
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

1/
15

/2
02

5 
7:

10
:1

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
New scaling relat
Department of Chemical & Materials Engin

Cruces, New Mexico, 88003-8001, USA. E-m

† Electronic supplementary information
a proof that aforce-eld, anon-dir(u), alo

derivations and proofs related to the
algorithm (S2); a proof the wp lookup tab
the increment squared (S3); linear-scalin
interacting atom pairs (S4). A zip f
integration and Richardson extrapolation
a function that computes Ctotal

6 using t
modules containing sample code to
initialization. See DOI: 10.1039/c9ra01983

Cite this: RSC Adv., 2019, 9, 33310

Received 14th March 2019
Accepted 23rd September 2019

DOI: 10.1039/c9ra01983a

rsc.li/rsc-advances

33310 | RSC Adv., 2019, 9, 33310–3333
ions to compute atom-in-material
polarizabilities and dispersion coefficients: part 2.
Linear-scaling computational algorithms and
parallelization†

Thomas A. Manz * and Taoyi Chen

We present two algorithms to compute system-specific polarizabilities and dispersion coefficients such that

required memory and computational time scale linearly with increasing number of atoms in the unit cell for

large systems. The first algorithm computes the atom-in-material (AIM) static polarizability tensors, force-

field polarizabilities, and C6, C8, C9, C10 dispersion coefficients using the MCLF method. The second

algorithm computes the AIM polarizability tensors and C6 coefficients using the TS-SCS method. Linear-

scaling computational cost is achieved using a dipole interaction cutoff length function combined with

iterative methods that avoid large dense matrix multiplies and large matrix inversions. For MCLF,

Richardson extrapolation of the screening increments is used. For TS-SCS, a failproof conjugate residual

(FCR) algorithm is introduced that solves any linear equation system having Hermitian coefficients matrix.

These algorithms have mathematically provable stable convergence that resists round-off errors. We

parallelized these methods to provide rapid computation on multi-core computers. Excellent

parallelization efficiencies were obtained, and adding parallel processors does not significantly increase

memory requirements. This enables system-specific polarizabilities and dispersion coefficients to be

readily computed for materials containing millions of atoms in the unit cell. The largest example studied

herein is an ice crystal containing >2 million atoms in the unit cell. For this material, the FCR algorithm

solved a linear equation system containing >6 million rows, 7.57 billion interacting atom pairs, 45.4 billion

stored non-negligible matrix components used in each large matrix-vector multiplication, and �19

million unknowns per frequency point (>300 million total unknowns).
1. Introduction

In the rst part of this series, we introduced the MCLF method
(acronym from authors' last initials) to compute atom-in-
material (AIM) polarizabilities and dispersion coefficients.1

We compared chemical performance of MCLF to the Tkatch-
enko–Scheffler method with self-consistent screening (TS-SCS).1

Computed polarizabilities and/or dispersion coefficients were
compared to experimental and/or high-level computational
benchmark data for isolated atoms, diatomic molecules, small
eering, New Mexico State University, Las

ail: tmanz@nmsu.edu
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polyatomic molecules, fullerenes, polyacenes, and solids.1 For
HIV reverse transcriptase complexed with an inhibitor,
computed MCLF and TS-SCS AIM polarizabilities and disper-
sion coefficients were compared to the OPLS biomolecular
force-eld.1

In this article, we introduce computationally efficient
algorithms that extend the MCLF and TS-SCS methods to
materials having large numbers of atoms in the unit cell. For
sufficiently large systems, both the required memory and
computational time scale linearly with increasing number of
atoms in the unit cell. Our methods can easily be applied to
materials containing millions of atoms in the unit cell. This
is orders of magnitude larger than unit cells for materials
previously studied with MCLF and TS-SCS methods. For
small unit cells, our methods are still faster and require less
memory than direct matrix inversion with negligible differ-
ence in computational precision.

