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The free energy landscape (FEL) of a given complex molecular system is fundamentally the joint probability

density of its many comprising degrees of freedom (DOFs). Computation of a complete FEL at atomistic

scale is unfortunately intractable for a typical biomolecular system. The challenge of entropy calculation

comes from various correlations among different DOFs. The common strategy to treat such complexity

is expansion of the full correlation into various orders of local correlations. In reality, expansion is usually

cut off at the second order (i.e. pairwise interactions) for protein torsional correlations without reliable

estimation of the resulting error. Here, we estimated the mutual information of different torsion sets and

found that triple correlations were significant for both local/distant residue pairs and consecutive

backbone torsional segments. As expected, the third order approximations were found to be consistently

better than the second order approximations. These findings were true for all analyzed proteins with

different folds, were independent of the two different force fields utilized to generate trajectory sets, and

were therefore likely to be of general importance for proteins. Additionally, binning strategies are of

universal importance for numerical computation of correlations, we here provided a detailed comparison

between equal-width and equal-sample binning for different bin numbers and demonstrated the impact

of binning strategies on variances and biases of calculated mutual information. Our observation

suggested that caution should be taken when quantitative comparison of correlations were intended

between different studies with different binning strategies.
1 Introduction

Interesting properties of complex molecular systems are mainly
based on interactions and the resulting correlations between/
among comprising DOFs. Proteins are certainly not exceptions
and correlations of their molecular DOFs have attracted much
attention of the scientic community. Historically, intra-
molecular correlations of proteins have been studied from two
related but distinct perspectives. The rst was calculation of free
energy landscape (FEL), full understanding of which has been
believed to give us complete capacity for understanding concerned
molecular systems. The second perspective was to study protein
motional correlations so as to facilitate understanding functions.

In calculating FEL, direct effect of molecular interactions
were usually accounted for by their energetic contributions
while the resulting correlations were calculated as entropic
contributions. The second order correction to the quasi-
harmonic entropic calculation was systematically investi-
gated,1,2 and the correction was found to be signicant for the
a
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investigated molecular systems. Mutual information expansion
(MIE) was utilized to calculate congurational entropy for small
molecules with truncation at the third order.3 King and Tidor
developed maximum information spanning tree (MIST) calcu-
lation of molecular entropy and carried out detailed compar-
ison with MIE.4 Metadynamics5 strived to identify strongly
correlated local clusters from molecular DOFs and subse-
quently utilized collective variables to simplify characterization
of FEL. These studies greatly advanced our understanding of the
FEL complexity. However, complete understanding of protein
FEL concerned not only minima but also pathways and saddle
points. To this regard, methodologies such as transition path
sampling6 and string method7 provided useful tools. Neverthe-
less, to explain behavior of our interested proteins from their
full FEL remained a great challenge.

A distinctive, but less ambitious perspective in investigating
correlations between/among protein molecular DOFs was to
study protein motional correlations so as to help explain func-
tions, especially intramolecular signal/information trans-
mission between/among parts of protein molecules. Intensive
studies have been carried out based on analysis of molecular
dynamics (MD) simulation trajectories.8–23 Earlier studies were
limited to very short time scales (sub-nanoseconds).8–10 More
recent studies20,21,24,25 mainly focused on mechanisms of long-
range signal transmission, which was essential for
RSC Adv., 2019, 9, 13949–13958 | 13949
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functionally important protein allostery. Both linear correla-
tion13,18,22 and mutual information12,14,20 analysis were widely
utilized. Beyond correlation analysis of atomic positions and
torsions, more complexed forms of correlations at larger spatial
scales, such as second order mutual information based residue–
residue coupling,14 (Dis)similarity index,25 energy network
analysis26 and pKa variation computation27 were also
investigated.

Past studies of correlations in proteins mainly focused on
pair correlations.12,18,22,28 Systematic evaluations of correlations
beyond the second order seem natural and understanding of
which is certainly helpful as we proceed to more quantitative
and reliable analysis of proteins. However, due to the sampling
difficulty, direct and explicit characterization of third and
higher order torsional correlations in proteins has not been
systematically performed. Here, we estimated the inuence of
triple (the third order) torsional correlations in both inter-
residue coupling and local backbone segments. It was found
that for both cases, contributions of triple torsional correlations
were signicant for all analyzed datasets. We analyzed 19
molecular dynamics (MD) simulation trajectory sets of 9 glob-
ular and 10 membrane proteins generated with CHARMM force
elds, and 4 MD simulation trajectory sets of soluble proteins
generated with AMBER force eld. As one would intuitively
expect, the third order approximations were found to be better
than the second order approximations. We also found that
linear combinations of the second and the third order mutual
information approximation presented consistently and signi-
cantly better approximations to the full inter-residue torsional
mutual information than the third order approximations. It was
important to note that the full inter-residue torsional mutual
information, the second and the third order approximations
were all underestimated for the method we utilized. As a matter
of fact, all discrete calculation of mutual information suffered
from this problem to some extent. Our reported mutual infor-
mation were based on the correlations probabilities of bins. We
used m ¼ 3 to divide torsions and the correlations caused by all
signicant conformational change were captured. With largerm
we would certainly get more correlations when originally
within-larger-bin correlations that were neglected being coun-
ted. Correlations caused by signicant torsional conformational
change (e.g. gauch+ to gauch�), which were captured by
binning with m ¼ 3, usually dominate torsional correlations to
the similar extent. We therefore believed that the qualitative
trend will not change with larger m.

