have similar
sources and migration routes.”” PCA is a useful tool for source
appointment of heavy metals according the mathematical
process of orthogonal transformation.?®

APCS-MLR was proposed by Thurston and Spengler.” It is
widely used for quantitative analysis of identified sources based
on PCA."7*® The regression equation is shown as formula (4):

k

Ci=(ro);+ Y _(ra x APCSy) (4)
k=1

where C; was the determined content of the heavy metal i in

paddy soils, (r,) is the constant term of multiple linear regres-

sions, r is the regression coefficient and APCS is the absolute

principle component score. The subscript i represents the heavy

metal and k represents the potential source.

2.3.3 Health risk assessment method. Local residents can
be exposed to heavy metals in soils through ingestion of soil,
inhalation of dust particles and dermal absorption.*® The health
risk assessment estimates the adverse health effects on
a human exposed to chemical contamination.” The average
daily intake (ADI), hazard quotients of non-carcinogenic (HI
and HQ) and carcinogenic risk (TCR and CR) through three
exposure pathways were calculated by formulas (5)-(9).**"**

IngR_; x EF x ED
BW x AT

ADIingestion = Csoil X X 104 (5)
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Table 1 The classifications of geo-accumulation index (/geo) and potential ecological risk index (RI)
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Index Category Degree

Geo-accumulation index (Igeo) Iyeo <0 Non-pollution
0=1I,<1 Slight pollution
1=1Ieeo<2 Moderate pollution
2 =1Ieo<3 Moderate to heavy pollution
3=1Ip,<4 Heavy pollution
4=1Ipeo<5 Heavy to extreme pollution
Ieeo =5 Extreme pollution

Potential ecological risk index (RI)

E' < 40, RI < 110

40 = E! < 80, 110 = RI < 220
80 = E' < 160, 220 < RI < 440
160 < E. < 320, RI = 440

Low potential ecological risk
Moderate potential ecological risk
Considerable potential ecological risk
High potential ecological risk

EL =320

InhR,; x EF x ED ©)
PEF x BW x AT

ADIinhalation = Csoil X

A x AF x ABS x EF x ED

ADIdermal = Cooit ¥ SA };(W XSA>'<I‘ X x 1076 (7)
: " ADJ;

HI =S HQ = g

; @ = RfD; )

TCR = ) CR; = (ADI; x SF)) (9)

i=1 i=1

where ADiingestion) ADrinhalation a0d ADjgermal Were the average
daily intakes through the three exposure pathways, IngR.j was
the ingestion rate of soil, InhR,;; was the inhalation rate of soil
and Cs,; was the determined content of the heavy metal n in
paddy soils. EF was the exposure frequency, ED was the expo-
sure duration, BW was the average body weight, AT was the
average exposure time, PEF was the emission factor of soil, SA
was the area of exposed skin, AF was the adherence factor of
skin and ABS was dermal absorption factor. HI was the total

Extreme potential ecological risk

hazard index of several heavy metals; HQ was the hazard
quotient of a single heavy metal. When the value of HI or HQ is
lower than 1, there is no non-carcinogenic risk. RfD was the
reference dose of non-carcinogenic heavy metals, TCR was the
total cancer risk of several heavy metals, CR was the carcino-
genic risk of a single heavy metal and SF was the carcinogenicity
slope factor. When 10~ < TCR (or CR) < 10~*, there is carci-
nogenic risk which humans can tolerate, whereas when 10~ * <
TCR (or CR), there is unacceptable carcinogenic risk. The
selection of exposure parameters can affect the accuracy of the
results. The parameters used in formulas (5)-(9) were taken
from highly cited studies conducted in China and are listed in
Tables 2 and 3.