The TS-SCS method was introduced in 2012.2 TS-SCS can be
combined with multibody dispersion (MBD), a damping func-
tion, and density functional theory (DFT) to give a DFT +
dispersion method.2 Ambrosetti et al. introduced range-
This journal is © The Royal Society of Chemistry 2019
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separated dipole interaction tensors to avoid (or minimize)
double-counting dispersion interactions in the combined
MBD@rsSCS framework.3 The TS-SCSmethod requires atom-in-
material hr3i radial moments as inputs.2,4 Several TS-SCS vari-
ants used different partitioning methods to compute the hr3i
moments: TS-SCS/Hirshfeld,2,4,5 TS-SCS/iterative Hirshfeld,6,7

and TS-SCS/DDEC6.1 Normally, the TS method assumes
a constant polarizability to hr3i moment ratio for a specic
chemical element irrespective of its charge states in a mate-
rial.2,4 Recently, Gould et al. introduced a Fractionally Ionic (FI)
method that adjusts the polarizability to hr3i moment ratio
using partial atomic charges.8 This requires a library of refer-
ence ion polarizabilities and C6 coefficients for free atoms in
different charge states.8,9 However, these reference polarizabil-
ities and C6 coefficients are hard to compute for anions such as
O2� that contain unbound electrons10 in their free state.

In the TS-SCS method, the C6,A dispersion coefficient is
computed using the Casimir–Polder integral (eqn (8)),
which requires AIM polarizabilities as a function of
imaginary frequency (aka imfreq). These AIM polarizabil-
ities are computed by solving the following linear equation
system

X3
t¼1

XNatoms

B¼1

�
dst

aunscreened
A ðuÞ � sst

ABðuÞ
�
a!!

SCS

B ðuÞ ¼ dsk (1)

at each imfreq point u, where sst
AB(u) is the dipole–dipole

interaction tensor, s and t are spatial indices (e.g., x, y, or z), dst is
the Kronecker delta, aunscreenedA (u) is the isotropic AIM

unscreened polarizability as a function of u, and a!!
SCS

B ðuÞ is the
self-consistent screened AIM polarizability tensor as a function
of u.2 A dipole interaction cutoff length function turns off dipole
interactions between atoms separated by a distance larger than
this cutoff length (e.g., 50 bohr). This makes the coefficients
matrix sparse when the material's unit cell is much larger than
this cutoff length. Because the dipole interaction tensor is
symmetric in both atomic indices and spatial indices, devel-
oping a computationally efficient TS-SCS algorithm is func-
tionally equivalent to developing a computationally efficient
algorithm to solve a set of real-valued symmetric sparse linear
equations.

At its heart, therefore, this is a fundamental linear algebra
problem. Specically, to solve a linear equation system My ¼
W having a sparse real-valued symmetric coefficient matrix
M. A näıve approach would invert the matrix M to compute y
¼ (inverse(M))W. However, this is computationally infeasible
for matrices containing a large number of rows (Nrows). First,
direct matrix inversion algorithms (e.g., Gaussian elimina-
tion with partial pivoting (GEPP) and the more advanced
Strassen algorithm) have computational costs scaling
between (Nrows)2 and (Nrows)3.11 Second, inverse(M) may be
dense (or at least considerably less sparse than M) leading to
high matrix multiplication costs. The cost of multiplying two
dense square matrices is between (Nrows)2 and (Nrows)3,11

and multiplying a dense square matrix times a dense vector
would cost (Nrows)2 if using conventional multiplication.
Therefore, the primary goal is to solve this linear equation
This journal is © The Royal Society of Chemistry 2019
system without any large dense matrix multiplies or large
matrix inversions. Here, a new conjugate residual algorithm
is introduced to achieve this with a computational cost
proportional to Nrows. This new conjugate residual algo-
rithm resists round-off errors.

