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The free energy landscape (FEL) of a given complex molecular system is fundamentally the joint probability
density of its many comprising degrees of freedom (DOFs). Computation of a complete FEL at atomistic
scale is unfortunately intractable for a typical biomolecular system. The challenge of entropy calculation
comes from various correlations among different DOFs. The common strategy to treat such complexity
is expansion of the full correlation into various orders of local correlations. In reality, expansion is usually
cut off at the second order (i.e. pairwise interactions) for protein torsional correlations without reliable
estimation of the resulting error. Here, we estimated the mutual information of different torsion sets and
found that triple correlations were significant for both local/distant residue pairs and consecutive
backbone torsional segments. As expected, the third order approximations were found to be consistently
better than the second order approximations. These findings were true for all analyzed proteins with
different folds, were independent of the two different force fields utilized to generate trajectory sets, and
were therefore likely to be of general importance for proteins. Additionally, binning strategies are of

universal importance for numerical computation of correlations, we here provided a detailed comparison
Received 21st March 2019 bet l-width and equal-sample binning for different bin numbers and demonstrated the impact
Accepted 21st April 2019 etween equal-width and equal-sample binning for different bin numbers and demonstrated the impac
of binning strategies on variances and biases of calculated mutual information. Our observation

DOI: 10.1039/c9ra02191d suggested that caution should be taken when quantitative comparison of correlations were intended
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1 Introduction

Interesting properties of complex molecular systems are mainly
based on interactions and the resulting correlations between/
among comprising DOFs. Proteins are certainly not exceptions
and correlations of their molecular DOFs have attracted much
attention of the scientific community. Historically, intra-
molecular correlations of proteins have been studied from two
related but distinct perspectives. The first was calculation of free
energy landscape (FEL), full understanding of which has been
believed to give us complete capacity for understanding concerned
molecular systems. The second perspective was to study protein
motional correlations so as to facilitate understanding functions.

In calculating FEL, direct effect of molecular interactions
were usually accounted for by their energetic contributions
while the resulting correlations were calculated as entropic
contributions. The second order correction to the quasi-
harmonic entropic calculation was systematically investi-
gated,"” and the correction was found to be significant for the
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between different studies with different binning strategies.

investigated molecular systems. Mutual information expansion
(MIE) was utilized to calculate configurational entropy for small
molecules with truncation at the third order.’ King and Tidor
developed maximum information spanning tree (MIST) calcu-
lation of molecular entropy and carried out detailed compar-
ison with MIE.* Metadynamics® strived to identify strongly
correlated local clusters from molecular DOFs and subse-
quently utilized collective variables to simplify characterization
of FEL. These studies greatly advanced our understanding of the
FEL complexity. However, complete understanding of protein
FEL concerned not only minima but also pathways and saddle
points. To this regard, methodologies such as transition path
sampling® and string method” provided useful tools. Neverthe-
less, to explain behavior of our interested proteins from their
full FEL remained a great challenge.

A distinctive, but less ambitious perspective in investigating
correlations between/among protein molecular DOFs was to
study protein motional correlations so as to help explain func-
tions, especially intramolecular signal/information trans-
mission between/among parts of protein molecules. Intensive
studies have been carried out based on analysis of molecular
dynamics (MD) simulation trajectories.®> Earlier studies were
limited to very short time scales (sub-nanoseconds).®**® More
recent studies®***** mainly focused on mechanisms of long-
range signal transmission, which was essential for
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functionally important protein allostery. Both linear correla-
tion**®** and mutual information'>**** analysis were widely
utilized. Beyond correlation analysis of atomic positions and
torsions, more complexed forms of correlations at larger spatial
scales, such as second order mutual information based residue—
residue coupling,* (Dis)similarity index,”® energy network
analysis® and pK, computation® also
investigated.

Past studies of correlations in proteins mainly focused on
pair correlations.'»'®**?® Systematic evaluations of correlations
beyond the second order seem natural and understanding of
which is certainly helpful as we proceed to more quantitative
and reliable analysis of proteins. However, due to the sampling
difficulty, direct and explicit characterization of third and
higher order torsional correlations in proteins has not been
systematically performed. Here, we estimated the influence of
triple (the third order) torsional correlations in both inter-
residue coupling and local backbone segments. It was found
that for both cases, contributions of triple torsional correlations
were significant for all analyzed datasets. We analyzed 19
molecular dynamics (MD) simulation trajectory sets of 9 glob-
ular and 10 membrane proteins generated with CHARMM force
fields, and 4 MD simulation trajectory sets of soluble proteins
generated with AMBER force field. As one would intuitively
expect, the third order approximations were found to be better
than the second order approximations. We also found that
linear combinations of the second and the third order mutual
information approximation presented consistently and signifi-
cantly better approximations to the full inter-residue torsional
mutual information than the third order approximations. It was
important to note that the full inter-residue torsional mutual
information, the second and the third order approximations
were all underestimated for the method we utilized. As a matter
of fact, all discrete calculation of mutual information suffered
from this problem to some extent. Our reported mutual infor-
mation were based on the correlations probabilities of bins. We
used m = 3 to divide torsions and the correlations caused by all
significant conformational change were captured. With larger m
we would certainly get more correlations when originally
within-larger-bin correlations that were neglected being coun-
ted. Correlations caused by significant torsional conformational
change (e.g. gauch+ to gauch-—), which were captured by
binning with m = 3, usually dominate torsional correlations to
the similar extent. We therefore believed that the qualitative
trend will not change with larger m.