3 Results and discussion
3.1 Contents and spatial distribution of heavy metals

The statistics parameters of heavy metals are listed in Table 4.
The mean contents of heavy metals were Cr: 61.80 + 21.79, Ni:
12.85 + 5.17, Cu: 35.05 =+ 15.56, Zn: 151.71 + 63.52, As: 10.22 =+
2.22,Cd: 0.34 £ 0.16, Pb: 72.29 £ 27.64, and Hg: 0.17 & 0.04 mg

Table 2 The parameters used in the calculation of average daily intake (ADI)

Values
Parameter Interpretation Units Adult male Adult female Children Reference
IngR Ingestion rate mg per day 25 25 24 11
EF Exposure frequency Day per year 345 345 345
ED Exposure duration Year 70 70 18
BW Body weight kg 67.55 57.59 29.30
AT Average time (non-carcinogenic) Day ED X 365 ED X 365 ED X 365
AT Average time (carcinogenic) Day 25 500 25 500 25 500
SA Exposed skin area m? 0.169 0.153 0.086
AF Adherence factor mg (cm > day ) 0.49 0.49 0.65
ABS(Cd) Absorption factor 0.14 0.14 0.14
ABS(Cr) 0.04 0.04 0.04
ABS(As) 0.03 0.03 0.03
ABS(Hg) 0.05 0.05 0.05
ABS(PD) 0.006 0.006 0.006
ABS(Cu) 0.1 0.1 0.1
ABS(Zn) 0.02 0.02 0.02
ABS(Ni) 0.35 0.35 0.35
InhR Inhalation rate m’d! 16.57 12.80 7.63 34
PEF Particle emission factor m® kg ! 1.36 x 10° 1.36 x 10° 1.36 x 10°
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Table 3 The reference doses (RfD) and slope factors (SF) used in health risk assessment®
RfD/mg (kg d)~* SF/(kg d) mg ™"
Elements Ingestion Dermal Inhalation Ingestion Dermal Inhalation
cd 1.00 x 10732 2.50 x 107° 2 571 x 107° P — — 6.30°
Cr 1.50 x 107°2 1.95 x 10722 2.86 x 1072 P 0.501 P 0.20® 0.42 ®
As 3.00 x 10742 3.00 x 107* % 3.00 x 1074 P 1.50° 3.66 ° 0.151°
Hg 1.60 x 10°** 1.60 x 10°** 8.57 x 107° ¢ — — —
Pb 1.40 x 10742 1.40 x 1074% — — — —
Cu 4.00 x 10722 4.00 x 10722 — — — —
Zn 3.00 x 10712 3.00 x 10712 3.00 x 1071 P — — —
Ni 2.00 x 10722 8.00 x 10 %% 2.06 x 1072P 1.70° 0.425 P 0.901 P

% The superscripts a, b and ¢ indicate data cited from Li et al.,' Cao et al.,*® and Chen et al.,** respectively.

Table 4 Statistics parameters (mg kg™?) of heavy metals in paddy soils
of Jiulong River Basin

Element Cr Ni Cu Zn As Cd Pb Hg

Max 110.93 25.52 81.32 437.90 16.88 0.92 168.10 0.26
Min 41.36 5.85 19.32 83.16 6.21 0.12 40.16 0.11
Mean 61.80 12.85 35.05 151.71 10.22 0.34 72.29 0.17
SD 21.79 5.17 15.56 63.52 2.22 0.16 27.64 0.04
Ccv 0.35 0.40 0.44 0.42 0.22 0.48 0.38 0.24
Background 41.30 13.50 21.60 82.70 5.78 0.05 34.90 0.08

kg~ '. The background values of heavy metals in Fujian soils
were taken from literature.* In this study, the mean contents of
heavy metals in paddy soils were higher than the background
values. Compared to the limit values of Chinese environmental
quality standards for soils (GB15618-2018), the excess rates of
Cu, Zn and Cd were 14.1%, 16.9% and 49.3%, respectively. The
coefficient variances of all heavy metals were between 0.2 and
0.5, which indicated that all the heavy metals showed moderate
variability.*®

Kriging interpolation was used to analyze the spatial distri-
bution trend of heavy metals in paddy soils and the results are
shown in Fig. 2. Higher contents of Cr, Ni, Cu, Zn and Cd
appeared in North River (Longyan City); higher contents of Pb
appeared in West River; higher contents of Hg and As appeared
in Estuary. The spatial distributions of heavy metals may be the
consequence of various sources of pollution, but more infor-
mation about the pollution sources needs to be explored in
depth using different statistical analysis.