2 Methodology
2.1 MD trajectory sets

MD trajectory sets of 9 globular proteins were selected from
data sets of our previous study28 (1bta, 1rgh, 2bnh, 2pka, 3f3y,
5pti, 7rsa, BamE, HEWL). The details of these simulations can
be found in previous study.28–32 Six a helical membrane protein
trajectory sets are: bacterior rhodopsin (pdb code: 1c3w, 400
ns), zeta–zeta transmembrane dimer (2hac, 150 ns), GlpG (2ic8,
150 ns), ABC-transporter BtuCD (2qi9, 120 ns), uracil trans-
porter UraA (3qe7, 140 ns), and transmembrane domain of the
13950 | RSC Adv., 2019, 9, 13949–13958
M2 protein (pdb code 3bkd, 170 ns). Four b barrel membrane
protein trajectory sets are: mouse VDAC1 (3emn, 180 ns),
membrane transporter FecA (1kmo, 250 ns), Ompf (pdb code
1hxx, 200 ns) and BamA (4k3b, 800 ns). Membrane protein MD
simulations were performed with NAMD soware package,
version 2.9 using CHARMM36 force elds. The proteins are
solvated with TIP3 water and POPC lipid. 100 mM Na+ and Cl�

were added to neutralize net charges of our simulation systems.
Periodic boundary conditions were used, a switch distance of 10
�A and a cutoff distance of 12 �A were used for non-bonded
interactions. Particle Mesh Ewald (PME) were used to calcu-
late the long-range electronic interactions. All systems were
minimized and then heated to 310 K. The system was equili-
brated in the NPT ensemble for 1 ns. Production runs were
performed in the NPT ensemble at 310 K with simulation time
step 2 fs. All membrane protein trajectories are recorded with an
interval of 2 ps. These 19 trajectory sets are generated with
CHARMM36 (addressed as CHARMM below) force elds.
Trajectory sets of four proteins are generated with AMBER99SB
(-ILDN for BPTI, addressed as AMBER below) force eld, they
are BPTI (from D. E. Shaw group33), CDK2 (ref. 28) (20 ms),
HEWL (800 ns), EH3_sam (3 ms). CDK2, HEWL and HEWL
trajectories were generated in a similar protocol with these
previous trajectories except utilization of the AMBER force elds
and package. Secondary structure identity assignment were
described in our previous study.28
2.2 Joint distributions and probability density

To calculate joint distributions for multiple-torsion sets (e.g.
single residues, residue pairs or multiple consecutive backbone
torsions), we rst divided each torsion into m bins, L(i) (i ¼ 1,
2,.,m) is the width of the ith bin. For a n-torsion (t1, t2,.,tn) set,
there were mn different states based on such partition of
participating torsions. We rst constructed joint distributions
of a n-torsion set X with mn bins. The order of bins was deter-
mined by eqn (2). The probability density f(xi) of each bin were
shown below. p(xi) was the probability that data points fell
within the ith bin. w(xi) is the volume of the ith bin for a torsion
set or the width of the ith bin for a single torsion.

f(xi) ¼ p(xi)/w(xi) (i ¼ 1, 2,.,mn) (1)

w(xi)¼ L1(k1)L2(k2).Ln(kn), (k¼ 1, 2,.,m; i¼ k1 �m1�1

+ k2 � m2�1 +.+ kn � mn�1) (2)
2.3 Estimation of mutual information

The entropy S of a torsion or multiple-torsion sets could be
expressed with eqn (3), f(x) was the probability density function
of a torsion or multiple-torsion sets.

S ¼ �
ðp
�p

f ðxÞlog f ðxÞdx (3)

To calculate the entropy S, we rst divided a torsion (n¼ 1) or
multiple-torsion sets A into mn bins. The probability density
This journal is © The Royal Society of Chemistry 2019
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within each bin was approximated as being uniform and could
be calculated with eqn (4), f(Ai) was the probability density in the
ith bin, p(Ai) was the probability that data points fell within the
ith bin. w(Ai) is the width (for one torsion) or volume (for
multiple-torsion sets) of a bin.

f(Ai) ¼ p(Ai)/w(Ai) (i ¼ 1, 2,.,mn) (4)

The entropy of A can subsequently be estimated as below:
Fig. 1 Comparison of equal-width binning and equal-sample binning.
We calculated mutual information of HEWL neighboring backbone
torsions with different m value. (a) Coefficient of variation of MI that
calculated with bins divided with randomly selected start point. (b)
Relative error of estimated MI (calculated withm ranging from 3 to 36).
The reference value MIref was calculated withm ¼ 180. (c) Correlation
coefficient of estimated MI and reference MIref.