variation were

2 Methodology

2.1 MD trajectory sets

MD trajectory sets of 9 globular proteins were selected from
data sets of our previous study*® (1bta, 1rgh, 2bnh, 2pka, 3f3y,
5pti, 7rsa, BamE, HEWL). The details of these simulations can
be found in previous study.?®* Six a helical membrane protein
trajectory sets are: bacterior rhodopsin (pdb code: 1c3w, 400
ns), zeta-zeta transmembrane dimer (2hac, 150 ns), GIpG (2ic8,
150 ns), ABC-transporter BtuCD (2qi9, 120 ns), uracil trans-
porter UraA (3qe7, 140 ns), and transmembrane domain of the

13950 | RSC Adv., 2019, 9, 13949-13958

View Article Online

Paper

M2 protein (pdb code 3bkd, 170 ns). Four B barrel membrane
protein trajectory sets are: mouse VDAC1 (3emn, 180 ns),
membrane transporter FecA (1kmo, 250 ns), Ompf (pdb code
1hxx, 200 ns) and BamaA (4k3b, 800 ns). Membrane protein MD
simulations were performed with NAMD software package,
version 2.9 using CHARMMS36 force fields. The proteins are
solvated with TIP3 water and POPC lipid. 100 mM Na* and CI~
were added to neutralize net charges of our simulation systems.
Periodic boundary conditions were used, a switch distance of 10
A and a cutoff distance of 12 A were used for non-bonded
interactions. Particle Mesh Ewald (PME) were used to calcu-
late the long-range electronic interactions. All systems were
minimized and then heated to 310 K. The system was equili-
brated in the NPT ensemble for 1 ns. Production runs were
performed in the NPT ensemble at 310 K with simulation time
step 2 fs. All membrane protein trajectories are recorded with an
interval of 2 ps. These 19 trajectory sets are generated with
CHARMM36 (addressed as CHARMM below) force fields.
Trajectory sets of four proteins are generated with AMBER99SB
(-ILDN for BPTI, addressed as AMBER below) force field, they
are BPTI (from D. E. Shaw group®), CDK2 (ref. 28) (20 us),
HEWL (800 ns), EH3_sam (3 ps). CDK2, HEWL and HEWL
trajectories were generated in a similar protocol with these
previous trajectories except utilization of the AMBER force fields
and package. Secondary structure identity assignment were
described in our previous study.*®

2.2 Joint distributions and probability density

To calculate joint distributions for multiple-torsion sets (e.g.
single residues, residue pairs or multiple consecutive backbone
torsions), we first divided each torsion into m bins, L(i) (i = 1,
2,...,m) is the width of the ith bin. For a n-torsion (¢, t,,...,t,) set,
there were m”" different states based on such partition of
participating torsions. We first constructed joint distributions
of a n-torsion set X with m" bins. The order of bins was deter-
mined by eqn (2). The probability density f{x;) of each bin were
shown below. p(x;) was the probability that data points fell
within the ith bin. w(x;) is the volume of the ith bin for a torsion
set or the width of the ith bin for a single torsion.

S = pephw(x) (i =1, 2,....m") (1)

w(x) = Li(k) Lo(ks)...Lo(k,), k= 1,2,...om; i =ky x m'™!
thyxm* Ak, x m"Y) (2)

2.3 Estimation of mutual information

The entropy S of a torsion or multiple-torsion sets could be
expressed with eqn (3), fx) was the probability density function
of a torsion or multiple-torsion sets.

s=-| soesax (3)

—Tt

To calculate the entropy S, we first divided a torsion (n = 1) or
multiple-torsion sets A into m" bins. The probability density
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within each bin was approximated as being uniform and could
be calculated with eqn (4), f{A;) was the probability density in the
ith bin, p(4;) was the probability that data points fell within the
ith bin. w(4,) is the width (for one torsion) or volume (for
multiple-torsion sets) of a bin.

fA4) = p(A)Iw(4) (i =1, 2,...,m") @)

The entropy of A can subsequently be estimated as below:

S(4) = —Lm]f(X)log.f(X)dx -]

biny

U

—w(d,)f (4)In(f(4,)) —w

Similarly, the joint entropy of two torsions or two multiple-
torsion sets A and B can be estimated as below:

Z”’ Z’" B)f (4;, B)In(f (4;, B)) (6)

fi4;, Bj) = p(4;, Bj)/ (W(Ai)W(Bj)) (7)
The mutual information between A and B was calculated as
below:
MI(AB) = S(A) + S(B) — S(4AB)
Z A)n(f (4 Z w(B:)f (B)n(f(B;))

i=1

)f (A4:, B;)In(f (4;, B;))

— Sp(4B) (8)

3 v

=1

= 8,(4) + S,(B)

n, and ny were number of torsions in torsion set A and B. S(4)
was the entropy calculated with bin joint distributions. In eqn
(8) wss were canceled, therefore mutual information (MI)
between two torsion sets could be calculated with bin proba-
bility p(4;)s (the probability that data points fell within the ith
bin) instead of bin probability density f{4;) = p(4;)/w(4;). The bin
widths could be chosen as we wished.

In numerical computations, probability densities had to be
approximated with various forms of histograms. Strategies of
binning (distribution of bin width and number of bins) apparently
would impact the accuracy of concerned approximations. For any
given distribution of bin width, increasing number of bins would
result in better accuracy if sufficient statistics was available.
However, for given number of bins, the effect of bin width distri-
butions was more subtle. To choose for appropriate binning
strategies, we tested two extreme bin width distributions, equal-
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width binning where all bins had the same width and equal-
sample binning where all bins had approximately equal number
of samples (number of samples might not necessary be even
multiples of number of bins), for bin numbers m ranging from 3 to
36. We utilized calculation of backbone torsional pair mutual
information for hen egg white lysozyme (HEWL) trajectory set to
perform the tests. For each given value of m and bin width
distribution we calculated mutual information of each adjacent
backbone torsional pair (phi-psi or psi-phi) 20 times, each of which
corresponded to a random start point of binning. As accuracy of

F(s)log f(x)dx = .= | fx)log fx)dx

..—W( mn) ( m")ln(f( m"))

mutual information calculation depended on number of bins, we
calculated the mutual information for each adjacent backbone
torsional pair with m = 180 to serve as the reference value (MI,y).
Upon completing the above mentioned calculations, we computed
the coefficient of variation (C, = o/u) for each torsional pair based
upon 20 calculated values and subsequently we obtained the mean
C, of all HEWL backbone torsional pairs (see Fig. 1a). o and u were
standard deviation and mean value of the 20 calculated mutual
information for relevant torsional pair respectively. To evaluate the
effect of bin numbers, we calculated average mutual information
values Ml ., oOf all adjacent torsional pairs based on 20

12 — Equal-width binning 09
—— Equal-sample binning

— Equal-width binning
—— Equal-sample binning

ient of Variation
°

Mean of Coeffici

3 6 9 12 15 18 21 24 27 30 33 36 3 6 9 12 15 18 21 24 27 30 33 36
Number of Bins Number of Bins

(@) (b)

Correlation coefficient

070 — Equal-width binning
—— Equak-sample binning

3 6 9 12 15 18 21 24 27 30 33 36
Number of Bins

(c)

Fig.1 Comparison of equal-width binning and equal-sample binning.
We calculated mutual information of HEWL neighboring backbone
torsions with different m value. (a) Coefficient of variation of Ml that
calculated with bins divided with randomly selected start point. (b)
Relative error of estimated Ml (calculated with m ranging from 3 to 36).
The reference value Ml ¢ was calculated with m = 180. (c) Correlation
coefficient of estimated Ml and reference Ml,s.
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calculations. Subsequently, the relative error were calculated with
Re = |(MIef — MIean)/Ml | (see Fig. 1b). The correlation coeffi-
cient were calculated with py i, = COV(MImean, Mlre)/omy
owmi,, Where cov was covariance operation and ¢ was relevant
standard deviations (see Fig. 1c). For small m value significantly
less variation (Fig. 1a) and smaller bias (Fig. 1b) were observed for
equal-sample binning. While for larger m values, the opposite was
observed although the turning point of m value for variation and
bias was different. More importantly, equal-sample binning
consistently exhibited better correlation with the calculated refer-
ence mutual information. As expected, all calculated mutual
information were smaller than the reference value due to the small
bin number. In our (as well as other binning) calculation, the
probability density inside each bin was considered to be a constant
and the correlations exist within individual bins were missing.
Apparently, the extent of missing correlations would be more
severe for larger bins (smaller bin numbers).