3.2 Contamination assessment of heavy metals

The values of I, and E, calculated by formulas (1) and (2) are
shown in Fig. 3. The mean I, values followed a sequence of Cd
>Hg >Pb > Cu > As > Co > Zn > Cr >V > Ni. The mean I, of Cd
was 1.9, with 35.2% of the samples presenting moderate to
heavy pollution (2 = I, < 3) and 54.9% of the samples pre-
senting moderate pollution (1 < Iy, < 2). The mean Iy, of Hg
was 0.42, with 7.0% of the samples presenting moderate
pollution (1 = I, < 2) and 88.7% of the samples presenting
slight pollution (0 < I, < 1). The mean Iy, of Pb was 0.38, with
11.3% of the samples presenting moderate pollution (1 < I, <
2) and 70.4% of the samples presenting slight pollution (0 < Iy,
<1). The mean I, of As and Zn were 0.21 and 0.19, respectively,

This journal is © The Royal Society of Chemistry 2019

with most of the samples presenting slight pollution (0 = I, <
1). The mean I, of Cu, Cr and Ni were 0.00, —0.08 and —0.77,
respectively, with most of the samples presenting non-pollution
(Igeo < 0).

The mean E, values followed a sequence of Cd > Hg > As > Pb >
Cu > Co > Ni > Cr > V > Zn. The mean E, of Cd was 187.6, with
14.1% of the samples presenting extreme risk, 35.2% of the
samples presenting high risk and 46.5% of the samples presenting
considerable risk. The mean E;, of Hg was 82.6, with 42.3% of the
samples presenting considerable risk and 57.7% of the samples
presenting moderate risk. All the E; of As, Pb, Cu, Ni, Cr and Zn
were lower than 40, presenting low risk. The comprehensive
potential ecological risk index (RI) of eight heavy metals ranged
from 169.0 to 688.9 with the mean value of 316.0. 12.7% of the
samples presented high potential ecological risk (RI = 440) and
78.9% of the samples presented considerable potential ecological
risk (220 = E, < 440). The contribution rates of different heavy
metals to the comprehensive potential ecological risk index were
calculated and it was found that the comprehensive potential
ecological risk was mostly contributed by Cd and Hg with contri-
bution rates of 59.4% and 26.2%, respectively.

The assessment results of I, method and RI method were
basically consistent, but some differences still exist. For
example, Pb was assessed to be slight to moderate pollution by
ILyeo, while it was assessed to be low risk by RI. Hg was assessed
to be slight to moderate pollution by I, while it was assessed
to be moderate to considerable risk by RI. These results may be
attributed to the different toxicities of heavy metals.?” The I,
method focused on the lithology and a single heavy metal, while
the RI method considered the toxicities and comprehensive
effects of more than one heavy metal. The combination of I,
method and RI method can make the evaluation results more
accurate by considering the lithology, toxicity and comprehen-
sive effect of heavy metals together.

3.3 Source apportionment of heavy metals

The Pearson's correlations matrix between the contents of heavy
metals is listed in Table 5. There were significant correlations
between Cr, Ni, Cu, and Zn and significant correlations between
Cd, Zn and Pb. These results indicated that each group may
have similar sources.

RSC Aadv., 2019, 9, 14736-14744 | 14739


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra02333j

Open Access Article. Published on 13 May 2019. Downloaded on 1/23/2026 12:44:55 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

RSC Advances

Cr [ 40.65-48.38
[ 48.39-56.11
[ 156.12-63.84
[ 163.85-71.57
[171.58-79.29

Zn [ 86.95-113.5
[ 113.6-1402
[ 11403-166.9
[1167.0-193.5
[1193.6-2202
[71220.3-246.8
24692735