As described in the rst article of this series,1 the MCLF
method includes numerous important innovations. It uses
a conduction limit upper bound to ensure assigned AIM
polarizabilities do not exceed those of a perfect conductor. It
uses m-scaling to smoothly transition between the scaling
behaviors of surface and buried atoms. It uses new scaling
relationships to describe changes in the polarizability-to-hr3i
moment ratio as a function of the atomic charge state
without requiring quantum mechanical (QM) computed
reference polarizabilities and C6 values for charged atoms.
This is an important advantage, because some isolated
charged atoms are unstable (e.g., O2� as discussed above). To
compute several different kinds of AIM polarizabilities,
MCLF separates directional from non-directional dipole
interaction tensor contributions. This includes: (a) non-
directionally screened polarizabilities to be used as force-
eld input parameters, (b) uctuating polarizabilities to
compute the C6 dispersion coefficients, and (c) static polar-
izabilities containing long-range dipole alignment due to
a constant externally applied electric eld. A new polariz-
ability partition and iterative polarizability screening ensure
assigned AIM polarizabilities are non-negative. A proof that
MCLF aforce-eld, anon-dir(u), alow_freq, and ascreened(u) are$0 is
provided in the ESI.† MCLF uses a multibody screening
function to capture the uctuating dipole alignment at short
distances and disorder at long distances. This leads to more
accurate C6 coefficients. Quantum Drude oscillator (QDO)
parameters yield higher-order AIM dispersion coefficients
(e.g., C8, C9, C10) and associated mixing rules.

The MCLF method includes polarizability screening using
a much different approach than TS-SCS.1 While TS-SCS solves
a linear equation system (eqn (1)), MCLF uses an incremental
polarizability screening.1 Accordingly, our linear-scaling MCLF
algorithm is vastly different in mathematical approach than our
linear-scaling TS-SCS algorithm. As explained in Section 2
below, we use Richardson extrapolation of the screening
increments to achieve high computational efficiency and
precision for MCLF. Both our linear-scaling MCLF and linear-
scaling TS-SCS algorithms avoid large dense matrix multipli-
cations and large matrix inversions.

These computational methods should nd widespread use
beyond the specic applications studied herein. This new
conjugate residual algorithm solves any linear equation system
having Hermitian coefficients matrix. (Conditioning is required
for ill-conditioned matrices.) Because it has mathematically
provable stable convergence that resists round-off errors, this
conjugate residual algorithm should nd widespread applica-
tions to solve a plethora of scientic computing problems
involving large sparse linear equation systems. Potential appli-
cations for such a method are vast.

The remainder of this article is organized as follows. Section
2 presents the linear-scaling MCLF algorithm. The failsafe
RSC Adv., 2019, 9, 33310–33336 | 33311
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conjugate residual and linear-scaling TS-SCS algorithms are
introduced in Section 3. Section 4 contains the performance
results: required computational times, required memory, and
parallelization efficiencies. All computational timing and
memory results reported in this paper are for the MCLF or TS-
SCS analysis; they do not include the prior quantum chem-
istry calculation (if any) and prior atomic population analysis
used to provide the input data. Section 5 concludes. The ESI†
contains mathematical derivations and proofs pertaining to
these methods.

Finally, we comment on the choice of atomic population
analysis method (APAM) used to provide input data to the
MCLF and TS-SCS methods. The memory requirements for
MCLF and TS-SCS analysis do not depend on which APAM
provides the input data. The required computational time for
MCLF analysis does not depend on which APAM provides the
input data. The required computational time for TS-SCS
analysis using the FCR algorithm only depends on the
number of FCR iterations, which could potentially be weakly
affected by the choice of APAM used to provide the input
data. In this article, we used DDEC6 (ref. 12 and 13) atomic
population analysis to generate the input data for MCLF and
TS-SCS analysis. (Other stockholder partitioning methods
could potentially be used.) Currently, DDEC6 is the most
recent generation of the Density Derived Electrostatic and
Chemical (DDEC) methods that are optimized to quantify
important electrostatic, magnetic, and chemical properties
across diverse materials.12–18 All DDEC6 calculations were
performed using the Chargemol program.12

The overall sequence is: QM calculation / APAM /

MCLF or TS-SCS analysis. DDEC6 and many other stock-
holder partitioning methods can be made strictly linear-
scaling by using a cutoff radius around each atom in
a material.12 The electron and spin densities assigned to an
atom in the material are zero outside this cutoff radius. This
yields linear-scaling computational time and memory,
because the number of integration points per atom does not
increase as Natoms increases.12 Natoms is the number of
atoms in the unit cell.