To calculate mutual information between two torsion sets A
and B, we utilized eqn (8) to estimate the full mutual informa-
tion of two residues. The involved number of bins increase
exponentially with number of torsions in participating residues
as m™", While large bin numbers theoretically produce more
accurate mutual informations, the memory and sampling
burden would render calculation for large residues with 5 or
more torsions extremely difficult. Therefore, based upon the
above binning strategy comparison, we chose (m = 3) (starting
from 7) and the equal-sample binning in this study to charac-
terize the significance of triple torsional correlations. In calcu-
lation of inter-residue mutual information, we estimated
spurious correlations by random permutation. For Lys-Lys Lys—
Arg Arg-Arg residue pairs, even with m = 3, spurious correla-
tions were obtained with mutual information much larger than
0.01. So to residues with large side chains m = 3 was large
enough to generate spurious correlations for our data sets.
Therefore, we excluded Lys-Lys Lys-Arg and Arg-Arg residue
pairs in our comparison and chose m = 3 so as not to be severely
influenced by spurious correlations with larger m.

‘mean

2.4 Inter-residue mutual information calculation

Both backbone (¢, ¢) and side chain torsions were included in
the torsion set of each residue. Full mutual information between
two residues A and B, with n, and ny torsions were calculated
based on entropies of torsion sets A, Band AB = AU B, which were
derived from joint distributions of torsion sets in A4, B and AB:

MI = Sy(4) + Sy(B) — Sy(AB) )
N pinip) (10
i1
=Y pin(p) (11)
=1
m(natng)
S(AB) =~ 3" piIn(py) (12)

k=1
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m is the number of partitions for each torsion, in this study m = 3.

Approximate second order mutual information MI, between
two residues A and B were calculated based on the second order
expansion of entropies, which were calculated according to the
following equations:

ML, = S,%(4) + S,%(B) — S,*(4AB) (13)
() = 3 8,() — ST Iy (41 4) (14)
i=1 i<j
Ip(Aia Aj) — Sp(At) + SP(A]) - Sp(A,‘, Aj) (15)
Sp(Ai) = =3 p(A4)In(p(4,) (16)
k=1
S, (Ars 4)) i N o (A d)in(p(4i4y))  (17)

In eqn (16) p(4;) represents probability of the torsion 4; fell
in its kth partition. In eqn (17) p(A;A;) represents the probability
of the torsion 4; fell in its kth partition and the torsion 4; fell in
its Ith partition simultaneously. S,*(B) and S,*(AB
lated similarly as S,*(4).

Approximate third order mutual information MI; between
two residues A and B were calculated based on the following
third order expansions:

) were calcu-

MI; = S,*(A4) + S%(B) — S,*(4B) (18)
A) =Y Sp(A) = D L (A ) + Y L (A4, Ar) (19)
i=1

i<j i<j<k

Io(4i, 4)) = Sp(Ai) + Sp(4)) — Sp(4;, 4)) (20)
Io(Ai, 4j; Ar) = Sp(Ai) + Sp(A4)) + Sp(Ar) — Sp(4ix 4))
— Sp(Ai Ai) — Sp(A;, Ar)
+ Sp(d;, Aj Ar) (21)
Sy (Ai, 4;, Ay) = — P(Ai 4, Ar,)In(p(4,4;,4z,))

(22)

In eqn (20) and (21), Sp(4;) and S,(4;, 4;) were calculated as in
eqn (16) and (17). p(4zAjAwy) in eqn (22) was the probability of
the torsion 4; fell in its uth partition, the torsion 4; fell in its vth
partition, and the torsion A; fell in its wth partition simulta-
neously. S,°(B) and S,’(4B) were calculated similarly as S,°(4).

2.5 Local joint distributions of consecutive backbone
torsion segments

As far as a consecutive segment of n protein backbone torsions
(¢ and y) were concerned, we were ultimately interested in their
joint distributions p(x), x = (x1, x2,...,x,) of the corresponding
backbone torsion vector x. The extent of intra-secondary-

This journal is © The Royal Society of Chemistry 2019
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structure (ISS) backbone torsional correlations in primary
sequence might be effectively characterized by the quality of
approximate joint distributions constructed from various
orders of local conditional probabilities. The first p;(x), second
Pa(x), third ps(x) and fourth p,(x) ordered approximations were
shown below:

p(x) = pi(x)
= p(x1)p(x2)...p(xy) (23)
p(x) = pa(x
= p(x1)p(xalxr)...p(xulx,-1) (24)
p(x) = p3(x) 23)

= (e )p(eale )p (3, X1)- P (6l Xno2 X 1)
P(x) = palx)

= P(Xl )p(x2|x1 )P(X3|X27 X1 )p(x4IX3, X2, X1 ) . ~p(x)1|xn73x)172xn71)
(26)

In these equations the joint distributions were represented
by conditional probabilities. In eqn (24) only the correlations of
immediate neighboring torsions were used, other correlations
were considered to be transmitted (communicated) by these
immediate neighboring correlations. In eqn (25) and (26) only

_ [(x)
KLI—Jf(X)lnﬁ(x)dx
_ i L) g NG .
- [, s B [ pomn Eave | seom:
(41)/w(A4,)