Pb [ 48.18-54.50
[ 54.51-60.82
[160.83-67.14
[ 167.15-73.47

[173.48-79.79
[ 79.70-86.11

0 10 20km
[ —

View Article Online

Paper

Ni [ 7.58-9.12 A Cu I 25.82-30.90
[719.13-10.66 [713091-35.98
[ 110.67-12.19 o [ 135.99-41.05
12201373 [ 141064613
13741527 [146.14-51.21

[7151.22-56.29

Cd [ 0.166-0.229

[719.10-9.41 - [ 0.230-0.292
[ 19.42-9.73 [10.293-0.355
[19.74-10.05 []0.356-0.418
[110.06-1037 ] 3 [10.419-0.481
f [0 0.482-0.544

[ 0.545-0.607

[__10.671-0.733

Hg [ 0.133-0.142
[ 0.143-0.150
[ 10.151-0.159
[10.160-0.168
[10.169-0.177

0.195-0.203
102040212

Fig. 2 Spatial distributions of heavy metals in paddy soils of Jiulong River Basin.
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Fig. 3 Results of geo-accumulation index (/ge0) and potential ecological risk index (E,) evaluations of heavy metals in paddy soils.

For further analysis, PCA was used to trace the sources of
heavy metals and the results are listed in Table 6. The values of
heavy metal content were suitable for PCA analysis, according to
the values of KMO (0.643) and Bartlett's test (0.000). As shown in
Table 6, four principal components, which comprise 83.55% of

14740 | RSC Aadv., 2019, 9, 14736-14744

the total variance, were extracted and they each explain 40.09%,
18.78%, 13.95 and 10.73% of the total variance. PC1 is heavily
weighted by Cr, Ni and Cu, which indicated that these elements
may be derived from the same sources. The contents of Cr, Ni
and Cu were more similar to the background values of Fujian

This journal is © The Royal Society of Chemistry 2019
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Table 5 Pearson's correlations matrix between heavy metal
concentrations®
Cr Ni Cu Zn As Cd Pb Hg
Cr 1
Ni 0.801*%* 1
Cu 0.562** 0.476** 1
Zn 0.385%* 0.369** 0.531*%* 1
As 0.022 0.196 0.168 0.283* 1
Cd 0.393** 0.302*% 0.438** 0.783** 0.229 1
Pb —0.001 0.058 —0.035 0.468** 0.133 0.487** 1
Hg -0.036 0.208 0.107 0.081 0.12 —0.052 0.067 1

¢ **significant correlation (p < 0.01); *significant correlation (p < 0.05).

Table 6 Rotated component matrix of principal component analysis
for heavy metals

Principal components

Element PC1 PC2 PC3 PC4

Cr 0.920 0.097 —0.104 —0.079
Ni 0.855 0.072 0.058 0.225
Cu 0.758 0.171 0.196 —0.016
Zn 0.426 0.769 0.225 —0.007
As 0.060 0.122 0.966 0.076
Cd 0.372 0.803 0.153 —0.163
Pb —0.167 0.868 —0.048 0.147
Hg 0.072 0.016 0.073 0.974

source, which indicated that PC1 may be related to natural
sources. PC2 is heavily weighted by Zn, Cd and Pb, which
indicated that these elements may be derived from the same
sources. Zn, Cd and Pb are commonly found in fertilizers and
pesticides and Cd can generally be used as a marker element for
agricultural activities, such as pesticides and chemical fertil-
izers.***® Pb may also be derived from vehicle exhaust sources.*®
However, it has been reported that vehicle exhaust was not the
main source of Pb in the sediments of Jiulong River Basin."
Jiulong River Basin is an agricultural river network.”* The
research of Li** indicated that the large-scale use of pesticides
and fertilizers is one of the main causes of water pollution in the
Jiulong River Basin. Furthermore, Zhang et al.** indicated that
the contents of Cd, Pb and Zn in the water of Jiulong River were
mainly affected by geochemistry and agricultural activities.
Jiulong River is the main source of agricultural water for the
basin. Based on the above discussion, PC2 may be related to
agricultural activities. PC3 is heavily weighted by As. It has been
reported that As may be related to industrial activities such as
industrial discharge and sewage sludge.*® It was reported that
Xiamen City, located in the Jiulong River estuary area, has the
third highest number of heavy metal enterprises.** There are
paper mills, pharmaceutical factories, chemical plants and
metal processing factories located in the downstream and
estuary of Jiulong River. The discharges from these industrial
factories could contribute to As pollution in paddy soils. In this
study, the higher concentrations of As appeared in the down-
stream and estuary watershed areas (Fig. 2). Therefore, PC3 may