SðAÞ ¼ �
ð
bin1

f ðxÞlog f ðxÞdx�
ð
bin2

f ðxÞlog f ðxÞdx�.�
ð
binmn

f ðxÞlog f ðxÞdx

z � wðA1Þf ðA1Þlnðf ðA1ÞÞ � wðA2Þf ðA2Þlnðf ðA2ÞÞ �.� wðAmnÞf ðAmnÞlnðf ðAmnÞÞ

¼ �
Xmn

i¼1

wðAiÞf ðAiÞlnðf ðAiÞÞ (5)
Similarly, the joint entropy of two torsions or two multiple-
torsion sets A and B can be estimated as below:

SðABÞz �
X
i¼1

mnX
j¼1

mn

wðAiÞw
�
Bj

�
f
�
Ai;Bj

�
ln
�
f
�
Ai;Bj

��
(6)

f(Ai, Bj) ¼ p(Ai, Bj)/(w(Ai)w(Bj)) (7)

The mutual information between A and B was calculated as
below:

MIðABÞ ¼ SðAÞ þ SðBÞ � SðABÞ

z �
Xm
i¼1

wðAiÞf ðAiÞlnðf ðAiÞÞ �
Xm
i¼1

wðBiÞf ðBiÞlnðf ðBiÞÞ

þ
Xm
i¼1

Xm
j¼1

wðAiÞw
�
Bj

�
f
�
Ai;Bj

�
ln
�
f
�
Ai;Bj

��

¼ SpðAÞ þ SpðBÞ � SpðABÞ (8)

nA and nB were number of torsions in torsion set A and B. Sp(A)
was the entropy calculated with bin joint distributions. In eqn
(8) wis were canceled, therefore mutual information (MI)
between two torsion sets could be calculated with bin proba-
bility p(Ai)s (the probability that data points fell within the ith
bin) instead of bin probability density f(Ai) ¼ p(Ai)/w(Ai). The bin
widths could be chosen as we wished.

In numerical computations, probability densities had to be
approximated with various forms of histograms. Strategies of
binning (distribution of bin width and number of bins) apparently
would impact the accuracy of concerned approximations. For any
given distribution of bin width, increasing number of bins would
result in better accuracy if sufficient statistics was available.
However, for given number of bins, the effect of bin width distri-
butions was more subtle. To choose for appropriate binning
strategies, we tested two extreme bin width distributions, equal-
This journal is © The Royal Society of Chemistry 2019
width binning where all bins had the same width and equal-
sample binning where all bins had approximately equal number
of samples (number of samples might not necessary be even
multiples of number of bins), for bin numbersm ranging from 3 to
36. We utilized calculation of backbone torsional pair mutual
information for hen egg white lysozyme (HEWL) trajectory set to
perform the tests. For each given value of m and bin width
distribution we calculated mutual information of each adjacent
backbone torsional pair (phi-psi or psi-phi) 20 times, each of which
corresponded to a random start point of binning. As accuracy of
mutual information calculation depended on number of bins, we
calculated the mutual information for each adjacent backbone
torsional pair with m ¼ 180 to serve as the reference value (MIref).
Upon completing the above mentioned calculations, we computed
the coefficient of variation (Cv ¼ s/m) for each torsional pair based
upon 20 calculated values and subsequently we obtained themean
Cv of all HEWL backbone torsional pairs (see Fig. 1a). s and mwere
standard deviation and mean value of the 20 calculated mutual
information for relevant torsional pair respectively. To evaluate the
effect of bin numbers, we calculated average mutual information
values MImean of all adjacent torsional pairs based on 20
RSC Adv., 2019, 9, 13949–13958 | 13951
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calculations. Subsequently, the relative error were calculated with
Re ¼ |(MIref � MImean)/MIref| (see Fig. 1b). The correlation coeffi-
cient were calculated with rMImean,MIref ¼ cov(MImean, MIref)/sMImean

-
sMIref, where cov was covariance operation and s was relevant
standard deviations (see Fig. 1c). For small m value signicantly
less variation (Fig. 1a) and smaller bias (Fig. 1b) were observed for
equal-sample binning. While for largerm values, the opposite was
observed although the turning point of m value for variation and
bias was different. More importantly, equal-sample binning
consistently exhibited better correlation with the calculated refer-
ence mutual information. As expected, all calculated mutual
information were smaller than the reference value due to the small
bin number. In our (as well as other binning) calculation, the
probability density inside each bin was considered to be a constant
and the correlations exist within individual bins were missing.
Apparently, the extent of missing correlations would be more
severe for larger bins (smaller bin numbers).