QM computation of the material's electron and spin densi-
ties is the rate-limiting step in this overall sequence. Signicant
progress has been made developing linear-scaling DFT codes
that have applications to studying unit cells containing�10 000
atoms.62–69 Orbital-free DFT calculation (which is presently most
suitable for treating metallic conductors66) was performed for
a million atom system.66 Further improvements are needed to
enable DFT calculations onmillions and billions of atoms. Even
without DFT calculations of such large systems, the MCLF (or
TS-SCS) method could still nd applications to materials con-
taining millions of atoms. For example, by using DFT calcula-
tions and DDEC6 analysis on smaller clusters to parameterize
information for atom types, followed by MCLF (or TS-SCS)
analysis for the full material. This strategy would make sense,
because DDEC6 analysis is more localized (i.e., cutoff radius¼ 5
Å) compared to MCLF (or TS-SCS) analysis (e.g., dipole inter-
action cutoff length ¼ 50 bohr).1,13
33312 | RSC Adv., 2019, 9, 33310–33336
2. Linear-scaling MCLF algorithm
2.1 How strict linear-scaling is achieved

Strict linear-scaling means that each and every part of the MCLF
program scales no worse than linear in computational time and
memory as Natoms increases when Natoms is sufficiently large.
First, no allocatable arrays having multiple dimensions of size
proportional to Natoms (e.g., My_array(Natoms, Natoms)) are
allocated for Natoms greater than a threshold. Second, no
nested DO loops having two indices of ranges proportional to
Natoms (e.g., requiring Order(Natoms2) iterations) are executed
for Natoms greater than a threshold. This is achieved by making
sure the program is written such that all sets of nested DO loops
and allocatable arrays (that are operational for Natoms greater
than a threshold) have at most one index whose range is
proportional to Natoms.

This is physically enabled by using a dipole interaction cutoff
length such that any two atoms farther apart have no direct
interactions. As explained in Section 2.2 below, the program
constructs lists of interacting atom pairs and uses these in
subsequent calculations. Because each atom in the material
only directly interacts with a limited number of other atoms, for
sufficiently large Natoms the total number of symmetry unique
interacting atom pairs is proportional to Natoms. This is true
even if the material is periodic and extends forever. This is
conceptually equivalent to a sparse matrix algebra.

Other mathematical innovations are also employed. First,
a special lookup table method (see Section 2.4) is used to
compute the total dispersion coefficient

Ctotal
6 ¼

X
A

X
B.A

ð2C6;ABÞ þ
X
A

C6;A (2)

without having to directly itemize this summation over all pairs
of atoms in the unit cell. Second, directly inverting a large
matrix (even if it is sparse) can potentially require more opera-
tions than Order(Nrows). As explained in Section 2.5, a linear-
scaling algorithm was developed that avoids large matrix
inversion. This algorithm is linear-scaling, because it requires
a xed number of large matrix-vector multiplications in which
thematrix is sparse. This matrix is the dipole interaction tensor,
whose non-zero components correspond to the interacting
atom pairs. Hence, each large matrix-vector multiplication
corresponds to looping over the lists of symmetry unique
interacting atom pairs.

As explained in Section 2.6, all of these linear-scaling inno-
vations were parallelized to enable fast multi-core computing.
Moreover, all of these innovations were programmed in
a general way that handles 0, 1, 2, or 3 periodic boundary
conditions (PBC). For input les of materials having periodic
unit cells, these MCLF and TS-SCS programs include the option
to use or ignore the input le PBC. For example, a molecule can
be simulated in a planewave code (such as VASP) by placing it
near the center of a large cube with PBC. In this case, to yield
AIM polarizabilities and dispersion coefficients for the isolated
molecule, the MCLF or TS-SCS program should be set to ignore
these PBC; this turns off all interactions between periodic
images.
This journal is © The Royal Society of Chemistry 2019
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2.2 Lists of interacting atom pairs

We use a capital letter (e.g., A, B) to represent an atom in the
reference unit cell. A small letter represents a translated atomic
image that is not necessarily located in the reference unit cell.
For example, b ¼ (B, L1, L2, L3) represents the image of atom B
that is translated L1 times the rst lattice vector~v1, L2 times the
second lattice vector~v2, and L3 times the third lattice vector~v3.