~ w(A, B
= w(A)(p(41)/w(41))n (A1) /w(4))

the correlations of two and three immediate neighboring
torsions were considered.
By chain rule of conditional probability, we have:

p(x1, X2) = p(x1)p(xalx1) (27)
P(x1, X2, X3) = p(x2, X1)p(x3|x2, X1) (28)
P(x1, X2, X3, X4) = p(X3, X2, X1)p(X4lX3, X2, X1) (29)

Therefore, eqn (24) (the second order approximation), (25)
(the third order approximation) and (26) (the fourth order
approximation) may be rewritten as:

This journal is © The Royal Society of Chemistry 2019
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(X1, X2)p(X2, X3)- . p(Xn 1, %)

pa(x) = (30)
p(x2)p(x3)...p(xn)
ps(x) = (X1, X2, X3)p(X2, X3, X4) . ..p (X2, X1, %) (31)
(X2, X3)p(x3, X4) ... p(Xp—2, Xu—1)
palx) = P(X1, X2, X3, X4)p(X2, X3, X4, X5)...P(X0_3, X2, X1, Xp)
4(x) =

(X2, X3, X4)p(X3, X4, X5)...p(Xn—3, X2, Xp_1)
(32)

and it was immediately seen from eqn (30)—(32) that calculation
of these approximate joint probabilities were only dependent on
local joint probabilities of subsets of concerned variables.
Building additional higher ordered approximations was
straight forward, we limited our analysis to the fourth and lower
ordered approximations due to
statistics.

limitation of available

To gauge the quality of various ordered local approximations,
we calculated KL divergence between observed joint distributions
of consecutive ISS backbone 7 torsion sets and corresponding
approximations. We had to utilize small bin number due to
limitation of available statistics. To reduce both the variation and
the bias of small number of bins, we again utilized equal-sample
binning with m = 3. As in calculation of entropy (see eqn (8)),
integration based on probability density may be approximated by
bin probabilities as shown below:

p(4s)/w(42)
Pi(A42)/w(42)

(A )/ W(Ap)

+ oo WAy ) (p(Ap) /W (A ) ) In DPi(Ap) /W (Ap)

(33)

with f{x) and fj(x) being the joint probability density and its /ith
ordered approximation, p; being the /th ordered approximation of
joint distribution as calculated in discrete (histogram) forms of
eqn (23)-(26). p(A;) is the probability that sample fell in the ith of
the m” bins in a Ith ordered approximate joint distribution p;.

2.6 Spurious correlations, simulation convergence analysis
and data selection in inter-residue mutual information
calculation

2.6.1 Removal of spurious correlations by random permu-
tation. In calculation of mutual information between two resi-
dues, torsional values of all concerned torsional DOFs for each
data point were taken from the same MD snapshot. When DOFs

RSC Adv., 2019, 9, 13949-13958 | 13953
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Table1l Number of residue pairs selected for the seven trajectory sets

Protein Mpair MI > 0.05 MiIgc < 0.01 Mlgig < 0.5
1bta 3916 161 120 67
1rgh 4560 328 292 116
2bnh 103 740 5449 1120 563
5pti 1653 205 93 44
7rsa 7626 1610 1140 465
cdk2 44 253 6040 1636 928
HEWL 8256 971 830 464

of the two participating residues (in a residue pair) were given
torsional values from two independently and randomly selected
MD snapshots, then calculated correlation between the two
residues should disappear when the number of data points was
sufficiently large. Therefore, to remove potential spurious
correlations due to limited number of snapshots, we first
randomly permuted MD trajectory sets so that torsional values
of a pair of residues were taken from two random snapshots. All
residue pairs with mutual information larger than 0.01 (MIg¢ >
0.01) in randomly permuted data sets were excluded from
analysis.

2.6.2 Data exclusion based on convergence. A residue pair
pass the random permutation tests was not necessarily
converged in its torsional phase space. To remove residue pairs
that contained insufficiently sampled torsions, we divided
trajectory sets of each protein into three equally sized subsets,
and compared the inter-residue mutual information calculated
from the total data set (Ml,) and three subsets (MIgypset1,
Mlgubsetzy MIgubser3)- If @ large difference existed as judged by
(MIdiff = (abS(MItot - MIsubsetI) + abS(MItot - MIsubsetZ) +
abs(MIyor — Mlgupsers))/(MIoe X 3) > 0.5), we excluded the cor-
responding residue pair.

For inter-residue correlation analysis, to test sampling
convergence, we first selected significantly correlated residue
pairs with mutual information greater than 0.05 from all
possible residue pairs (np,ir) of each given protein; Secondly, we
selected residue pairs with small spurious correlations (MIg¢ <
0.01) from the remaining residue pairs; thirdly, we selected
residue pairs that satisfy convergence criteria (Mlgigr < 0.5).
Number of selected residue pairs for seven trajectory sets were
listed in Table 1.