To calculate mutual information between two torsion sets A
and B, we utilized eqn (8) to estimate the full mutual informa-
tion of two residues. The involved number of bins increase
exponentially with number of torsions in participating residues
as mnA+nB. While large bin numbers theoretically produce more
accurate mutual informations, the memory and sampling
burden would render calculation for large residues with 5 or
more torsions extremely difficult. Therefore, based upon the
above binning strategy comparison, we chose (m ¼ 3) (starting
from p) and the equal-sample binning in this study to charac-
terize the signicance of triple torsional correlations. In calcu-
lation of inter-residue mutual information, we estimated
spurious correlations by random permutation. For Lys–Lys Lys–
Arg Arg–Arg residue pairs, even with m ¼ 3, spurious correla-
tions were obtained with mutual information much larger than
0.01. So to residues with large side chains m ¼ 3 was large
enough to generate spurious correlations for our data sets.
Therefore, we excluded Lys–Lys Lys–Arg and Arg–Arg residue
pairs in our comparison and chosem¼ 3 so as not to be severely
inuenced by spurious correlations with larger m.
2.4 Inter-residue mutual information calculation

Both backbone (f, j) and side chain torsions were included in
the torsion set of each residue. Full mutual information between
two residues A and B, with nA and nB torsions were calculated
based on entropies of torsion sets A, B and AB¼ AWB, which were
derived from joint distributions of torsion sets in A, B and AB:

MI z Sp(A) + Sp(B) � Sp(AB) (9)

SpðAÞ ¼ �
XmnA

i¼1

pi lnðpiÞ (10)

SpðBÞ ¼ �
XmnB

j¼1

pj ln
�
pj
�

(11)

SpðABÞ ¼ �
X
k¼1

mðnAþnBÞ
pk lnðpkÞ (12)
13952 | RSC Adv., 2019, 9, 13949–13958
m is the number of partitions for each torsion, in this studym¼ 3.
Approximate second order mutual information MI2 between

two residues A and B were calculated based on the second order
expansion of entropies, which were calculated according to the
following equations:

MI2 z Sp
2(A) + Sp

2(B) � Sp
2(AB) (13)

Sp
2ðAÞ ¼

XnA
i¼1

SpðAiÞ �
XnA
i\j

Ip
�
Ai;Aj

�
(14)

Ip(Ai, Aj) ¼ Sp(Ai) + Sp(Aj) � Sp(Ai, Aj) (15)

SpðAiÞ ¼ �
Xmn

k¼1

p
�
Aik

�
ln
�
p
�
Aik

��
(16)

Sp

�
Ai;Aj

� ¼ �
Xmn

k¼1

Xmn

l¼1

p
�
AikAjl

�
ln
�
p
�
AikAjl

��
(17)

In eqn (16) p(Aik) represents probability of the torsion Ai fell
in its kth partition. In eqn (17) p(AikAjl) represents the probability
of the torsion Ai fell in its kth partition and the torsion Aj fell in
its lth partition simultaneously. Sp

2(B) and Sp
2(AB) were calcu-

lated similarly as Sp
2(A).

Approximate third order mutual information MI3 between
two residues A and B were calculated based on the following
third order expansions:

MI3 z Sp
3(A) + Sp

3(B) � Sp
3(AB) (18)

Sp
3ðAÞ ¼

XnA
i¼1

SpðAiÞ �
XnA
i\j

Ip
�
Ai;Aj

�þ XnA
i\j\k

Ip
�
Ai;Aj ;Ak

�
(19)

Ip(Ai, Aj) ¼ Sp(Ai) + Sp(Aj) � Sp(Ai, Aj) (20)

Ip(Ai, Aj, Ak) ¼ Sp(Ai) + Sp(Aj) + Sp(Ak) � Sp(Ai, Aj)

� Sp(Ai, Ak) � Sp(Aj, Ak)

+ Sp(Ai, Aj, Ak) (21)

Sp

�
Ai;Aj ;Ak

� ¼ �
Xmn

u¼1

Xmn

v¼1

Xmn

w¼1

p
�
AiuAjvAkw

�
ln
�
p
�
AiuAjvAkw

��

(22)

In eqn (20) and (21), Sp(Ai) and Sp(Ai, Aj) were calculated as in
eqn (16) and (17). p(AiuAjvAkw) in eqn (22) was the probability of
the torsion Ai fell in its uth partition, the torsion Aj fell in its vth
partition, and the torsion Ak fell in its wth partition simulta-
neously. Sp

3(B) and Sp
3(AB) were calculated similarly as Sp

3(A).
2.5 Local joint distributions of consecutive backbone
torsion segments

As far as a consecutive segment of n protein backbone torsions
(f and j) were concerned, we were ultimately interested in their
joint distributions p(x), x ¼ (x1, x2,.,xn) of the corresponding
backbone torsion vector x. The extent of intra-secondary-
This journal is © The Royal Society of Chemistry 2019
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structure (ISS) backbone torsional correlations in primary
sequence might be effectively characterized by the quality of
approximate joint distributions constructed from various
orders of local conditional probabilities. The rst p1(x), second
p2(x), third p3(x) and fourth p4(x) ordered approximations were
shown below:

pðxÞz p1ðxÞ
¼ pðx1Þpðx2Þ.pðxnÞ (23)

pðxÞz p2ðxÞ
¼ pðx1Þpðx2|x1Þ.pðxn|xn�1Þ (24)

pðxÞz p3ðxÞ
¼ pðx1Þpðx2|x1Þpðx3|x2; x1Þ.pðxn|xn�2xn�1Þ (25)

pðxÞz p4ðxÞ

¼ pðx1Þpðx2|x1Þpðx3|x2; x1Þpðx4|x3; x2; x1Þ.pðxn|xn�3xn�2xn�1Þ
(26)