~Rb ¼ ~RB + L1~v1 + L2~v2 + L3~v3 (3)

is the nuclear position of this image, where ~RB is the nuclear
position of the parent atom in the reference unit cell.

During MCLF analysis, two separate lists of interacting atom
pairs are prepared aer the unscreened calculation and before
the screened calculation. For convenience, we refer to these as
the ‘small’ and ‘large’ lists, where ‘small’ and ‘large’ refer to the
interaction cutoff distance. Without loss of generality, the rst
atom in each pair can be considered to reside within the
reference unit cell. The second atom is located somewhere
within the dipole interaction cutoff length of the rst atom.
Only translation symmetry unique atom pairs need to be
included in the loops over atom pairs. As explained in the earlier
bond order article, an atom image pair is translation symmetry
unique if and only if at least one of the following criteria is
satised: (i) the index numbers of the atoms are different (e.g.,
atom 210 and atom 1056), (ii) L1 > 0, (iii) L1 ¼ 0 and L2 > 0, or (iv)
L1 ¼ L2 ¼ 0 and L3 > 0.18

The small lists all atom pairs having ‘overlapping’ Gaussian
dipole model densities as dened by the cutoff criterion

yunscreenedAb ¼ dAb

sunscreened
AB ðu ¼ NimfreqsÞ# ycutoff (4)

where

dAb ¼ k~RA � ~Rbk (5)

is the distance from atom A to image b, and sunscreenedAB (u ¼
Nimfreqs) is the static attenuation length. This criterion
ensures erfc(yAb) z exp(�(yAb

2)) z 0 for any atom pair not
included in the list. The value ycutoff ¼ 54/3 was chosen such that
even if the (partially) screened polarizability is larger than the
unscreened polarizability by up to a factor of ve, then
erfc(yscreenedAb ) # erfc(5) ¼ 1.5 � 10�12 and exp(�(yscreenedAb )2) #
exp(�25)¼ 1.4� 10�11. The following information was saved in
the small list array for each included atom pair: the index
numbers of the rst and second atoms, the translation integers
for the second atom, the atomic number of each atom, dAb, the
value of the smooth cutoff function, the value of the multibody
screening function times the smooth cutoff function, and the
following six tensor components: h1,1 ¼ 3(Dx)2/dAb

2 � 1, h1,2 ¼
h2,1 ¼ 3DxDy/dAb

2, h1,3 ¼ h3,1 ¼ 3DxDz/dAb
2, h22 ¼ 3(Dy)2/dAb

2 �
1, h2,3 ¼ h3,2 ¼ 3DyDz/dAb

2, h3,3 ¼ 3(Dz)2/dAb
2 � 1. Here, Dx, Dy,

and Dz are the Cartesian components of ~RA � ~Rb.
The large lists all atom pairs (A, B) in the reference unit cell

for which atom A (rst atom) is located a distance less than
dipole interaction cutoff length to at least one image of atom B
(second atom). The self-pair (A, A) is included if and only if one
This journal is © The Royal Society of Chemistry 2019
of the non-trivially translated images of atom A is located
a distance less than dipole interaction cutoff length to atom A in
the reference unit cell. The number of atom pairs in the large
list is always #Natoms(Natoms + 1)/2. For example, a NaCl
crystal containing two atoms in the reference unit cell would
contain three pairs in the large list: Na–Na, Na–Cl, and Cl–Cl.
For each pair (A, B) in the large list, a loop is performed over all
atom b images located within dipole interaction cutoff length of
atom A, and the following sums are accumulated and stored:

g!!
AB

¼
X
L

fcutoffðdAbÞh!
!Ab

(6)

h
!!AB

¼
X
L

fcutoffðdAbÞfMBSðdAbÞh!
!Ab

(7)

Here, fcutoff and fMBS are the smooth cutoff function and multi-
body screening function, respectively, described in the prior

article.1 Since g!! and h
!! are symmetric with respect to exchange

of the spatial indices, only six components need to be computed
and stored for each.