This journal is © The Royal Society of Chemistry 2019
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be related to industrial discharges. PC4 is heavily weighted by
Hg. It was reported that coal combustion is an important source
of Hg emission in China.** According to previous research, coal
combustion is also an important source of Hg in the sediments
of Jiulong River.*® In this study, the higher concentrations of Hg
appeared in the estuary watershed (Fig. 2), where a coal-fired
power plant was located. Therefore, PC4 may be related to
coal combustion.

Based on the results of PCA, APCS-MLR was used to quantify
the contribution rates of each heavy metal source and the
results are shown in Fig. 4. Natural sources contributed most to
Cr, Ni and Cu, with contribution rates of 68.74%, 60.23% and
60.76%, respectively. Agricultural activities contributed most to
Zn, Cd and Pb, with contribution rates of 47.43%, 54.63% and
66.33%, respectively. Industrial discharge contributed most to
As with a contribution rate of 74.51% and coal combustion
contributed most to Hg with a contribution rate of 89.03%. The
unidentified sources may be a mixture of traffic sources,
domestic sewage and other potential sources.

3.4 Health risk assessment of heavy metals

Heavy metals contaminating the soil can pose health risks to
the human body through several pathways. One pathway is
through the food chain (soil-crop-human body). There have
been several previous studies of the health risks of heavy metals
in rice grown in Fujian Province.*”~*° The results indicated that
the accumulation of Cd and Pb in rice posed potential health
risks to consumers of some areas in Fujian Province. The other
pathway is through direct exposure. Local residents can be
exposed to heavy metals in soils through ingestion of soil,
inhalation of dust particles and dermal absorption.

In this study, the objective is to evaluate the health risks of
heavy metals through direct exposure pathways. The non-
carcinogenic hazard index and carcinogenic risk index were
calculated by formulas (5)-(9) and the results are presented in
Table 7. The values of non-carcinogenic hazard index were all
lower than 1, suggesting no non-carcinogenic risks to the
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Table 7 Health risks of heavy metals to populations through different pathways

Non-carcinogenic hazard index

Carcinogenic risk index

Adult male Adult female Children

Adult male Adult female Children
Cr 3.83 +1.35) x 107" (3.51 £ 1.24) x 10°* (4.23 4+ 1.49) x 10~*
Ni 2.31 4+ 0.93) x 10°*  (2.71 + 1.09) x 10~* (5.08 & 2.04) x 10™*

( ( )

( ( ) %

(3.07 + 1.36) x (3.60 + 1.60) x (6.79 £ 3.01) x

(1.77 £ 0.74) x 107*  (2.08 £ 0.87) x

As (1.19 £ 0.26) x 10> (1.40 + 0.30) x 10>
(1.21 £ 0.59) x 107*  (1.42 £ 0.69) x
(1.81 £ 0.69) x 107" (2.12 £ 0.81) x
(3.66 &+ 0.89) x 10*  (4.30 + 1.04) x
( ( )

1.94 + 0.69) X 107" (2.28 £ 0.82

Hg
Total

Carcinogenic risks

Coal Unidentified
combustion sources
10.4% 13.6%

Industrial
discharges
19.0%

Agricultural
activities
5.8%
Natural
source
51.2%

(1.08 & 0.38) x 10~
(7.65 &+ 3.07) x 10°°

(1.27 4+ 0.45) x 10
(8.97 £3.61) x 10°°

(6.17 £ 2.17) x 10°°
(4.35 £1.75) x 10°°

(3.92 £ 1.64) x 10°*
(2.64 4 0.57) x 102
(2.66 + 1.29) x 10~*
(4.00 4 1.53) x 10"
(8.10 £1.97) x 10°*
(4.29 4+ 1.54) x 10"