In these equations the joint distributions were represented
by conditional probabilities. In eqn (24) only the correlations of
immediate neighboring torsions were used, other correlations
were considered to be transmitted (communicated) by these
immediate neighboring correlations. In eqn (25) and (26) only
KLl ¼
ð ​
f ðxÞln f ðxÞ

flðxÞdx

¼
ð
bin1

f ðxÞln f ðxÞ
flðxÞdxþ

ð
bin2

f ðxÞln f ðxÞ
flðxÞdxþ.þ

ð
binmn

f ðxÞln f ðxÞ
flðxÞdx

zwðA1ÞðpðA1Þ=wðA1ÞÞln pðA1Þ=wðA1Þ
plðA1Þ=wðA1Þ þ wðA2ÞðpðA2Þ=wðA2ÞÞln pðA2Þ=wðA2Þ

plðA2Þ=wðA2Þ þ.þ wðAmnÞðpðAmnÞ=wðAmnÞÞln pðAmnÞ=wðAmnÞ
plðAmnÞ=wðAmnÞ

¼
X
i¼1

mn

pðAiÞln pðAiÞ
plðAiÞ (33)
the correlations of two and three immediate neighboring
torsions were considered.

By chain rule of conditional probability, we have:

p(x1, x2) ¼ p(x1)p(x2|x1) (27)

p(x1, x2, x3) ¼ p(x2, x1)p(x3|x2, x1) (28)

p(x1, x2, x3, x4) ¼ p(x3, x2, x1)p(x4|x3, x2, x1) (29)

Therefore, eqn (24) (the second order approximation), (25)
(the third order approximation) and (26) (the fourth order
approximation) may be rewritten as:
This journal is © The Royal Society of Chemistry 2019
p2ðxÞ ¼ pðx1; x2Þpðx2; x3Þ.pðxn�1; xnÞ
pðx2Þpðx3Þ.pðxnÞ (30)

p3ðxÞ ¼ pðx1; x2; x3Þpðx2; x3; x4Þ.pðxn�2; xn�1; xnÞ
pðx2; x3Þpðx3; x4Þ.pðxn�2; xn�1Þ (31)

p4ðxÞ ¼ pðx1; x2; x3; x4Þpðx2; x3; x4; x5Þ.pðxn�3; xn�2; xn�1; xnÞ
pðx2; x3; x4Þpðx3; x4; x5Þ.pðxn�3; xn�2; xn�1Þ

(32)

and it was immediately seen from eqn (30)–(32) that calculation
of these approximate joint probabilities were only dependent on
local joint probabilities of subsets of concerned variables.
Building additional higher ordered approximations was
straight forward, we limited our analysis to the fourth and lower
ordered approximations due to limitation of available
statistics.

To gauge the quality of various ordered local approximations,
we calculated KL divergence between observed joint distributions
of consecutive ISS backbone n torsion sets and corresponding
approximations. We had to utilize small bin number due to
limitation of available statistics. To reduce both the variation and
the bias of small number of bins, we again utilized equal-sample
binning with m ¼ 3. As in calculation of entropy (see eqn (8)),
integration based on probability density may be approximated by
bin probabilities as shown below:
with f(x) and fl(x) being the joint probability density and its lth
ordered approximation, pl being the lth ordered approximation of
joint distribution as calculated in discrete (histogram) forms of
eqn (23)–(26). pl(Ai) is the probability that sample fell in the ith of
the mn bins in a lth ordered approximate joint distribution pl.
2.6 Spurious correlations, simulation convergence analysis
and data selection in inter-residue mutual information
calculation

2.6.1 Removal of spurious correlations by random permu-
tation. In calculation of mutual information between two resi-
dues, torsional values of all concerned torsional DOFs for each
data point were taken from the sameMD snapshot. When DOFs
RSC Adv., 2019, 9, 13949–13958 | 13953

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra02191d


Table 1 Number of residue pairs selected for the seven trajectory sets

Protein npair MI > 0.05 MISC < 0.01 MIdiff < 0.5

1bta 3916 161 120 67
1rgh 4560 328 292 116
2bnh 103 740 5449 1120 563
5pti 1653 205 93 44
7rsa 7626 1610 1140 465
cdk2 44 253 6040 1636 928
HEWL 8256 971 830 464

Fig. 2 Distributions of MI2 � MI and MI3 � MI, MI2 is the inter-residue
mutual information estimated using the second-order MIE. MI3 is the
inter-residue mutual information estimated using the third-order MIE
and MI is the full inter-residue mutual information calculated directly
from the joint distributions. Residue pairs with MI < 0.05 are excluded
in constructing these plots.
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of the two participating residues (in a residue pair) were given
torsional values from two independently and randomly selected
MD snapshots, then calculated correlation between the two
residues should disappear when the number of data points was
sufficiently large. Therefore, to remove potential spurious
correlations due to limited number of snapshots, we rst
randomly permuted MD trajectory sets so that torsional values
of a pair of residues were taken from two random snapshots. All
residue pairs with mutual information larger than 0.01 (MISC >
0.01) in randomly permuted data sets were excluded from
analysis.