Our algorithm for constructing these small and large lists
has time and memory requirements scaling linearly with
increasing Natoms. Section S4 of the ESI† explains this algo-
rithm's details. Fig. S1 of the ESI† is a ow diagram summa-
rizing this process. The ESI† also contains Fortran modules that
can be examined for coding details. Data is grouped to enable
fast computation by avoiding all array searches. For example,
information is ordered such that arrays do not have to be
searched to identify which atoms belong in each spatial region.
Also, each array allocation is performed once, rather than
continuously appending arrays (which would be extremely
slow). This is accomplished by rst performing a ‘dry run’ code
block that executes a sequence to count up the required array
size, followed by array allocation, followed by a code block that
writes data to the allocated array. The four key steps to construct
these lists are:

1. Dene basis vectors and unit cell parallelepiped: A parallel-
epiped of non-zero volume is constructed to enclose the
system's unit cell. Three basis vectors correspond to this
parallelepiped's non-collinear edges. For a periodic direction,
the basis vector is the corresponding periodic lattice vector. For
a non-periodic direction, the basis vector is chosen to be of
a non-zero length that fully encloses all the nuclear positions.
Periodic basis vectors can be non-perpendicular to each other
(e.g., triclinic unit cells), but each non-periodic basis vector is
chosen to be perpendicular to the other basis vectors.

2. Divide the unit cell parallelepiped into spatial regions: This
unit cell parallelepiped is divided into a whole number of
spatial regions along each basis vector. A periodic direction
produces an innite number of periodic images of each region,
while a non-periodic direction has only the reference image.
Atoms in the reference unit cell are classied by region, and
a sorted list is prepared such that atoms of the same region are
adjacent in this sorted list. Because each spatial region is
dened such that its volume is less than that of a sphere of
dipole interaction cutoff length radius, the number of atoms in
RSC Adv., 2019, 9, 33310–33336 | 33313

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9ra01983a


Table 1 Effect of dipole interaction cutoff length on the MCLF
computed properties of graphene. Results (in atomic units) are per
carbon atom

10 bohr 25 bohr 50 bohr 75 bohr 100 bohr

C6 37.91 50.33 53.36 53.80 53.90
astatic 11.42 18.13 22.73 24.82 26.01
alow_freq 9.75 11.81 12.28 12.35 12.36
aforce-eld 7.03 7.03 7.03 7.03 7.03
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each region is always below a threshold. The code ignores
regions that do not contain any atoms. Because empty regions
are skipped, having a few atoms in the center of an enormous
unit cell would execute quickly.

3. Construct arrays listing interacting region pair images: Two
spatial region images interact if the minimum distance between
inter-region points is #the dipole interaction cutoff length.
Because the spatial regions and their images are coordinate
system indexed, a list of interacting region pair images is con-
structed without having to construct a double summation over
all region pairs. Thus, even for an extremely large unit cell (e.g.,
containing billions of atoms) divided into many regions (e.g.,
millions), the list of interacting region pair images is con-
structed in time and memory scaling linearly with increasing
unit cell size. Different regions can interact with different
periodic images. For example, in an extremely large unit cell,
a region near the center would interact only with nearby regions
in the reference unit cell, while a region not too far from the le
edge would interact with some regions in the reference unit cell
and some other region images in the le-translated unit cell.
Thus, a rst array is constructed listing pairs of regions having
any interacting images, and a second array is prepared that lists
which specic images of each particular region pair interact.
Region pairs that do not interact are not included in these two
arrays.