For joint distribution approximation analysis of consecutive
backbone torsional segments, to test sampling convergence, we
divided trajectory sets into three equally sized subsets, and
calculated the KL divergences of each pair. We obtained three
KL values for a backbone torsion and choose the largest value
KLgupser @s the final result. We removed backbone torsions with
KLgubset OVer 0.2 in joint distribution approximations. For
calculating KLg,pset We divided backbone torsions into 60 equal
width bins.

3 Results
3.1 Inter-residue torsional mutual information in proteins

Inter-residue mutual information (MI) was calculated and
found to be useful in predicting relevant residues involved in
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Fig. 2 Distributions of Ml, — Ml and Mlz — MI, Ml is the inter-residue
mutual information estimated using the second-order MIE. M3 is the
inter-residue mutual information estimated using the third-order MIE
and Ml is the full inter-residue mutual information calculated directly
from the joint distributions. Residue pairs with Ml < 0.05 are excluded
in constructing these plots.

protein allostery. However, the extent of biases (approxima-
tions) of the second order mutual information expansion (MIE)
was not analyzed. As in that work, the DOFs we chose were
backbone and side chain torsions. We analyzed MD trajectory
sets of 7 proteins in this part of study. For each residue 4, we
divided each comprising torsion into three approximately
equal-sample partitions and calculated their joint distributions.
For a residue pair (4 and B), the full mutual information MI
between the two residues were calculated according to eqn (9)-
(12). We only selected significantly correlated residue pairs (MI
> 0.05) and excluded residue pairs with spurious correlations
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Fig. 3 Mutual information values of the selected ten residue-residue
pairs for four different trajectory sets. Ten residue pairs with the largest
absolute values of Ml, — Ml are selected for each protein.
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and insufficient sampling (see Spurious correlations in the
Methods section).

After obtaining the full mutual information of residue pairs
as the reference, we calculated approximate mutual informa-
tion of the same set of residue pairs using MIE with cutoffs at
the second (MI,, eqn (13)-(17)) and the third order (MI;)
respectively (eqn (18)-(22)). Details of these calculations were
explained in the Methods section.

We plotted distributions of MI, — MI and MI; — MI for four
representative proteins in Fig. 2. It was evident that distribu-
tions of MI; — MI exhibit much sharper and narrower peak than
that of MI, — MI for the four proteins shown, and similar results
were observed for other proteins we analyzed but not shown.
Therefore, we concluded that at least for the utilized force fields,
triple torsional correlations contributed significantly to inter-
residue mutual information. To illustrate relative values for
MI, MI, and MI;, we choose ten residue pairs with the largest
absolute value of MI, — MI and plotted corresponding MI, MI,
and MI; in Fig. 3. As expected, MI; were better approximations
than MI, in all cases. Although values of MI, MI, and MI; were
not unanimously ordered, MI was bounded by MI, and MI; for
majority cases and this property was potentially useful (see
section below) in predicting MI with MI, and MI; when calcu-
lation of MI is much more difficult than calculation of MI, and
MI;. As demonstrated by Table 1, convergence of full mutual
information is rather difficult for significant number of residue
pairs, which were excluded from comparison in this study. Due
to the exponential increase in need for sampling with
increasing higher orders, generating trajectories for the third
order expansion calculation would likely to be easier by orders
of magnitude.

3.2 Linear combinations of the second and the third order
approximations of inter-residue mutual information

As shown above, the third order approximations (MI;) were
consistently better than the second order approximations (MI,).
We expected to obtain better approximations as higher ordered
approximations were utilized. However, exponentially
increasing needs for both analysis computational power and
raw data preventing us from brute force utilization of higher
ordered approximations. In a theoretically rigorous expansion,
coefficients for each order was given. However, if we somehow
represented the fourth and all higher ordered terms with the
second and the third order terms, and if such representation

Table 2 Mean squared error (when compared with the full mutual
information) of the second order approximations (MSE;), the third
order approximations (MSEz) and that of their optimized linear
combinations (MSE ). Data for all 5 validation sets (Vset) were listed
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Table 3 Parameters ay, a, and b from the five training sets

Train sets a, a, b

1 0.36391182 0.53388144 0.010004
2 0.37253283 0.52327209 0.010256
3 0.36793552 0.53070647 0.010176
4 0.35997187 0.54698256 0.009906
5 0.35433510 0.53695367 0.011474

could better approximating higher ordered terms than simply
ignoring them, optimizing coefficients for the second and the
third order terms might be useful. We therefore carried out
a linear regression analysis to solve parameters (a4, a, and b) in
the following equation:

Ml g =a; X Ml + a x MI; + b (34)
and to predict an optimal approximate mutual information
(MI.Rr) based on linear combinations of the second and the
third order approximations. We performed five fold cross vali-
dation with the results shown in Tables 2-4. From Table 2, it
was apparent that for all five validation sets (Vi.), MSE r was
significantly and consistently smaller than MSE;, which was
significantly and consistently smaller than MSE, as expected.
Parameters from five training sets were quite consistent (3). As
one would intuitively expect, a, took larger value than a, since
MI; were better approximations than MI,. It was noted that the
computational cost for linear regression analysis was trivial
when compared to calculations of joint probabilities and
entropies. Therefore, this strategy might be potentially quite
effective in improving accuracy of inter-residue torsional
correlations. It was important to note that these coefficients
were obtained for equal-sample binning strategy with m = 3,
caution should be applied in direct utilization of these numbers
for analysis with other binning strategy.

3.3 Various ordered approximations for joint distributions
of consecutive ISS backbone torsion segments for different
secondary structures

Here we investigated non-overlapping segments of 8 consecu-
tive ISS backbone torsions (n = 8). For each selected segment,
we calculated its joint distribution p(x) and its first, second,
third and fourth ordered approximations p;(x), p,(x), ps(x) and
pa(x) according to eqn (23), (30)-(32). KL divergences (KL;

Table 4 Average values of the full mutual information (Ml), of the
second order approximation (Ml,), of the third order approximation
(Ml3) and that of the their linear combinations (MSE,g). Data for all 5
validation sets (V) were listed

Vet MSE, MSE; MSEix Vet MI ML, MI, M,z
1 0.00517 0.00196 0.00019 1 0.119272 0.125381 0.115698 0.117400
2 0.00837 0.00225 0.00024 2 0.130858 0.154655 0.120024 0.130675
3 0.00911 0.00285 0.00021 3 0.118299 0.147873 0.101547 0.118476
4 0.01575 0.00601 0.00031 4 0.143535 0.198191 0.117558 0.145551
5 0.00533 0.00318 0.00023 5 0.102747 0.106783 0.099821 0.102911
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Fig. 4 Probability distributions of KL divergence between observed
joint distributions and their various ordered approximations (see egn
(1), (8)—(10)) of 8-torsion segments for a helices, B strands and loops
(indicated in parenthesis as o, B and L). The number in the second
parenthesis is the average KL divergence calculated from the corre-
sponding distribution. This figure is based on analysis of trajectory sets
based on CHARMM force-fields as not sufficiently good statistics are
available for trajectories generated by AMBER force-fields.

between p(x) and p;(x), j = 1, 2, 3,4) were calculated subse-
quently according to eqn (33) and their distributions were
shown in Fig. 4. One immediately saw that KL; was consistently
large for all secondary structure segments investigated,
regardless of their specific types (o helix, B strand or loop),
indicating that the first order approximation was not a good
option to substitute for the joint probability distribution in all
cases. As one would intuitively expect, higher ordered approxi-
mations were better than lower ordered approximations for all
three types of secondary structure segments investigated, as
indicated by significantly smaller KL divergences for higher
orders of approximations. Additionally, KL divergences between
the full joint distributions and their second, third and fourth
ordered approximations (KL;(a) = KL/(B) < KL{L) (i = 2, 3, 4))
were similar for a helices and B strands, while that of loops are
considerably larger. These observations suggest that observed
torsional correlations in loops were significantly more long-
ranged than that in o helices and B strands. Our selection of
fragment length n = 8 was limited by statistics as the available
number of fragments with more than 8 consecutive torsions are
quite small after some backbone torsions were excluded due to
unsatisfactory convergence and sampling (see Methods).

4 Discussion

Entropy of a system could be expanded as a series of increas-
ingly higher-ordered information terms:**

Sa=38(4) =Y L4, A4) + Y L(An 4, 4) — ... (35)
i=1 i<j i<j<k

13956 | RSC Adv., 2019, 9, 13949-13958

View Article Online

Paper

with n, being the number of DOFs in a molecular system A.
Unfortunately, this equation was not practically useful when
calculating the conformational entropy of proteins because the
requirement for sampling rapidly became intractable. We
utilized the second- and third-order correlation terms to esti-
mate residue entropies in proteins and calculated correlations
between residues. While as expected, third order approxima-
tions exhibited smaller error than the second order approxi-
mations, we found that reorganization of the exact same
information (linear combinations of the second and the third
order results) significantly improved over the third order
approximations with trivial additional computational costs, this
idea might be useful for other complex molecular systems as
well.