2.6.2 Data exclusion based on convergence. A residue pair
pass the random permutation tests was not necessarily
converged in its torsional phase space. To remove residue pairs
that contained insufficiently sampled torsions, we divided
trajectory sets of each protein into three equally sized subsets,
and compared the inter-residue mutual information calculated
from the total data set (MItot) and three subsets (MIsubset1,
MIsubset2, MIsubset3). If a large difference existed as judged by
(MIdiff ¼ (abs(MItot � MIsubset1) + abs(MItot � MIsubset2) +
abs(MItot � MIsubset3))/(MItot � 3) > 0.5), we excluded the cor-
responding residue pair.

For inter-residue correlation analysis, to test sampling
convergence, we rst selected signicantly correlated residue
pairs with mutual information greater than 0.05 from all
possible residue pairs (npair) of each given protein; Secondly, we
selected residue pairs with small spurious correlations (MISC <
0.01) from the remaining residue pairs; thirdly, we selected
residue pairs that satisfy convergence criteria (MIdiff < 0.5).
Number of selected residue pairs for seven trajectory sets were
listed in Table 1.

For joint distribution approximation analysis of consecutive
backbone torsional segments, to test sampling convergence, we
divided trajectory sets into three equally sized subsets, and
calculated the KL divergences of each pair. We obtained three
KL values for a backbone torsion and choose the largest value
KLsubset as the nal result. We removed backbone torsions with
KLsubset over 0.2 in joint distribution approximations. For
calculating KLsubset we divided backbone torsions into 60 equal
width bins.
Fig. 3 Mutual information values of the selected ten residue–residue
pairs for four different trajectory sets. Ten residue pairs with the largest
absolute values of MI2 � MI are selected for each protein.
3 Results
3.1 Inter-residue torsional mutual information in proteins

Inter-residue mutual information (MI) was calculated14 and
found to be useful in predicting relevant residues involved in
13954 | RSC Adv., 2019, 9, 13949–13958
protein allostery. However, the extent of biases (approxima-
tions) of the second order mutual information expansion (MIE)
was not analyzed. As in that work, the DOFs we chose were
backbone and side chain torsions. We analyzed MD trajectory
sets of 7 proteins in this part of study. For each residue A, we
divided each comprising torsion into three approximately
equal-sample partitions and calculated their joint distributions.
For a residue pair (A and B), the full mutual information MI
between the two residues were calculated according to eqn (9)–
(12). We only selected signicantly correlated residue pairs (MI
> 0.05) and excluded residue pairs with spurious correlations
This journal is © The Royal Society of Chemistry 2019
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Table 3 Parameters a1, a2 and b from the five training sets

Train sets a1 a2 b

1 0.36391182 0.53388144 0.010004
2 0.37253283 0.52327209 0.010256
3 0.36793552 0.53070647 0.010176
4 0.35997187 0.54698256 0.009906
5 0.35433510 0.53695367 0.011474
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and insufficient sampling (see Spurious correlations in the
Methods section).

Aer obtaining the full mutual information of residue pairs
as the reference, we calculated approximate mutual informa-
tion of the same set of residue pairs using MIE with cutoffs at
the second (MI2, eqn (13)–(17)) and the third order (MI3)
respectively (eqn (18)–(22)). Details of these calculations were
explained in the Methods section.

We plotted distributions of MI2 � MI and MI3 � MI for four
representative proteins in Fig. 2. It was evident that distribu-
tions of MI3�MI exhibit much sharper and narrower peak than
that of MI2�MI for the four proteins shown, and similar results
were observed for other proteins we analyzed but not shown.
Therefore, we concluded that at least for the utilized force elds,
triple torsional correlations contributed signicantly to inter-
residue mutual information. To illustrate relative values for
MI, MI2 and MI3, we choose ten residue pairs with the largest
absolute value of MI2 � MI and plotted corresponding MI, MI2
and MI3 in Fig. 3. As expected, MI3 were better approximations
than MI2 in all cases. Although values of MI, MI2 and MI3 were
not unanimously ordered, MI was bounded by MI2 and MI3 for
majority cases and this property was potentially useful (see
section below) in predicting MI with MI2 and MI3 when calcu-
lation of MI is much more difficult than calculation of MI2 and
MI3. As demonstrated by Table 1, convergence of full mutual
information is rather difficult for signicant number of residue
pairs, which were excluded from comparison in this study. Due
to the exponential increase in need for sampling with
increasing higher orders, generating trajectories for the third
order expansion calculation would likely to be easier by orders
of magnitude.
3.2 Linear combinations of the second and the third order
approximations of inter-residue mutual information

As shown above, the third order approximations (MI3) were
consistently better than the second order approximations (MI2).
We expected to obtain better approximations as higher ordered
approximations were utilized. However, exponentially
increasing needs for both analysis computational power and
raw data preventing us from brute force utilization of higher
ordered approximations. In a theoretically rigorous expansion,
coefficients for each order was given. However, if we somehow
represented the fourth and all higher ordered terms with the
second and the third order terms, and if such representation
Table 2 Mean squared error (when compared with the full mutual
information) of the second order approximations (MSE2), the third
order approximations (MSE3) and that of their optimized linear
combinations (MSELR). Data for all 5 validation sets (Vset) were listed