4. Construct two lists of interacting atom pairs: Because
interacting atom pairs must be contained in interacting region
pair images, the code identies the interacting atom pairs by
executing an outer loop over the interacting region pair images
and inner loops over the atoms in these regions (along with
tests for inclusion criteria). Using the list of atoms sorted by
region makes this process cache access friendly. For each such
atom pair, tests are performed to determine if it meets the small
and large list inclusion criteria. If so, its information is added to
the small and/or large lists. Because the number of interacting
region pair images scales linearly with large Natoms and the
number of atoms in each region is below a threshold, these
small and large lists are constructed in linear-scaling compu-
tational time and memory for large Natoms.

Having separate small and large lists provides the following
computational efficiencies during the subsequent MCLF
polarizability screening. First, non-directional screening only
needs to be performed over the ‘overlapping’ atoms contained
in the small list. Second, the computationally expensive erfc
function only needs to be evaluated for atom pairs in the small
list. This provides computational savings during directional
screening that rst loops over all pairs in the small list and then
over all pairs in the large list. Third, the large list contains pre-
computed sums over all periodic images of interacting atom
pairs. For non-overlapping atoms, this avoids re-computing any
sums over periodic images at each screening increment and
each frequency point.

These two lists of interacting atom pairs are used as follows.
For each screening increment of each frequency point, non-
directional screening loops over all atom pairs in the small
list to compile the necessary dipole–dipole interaction terms.
For each screening increment of each frequency point,
33314 | RSC Adv., 2019, 9, 33310–33336
directional screening rst loops over all atom pairs in the small
list and then over all atom pairs in the large list to compile the
associated dipole–dipole interaction terms. More details are
provided in Sections 2.5 and 2.6 below.

Table 1 studies the effect of dipole interaction cutoff length
on computed precision. Graphene was chosen as a test system,
because it has strong long-range dipole–dipole coupling. As
shown in Table 1, astatic was the most sensitive to the dipole
interaction cutoff length, and aforce-eld was the least sensitive.
For 2-dimensional sheets such as graphene, doubling the dipole
interaction cutoff length increases the computational cost by
approximately four-fold. For dense materials with large unit
cells, doubling the dipole interaction cutoff length increases the
computational cost by approximately eight-fold. We selected
dipole interaction cutoff length ¼ 50 bohr as a good compro-
mise between computational cost and precision. This value was
used for all other results in this article.

The graphene primitive unit cell was optimized in VASP19–21

using the PBE22 functional, a 400 eV planewave cutoff, and the
projector augmented wave (PAW23,24) method. The k-point mesh
and grid spacing followed previous recommendations.12 This
yielded a nearest neighbor C–C distance of 1.42 Å. Our MCLF
and TS-SCS calculations of graphene were performed using 2-D
not 3-D periodic boundary conditions (i.e., the spacing between
graphene layers was set to innite at the start of MCLF or TS-
SCS calculation).
2.3 Integration over imaginary frequencies

The Casimir–Polder integral relates the C6,AB dispersion coeffi-
cient between two subsystems A and B to the product of their
uctuating polarizabilities at imfreq

ffiffiffiffiffiffi�1p
u integrated over all

imfreqs:25

C6;AB ¼ 3

p

ðN
0

aA

� ffiffiffiffiffiffi
�1

p
u
�
aB

� ffiffiffiffiffiffi
�1

p
u
�
du (8)

As shown in eqn (8), the integration limits are zero to
innity. For convenience, we used the substitution of variables

u ¼ Nimfreqs

1þ u
and uðuÞ ¼ Nimfreqs

u
� 1 (9)

to make both integration limits nite. Differentiating eqn (9)
yields

du ¼ �Nimfreqs

u2
du (10)
This journal is © The Royal Society of Chemistry 2019
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Table 2 Effect of Romberg integration order (G) and number of
integration points (Nimfreqs ¼ 2G) on the computed atom-in-material
C6 coefficients in atomic units

G / 3 4 5
Nimfreqs / 8 16 32
Graphene 53.33 53.36 53.36
K bcc solid 444.29 448.35 447.00
NaF solid 11.69 (Na) 11.69 (Na) 11.69 (Na)