(5.37 £ 1.16) x 10°°
(3.63 £ 1.75) x 107 "¢

(6.29 + 1.37) x 10°°
(3.29 £ 1.59) x 107*°

(3.05 & 0.66) x 10°°
(9.90 & 4.79) x 107 °

(2.38 £ 0.68) x 10> (2.80 £ 0.79) x 107>  (1.36 £ 0.39) x 10>

Non-carcinogenic risks

Coal Unidentified
combustion sources
20.2% 12.4%
Natural
source
0,
Industrial 0.5%

discharges
4.7%

Agricultural
activities
62.2%

Fig. 5 Contributions of identified sources to the health risks of adult males.

human body. The values of carcinogenic risk index were all in
the range of 10~° to 10~* which suggest carcinogenic risks that
humans can tolerate. The total hazard index (HI) of eight heavy
metals followed a sequence of children (0.429 + 0.154) > adult
female (0.228 + 0.082) > adult male (0.194 =+ 0.069). This result
might be the reason that children are more sensitive to envi-
ronmental pollutants which lead to higher non-carcinogenic
risks.?®*

The contribution rates of single metals to the total non-
carcinogenic and total carcinogenic risks were calculated.
According to the results, the total non-carcinogenic risks were
comprised mostly by Pb and As with contribution rates of
93.04% and 6.14%, respectively. The total carcinogenic risks
were mostly contributed by Cr, Ni and As with contribution
rates of 45.44%, 32.06% and 22.50%, respectively.

Combining the results of APCS-MLR and the health risk
assessment, the contributions of the identified sources to
health risks of adult males were calculated and the results are
shown in Fig. 5. The total non-carcinogenic risks were mainly
derived from agricultural activities and coal combustion with
contribution rates of 62.16% and 20.21%, respectively, while the
total carcinogenic risks were mainly derived from natural
sources and industrial discharge with contribution rates of
51.17% and 18.98%, respectively.

14742 | RSC Adv., 2019, 9, 14736-14744

4 Conclusions

In this study, the concentrations of heavy metals in the paddy
soils of Jiulong River Basin were analyzed to investigate the
contamination, source apportionment and human health risks
of heavy metals.

The results of this study showed that the mean contents of
Cr, Cu, Zn, As, Cd, Pb and Hg were higher than the background
value of Fujian soil and the contents of all the heavy metals
showed moderate variability.

The I, method indicated that the paddy soils were
moderately to heavily polluted by Cd and slightly polluted by
Hg, Pb, As and Zn. The results of the RI method indicated that
heavy metals in paddy soils presented considerable to high
potential ecological risk, mostly contributed by Cd and Hg with
contribution rates of 59.4% and 26.2%, respectively.

The source apportionment of heavy metals indicated that
natural sources contributed most to Cr, Ni and Cu, with
contribution rates of 68.74%, 60.23% and 60.76%, respectively.
Agricultural activities contributed most to Zn, Cd and Pb, with
contribution rates of 47.43%, 54.63% and 66.33%, respectively.
Industrial discharge contributed most to As with a contribution
rate of 74.51% and coal combustion contributed most to Hg
with the rate of 89.03%.

This journal is © The Royal Society of Chemistry 2019
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The results of the health risk assessment indicated that
heavy metals in paddy soils presented no non-carcinogenic
risks, with all the HI values lower than 1. There were carcino-
genic risks which humans can tolerate, with CR values falling in
the range of 10 ° to 10~ *. According to the results of APCS-MLR
and the health risk assessment, the total non-carcinogenic risks
mainly derived from agricultural activities and coal combus-
tion, with contribution rates of 62.16% and 20.21%, respec-
tively, while the total carcinogenic risks mainly derived from
natural sources and industrial discharge, with contribution
rates of 51.17% and 18.98%, respectively.

These results can provide a reference for the prevention and
control of heavy metals contamination.
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