Vset MSE2 MSE3 MSELR

1 0.00517 0.00196 0.00019
2 0.00837 0.00225 0.00024
3 0.00911 0.00285 0.00021
4 0.01575 0.00601 0.00031
5 0.00533 0.00318 0.00023

This journal is © The Royal Society of Chemistry 2019
could better approximating higher ordered terms than simply
ignoring them, optimizing coefficients for the second and the
third order terms might be useful. We therefore carried out
a linear regression analysis to solve parameters (a1, a2 and b) in
the following equation:

MILR ¼ a1 � MI2 + a2 � MI3 + b (34)

and to predict an optimal approximate mutual information
(MILR) based on linear combinations of the second and the
third order approximations. We performed ve fold cross vali-
dation with the results shown in Tables 2–4. From Table 2, it
was apparent that for all ve validation sets (Vset), MSELR was
signicantly and consistently smaller than MSE3, which was
signicantly and consistently smaller than MSE2 as expected.
Parameters from ve training sets were quite consistent (3). As
one would intuitively expect, a2 took larger value than a1 since
MI3 were better approximations than MI2. It was noted that the
computational cost for linear regression analysis was trivial
when compared to calculations of joint probabilities and
entropies. Therefore, this strategy might be potentially quite
effective in improving accuracy of inter-residue torsional
correlations. It was important to note that these coefficients
were obtained for equal-sample binning strategy with m ¼ 3,
caution should be applied in direct utilization of these numbers
for analysis with other binning strategy.
3.3 Various ordered approximations for joint distributions
of consecutive ISS backbone torsion segments for different
secondary structures

Here we investigated non-overlapping segments of 8 consecu-
tive ISS backbone torsions (n ¼ 8). For each selected segment,
we calculated its joint distribution p(x) and its rst, second,
third and fourth ordered approximations p1(x), p2(x), p3(x) and
p4(x) according to eqn (23), (30)–(32). KL divergences (KLj
Table 4 Average values of the full mutual information (MI), of the
second order approximation (MI2), of the third order approximation
(MI3) and that of the their linear combinations (MSELR). Data for all 5
validation sets (Vset) were listed

Vset MI MI2 MI3 MILR

1 0.119272 0.125381 0.115698 0.117400
2 0.130858 0.154655 0.120024 0.130675
3 0.118299 0.147873 0.101547 0.118476
4 0.143535 0.198191 0.117558 0.145551
5 0.102747 0.106783 0.099821 0.102911

RSC Adv., 2019, 9, 13949–13958 | 13955
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Fig. 4 Probability distributions of KL divergence between observed
joint distributions and their various ordered approximations (see eqn
(1), (8)–(10)) of 8-torsion segments for a helices, b strands and loops
(indicated in parenthesis as a, b and L). The number in the second
parenthesis is the average KL divergence calculated from the corre-
sponding distribution. This figure is based on analysis of trajectory sets
based on CHARMM force-fields as not sufficiently good statistics are
available for trajectories generated by AMBER force-fields.
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between p(x) and pj(x), j ¼ 1, 2, 3,4) were calculated subse-
quently according to eqn (33) and their distributions were
shown in Fig. 4. One immediately saw that KL1 was consistently
large for all secondary structure segments investigated,
regardless of their specic types (a helix, b strand or loop),
indicating that the rst order approximation was not a good
option to substitute for the joint probability distribution in all
cases. As one would intuitively expect, higher ordered approxi-
mations were better than lower ordered approximations for all
three types of secondary structure segments investigated, as
indicated by signicantly smaller KL divergences for higher
orders of approximations. Additionally, KL divergences between
the full joint distributions and their second, third and fourth
ordered approximations (KLi(a) z KLi(b) < KLi(L) (i ¼ 2, 3, 4))
were similar for a helices and b strands, while that of loops are
considerably larger. These observations suggest that observed
torsional correlations in loops were signicantly more long-
ranged than that in a helices and b strands. Our selection of
fragment length n ¼ 8 was limited by statistics as the available
number of fragments with more than 8 consecutive torsions are
quite small aer some backbone torsions were excluded due to
unsatisfactory convergence and sampling (see Methods).
4 Discussion

Entropy of a system could be expanded as a series of increas-
ingly higher-ordered information terms:34

SA ¼
XnA
i¼1

SðAiÞ �
XnA
i\j

I2
�
Ai;Aj

�þ XnA
i\j\k

I3
�
Ai;Aj ;Ak

��. (35)
13956 | RSC Adv., 2019, 9, 13949–13958
with nA being the number of DOFs in a molecular system A.
Unfortunately, this equation was not practically useful when
calculating the conformational entropy of proteins because the
requirement for sampling rapidly became intractable. We
utilized the second- and third-order correlation terms to esti-
mate residue entropies in proteins and calculated correlations
between residues. While as expected, third order approxima-
tions exhibited smaller error than the second order approxi-
mations, we found that reorganization of the exact same
information (linear combinations of the second and the third
order results) signicantly improved over the third order
approximations with trivial additional computational costs, this
idea might be useful for other complex molecular systems as
well.