We analyzed trajectory sets generated with two different
force fields (CHARMM and AMBER) for a wide variety of protein
folds. When the influence of triple correlations is concerned,
similar and consistent observed significance suggest their
potentially general importance for proteins. It was important to
note that significant inter-residue torsional correlations were
rare as demonstrated by Table 1. All our inter-residue correla-
tion analysis were targeted to these small subsets of residue
pairs. Our speculation that triple torsional correlations were of
general importance for inter-residue correlations were only
meant for these significantly correlated residue pairs, and such
importance was essentially independent of identity of protein
molecules, as least in our limited but diversified observations. It
was evident that for any pair of residues with negligible corre-
lations, discussion of triple correlations was meaningless.
However, for local backbone segment correlation analysis based
on joint distribution calculations, all non-overlapping and
consecutive local segments with the same secondary structure
assignment were included. Therefore, the observed importance
of the third and higher ordered local correlations were essen-
tially over the whole primary sequence for all analyzed proteins.

Here in order to calculate joint distributions for multiple
torsion sets, we divided each torsion into 3 bins. This would
result in underestimation of mutual information for all residue
pairs as demonstrated by Fig. 1. However, the requirement for
sampling rapidly became intractable for larger bin numbers
and most residues would be excluded from such analysis as no
full joint distribution could be obtained reliably. Nevertheless,
relative importance of the second order and third order
contributions were estimated with consistent binning and the
results should be qualitatively meaningful. The impact of
binning strategy (bin width distribution and bin number
selection) was universal for all numerical analysis of correla-
tions. Usually, calculation within each individual investigation
was consistent. However, in different studies, binning strategies
could be wildly different. We therefore strongly urge readers to
be cautious especially when quantitative comparison was
intended between/among different computation investigations
with different binning strategies.

It was also important to note that inter-residue correlations
we calculated were correlations of internal motions between
residues. The overall translation and rotation of residues were
not accounted for in such calculations. It was undoubtable that

This journal is © The Royal Society of Chemistry 2019
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there were various extent of correlations for overall translation
and rotation of residues, and for clusters of them as well. How
internal motions of residues (or clusters of which) collaborated
with their overall translation/rotation to accomplish biological
functions were yet to be understood. Complex quantities
proposed recently such as (Dis)similarity index,*® energy
network analysis*®* and pK, variation® effectively provided
consideration of both coupling of internal motions and overall
translational and rotational motion between various parts of
proteins. Nonetheless, mechanistic analysis and understanding
remain to be tackled. We had plan to investigate this issue in
our future work.

One well accepted approximate expression for the joint
probability of a molecular system with multiple DOFs is the
Kirkwood superposition*® as shown below:

IL.,  Svp(ri)
Hrn,z Svp(ta-2)

P(xl7x27"'7-xn) = (36)

[T, Svp(w)
with [] p(t;) being the product of probabilities over all subsets

of variables of size 7 in the variable set ». This superposition was
expressed as lower order joint distributions for all possible
combinations of DOFs in contrast to eqn (23), (30)-(32), where
only local joint probabilities of neighboring DOFs up to certain
order were utilized. In analysis of local backbone segments, our
utilization of chain rule of conditional probability assumed that
all influence from other molecular DOFs to a given DOF is
communicated through its neighboring DOFs. Of course, this is
not exactly true as long-range interactions (e.g. electrostatic
interactions) could not be fully accounted for by such treat-
ment. Our approximations showed that with the second-order
neighboring correlations, the protein backbone local torsional
joint density can be described reasonably well in stable
secondary structures (helices and strands). Long range corre-
lations were relatively rare in these structures. These observa-
tions suggested that when we study the structure or movement
of stable segments (helices and strands) in proteins, it may be
an efficient way with acceptable accuracy to consider up to the
second-order correlations of neighboring DOFs. This idea
might be useful in structural refinement for both protein design
and structure prediction. However, when loop structures were
concerned, consideration of higher (third and fourth) ordered
correlations becomes more important.

5 Conclusions

Binning strategies were of great importance in numerical
analysis of correlations. We first provided a detailed compar-
ison of equal-width binning and equal-sample binning for
various bin numbers in calculation of torsional mutual infor-
mation. It was important to note that quantitative comparison
of correlation calculations between different studies should be
highly cautious when different binning strategies were utilized.
Based on such comparison and sampling limitation, we chose
equal-sample binning with 3 partitions for each torsion to

This journal is © The Royal Society of Chemistry 2019
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perform calculations of residue pair mutual information and
local joint probabilities of consecutive ISS backbone torsional
segments. Based on analysis of extensive MD trajectories for
many globular and membrane proteins, we gauged errors of the
second- and third-order approximations of inter-residue
torsional mutual information. We found as expected that
third-order approximations were better than the second-order
approximations. Additionally, linear combinations of the
second- and third-order approximations significantly improved
over third-order approximations with trivial additional
computational cost. It was found that third-order torsional
correlations were important in proteins for both inter-residue
torsional mutual information and local torsional joint distri-
butions of consecutive backbone segments. Through construc-
tion of consecutive backbone torsional joint distributions from
lower ordered expansions, we found that ISS backbone torsional
correlations for loops were significantly more sequentially long-
ranged than those of a helices and B strands.
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