We analyzed trajectory sets generated with two different
force elds (CHARMM and AMBER) for a wide variety of protein
folds. When the inuence of triple correlations is concerned,
similar and consistent observed signicance suggest their
potentially general importance for proteins. It was important to
note that signicant inter-residue torsional correlations were
rare as demonstrated by Table 1. All our inter-residue correla-
tion analysis were targeted to these small subsets of residue
pairs. Our speculation that triple torsional correlations were of
general importance for inter-residue correlations were only
meant for these signicantly correlated residue pairs, and such
importance was essentially independent of identity of protein
molecules, as least in our limited but diversied observations. It
was evident that for any pair of residues with negligible corre-
lations, discussion of triple correlations was meaningless.
However, for local backbone segment correlation analysis based
on joint distribution calculations, all non-overlapping and
consecutive local segments with the same secondary structure
assignment were included. Therefore, the observed importance
of the third and higher ordered local correlations were essen-
tially over the whole primary sequence for all analyzed proteins.

Here in order to calculate joint distributions for multiple
torsion sets, we divided each torsion into 3 bins. This would
result in underestimation of mutual information for all residue
pairs as demonstrated by Fig. 1. However, the requirement for
sampling rapidly became intractable for larger bin numbers
and most residues would be excluded from such analysis as no
full joint distribution could be obtained reliably. Nevertheless,
relative importance of the second order and third order
contributions were estimated with consistent binning and the
results should be qualitatively meaningful. The impact of
binning strategy (bin width distribution and bin number
selection) was universal for all numerical analysis of correla-
tions. Usually, calculation within each individual investigation
was consistent. However, in different studies, binning strategies
could be wildly different. We therefore strongly urge readers to
be cautious especially when quantitative comparison was
intended between/among different computation investigations
with different binning strategies.

It was also important to note that inter-residue correlations
we calculated were correlations of internal motions between
residues. The overall translation and rotation of residues were
not accounted for in such calculations. It was undoubtable that
This journal is © The Royal Society of Chemistry 2019
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there were various extent of correlations for overall translation
and rotation of residues, and for clusters of them as well. How
internal motions of residues (or clusters of which) collaborated
with their overall translation/rotation to accomplish biological
functions were yet to be understood. Complex quantities
proposed recently such as (Dis)similarity index,25 energy
network analysis26 and pKa variation27 effectively provided
consideration of both coupling of internal motions and overall
translational and rotational motion between various parts of
proteins. Nonetheless, mechanistic analysis and understanding
remain to be tackled. We had plan to investigate this issue in
our future work.

One well accepted approximate expression for the joint
probability of a molecular system with multiple DOFs is the
Kirkwood superposition35 as shown below:

Pðx1; x2;/; xnÞ ¼

Q
sn�1

4npðsn�1ÞQ
sn�2

4npðsn�2Þ
«Q

s1
4npðs1Þ (36)

with
Q
si4n

pðsiÞ being the product of probabilities over all subsets

of variables of size i in the variable set n. This superposition was
expressed as lower order joint distributions for all possible
combinations of DOFs in contrast to eqn (23), (30)–(32), where
only local joint probabilities of neighboring DOFs up to certain
order were utilized. In analysis of local backbone segments, our
utilization of chain rule of conditional probability assumed that
all inuence from other molecular DOFs to a given DOF is
communicated through its neighboring DOFs. Of course, this is
not exactly true as long-range interactions (e.g. electrostatic
interactions) could not be fully accounted for by such treat-
ment. Our approximations showed that with the second-order
neighboring correlations, the protein backbone local torsional
joint density can be described reasonably well in stable
secondary structures (helices and strands). Long range corre-
lations were relatively rare in these structures. These observa-
tions suggested that when we study the structure or movement
of stable segments (helices and strands) in proteins, it may be
an efficient way with acceptable accuracy to consider up to the
second-order correlations of neighboring DOFs. This idea
might be useful in structural renement for both protein design
and structure prediction. However, when loop structures were
concerned, consideration of higher (third and fourth) ordered
correlations becomes more important.
5 Conclusions

Binning strategies were of great importance in numerical
analysis of correlations. We rst provided a detailed compar-
ison of equal-width binning and equal-sample binning for
various bin numbers in calculation of torsional mutual infor-
mation. It was important to note that quantitative comparison
of correlation calculations between different studies should be
highly cautious when different binning strategies were utilized.
Based on such comparison and sampling limitation, we chose
equal-sample binning with 3 partitions for each torsion to
This journal is © The Royal Society of Chemistry 2019
perform calculations of residue pair mutual information and
local joint probabilities of consecutive ISS backbone torsional
segments. Based on analysis of extensive MD trajectories for
many globular and membrane proteins, we gauged errors of the
second- and third-order approximations of inter-residue
torsional mutual information. We found as expected that
third-order approximations were better than the second-order
approximations. Additionally, linear combinations of the
second- and third-order approximations signicantly improved
over third-order approximations with trivial additional
computational cost. It was found that third-order torsional
correlations were important in proteins for both inter-residue
torsional mutual information and local torsional joint distri-
butions of consecutive backbone segments. Through construc-
tion of consecutive backbone torsional joint distributions from
lower ordered expansions, we found that ISS backbone torsional
correlations for loops were signicantly more sequentially long-
ranged than those of a helices and b strands.
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