45.13 (F) 45.26 (F) 45.26 (F)
C60 29.57 29.67 29.67
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which upon substitution into eqn (8) for A ¼ B gives

C6;A ¼ 3

p

ðNimfreqs

0

ðaAðuÞÞ2Nimfreqs

u2
du (11)

u ¼ 0 corresponds to innite imfreq. Near innite imfreq, the
polarizability becomes inversely proportional to u2.26 This is
incorporated into the TS-SCS2,4 and MCLF1 methods using
a Padé approximation27 for the dynamic unscreened
polarizability:

aunscreened
A ðuÞ ¼ aunscreened

1þ ðuðuÞ=wpÞ2 (12)

At this limit, the integrand in eqn (11) simplies to

lim
u/0

ðaAðuÞÞ2Nimfreqs

u2
z lim

u/0

ðconstant=u2Þ2Nimfreqs

u2
(13)

Substituting eqn (9) into (13) gives

lim
u/0

ðconstantÞ2Nimfreqs

u2
�
Nimfreqs

u
� 1

�4
¼ lim

u/0

ðconstantÞ2Nimfreqs�
Nimfreqs

u
� 1

�2

ðNimfreqs� uÞ2

¼ 0

(14)

Therefore, the u¼ 0 point contributes nothing to the integral.
We numerically integrated using Richardson extrapolation (i.e.,

Romberg integration).28–30 Dividing the (0, 1) interval into 2G
Table 3 Accuracy of wp lookup table computation of Cunscreened
6 and Csc

6

Unsigned relative errors (UREs) are listed in parts per trillion (ppt ¼ 10�12

cluster are listed. The column labeled PBC is the number of periodic bo

Material PBC Natoms

Unscreened

URE (ppt) Itemized (s)

C60 0 60 0.002 0.000
C50H24 0 74 0.02 0.000
B-DNA 3 733 13.6 0.003
KUCDIW 3 1104 0.7 0.008
Graphene 2 2 0.001 0.000
Graphene 2 20 000 1.2 2.6
Ice 3 12 0.5 0.000
Ice 3 165 888 0.4 177
Ice 3 263 424 0.5 447
Ice 3 1 053 696 0.3 7859
Ice 3 2 107 392 1.4 31 368

This journal is © The Royal Society of Chemistry 2019
segments and performing Romberg integration of order (G, G)
yields an integration error of the order 2�G(2G+2).28 Normally,
Romberg integration of 2G segments corresponds to 2G + 1 inte-
gration points. Since the u ¼ 0 point contributes nothing to the
integral, this leaves only Nimfreqs ¼ 2G nontrivial integration
points. The ESI† contains the Romberg integration weights
cRomberg
G,u of these 2G integration points forG¼ 1 to 5. The integral is
computed using the following sum:

C6;A ¼
XNimfreqs

u¼1

c
Romberg
G;u

�
Nimfreqs$aAðuÞ

u

�2

(15)

where

XNimfreqs

u¼0

c
Romberg
G;u ¼ 1 (16)

Table 2 shows computed AIM C6 coefficients for four materials.
We used the same geometries and electron densities for K solid,
NaF solid, and C60 fullerene as in the companion article.1 The K
bcc solid showed a small difference (0.3%) in the C6 coefficient
between 16 and 32 integration points. All other results were
virtually identical for 16 and 32 integration points. Moreover, all
results for 8 integration points differed by <1% from the higher
integration points. This shows the results are highly converged for
16 integration points, which is the value we chose.
2.4 Lookup table for computing C6 ¼ sum(C6,AB)

Although the mixed C6,AB dispersion coefficients could in
principle be computed from the Casimir–Polder integral using
aA(u) and aB(u), this would involve many integrations for unit
cells containing thousands or more atoms. Therefore, we used
the following mixing formula which is consistent with both
Padé approximation27 and QDO31 models:

C6;AB ¼ 2a
low_freq
A a

low_freq
B C6;AC6;B�

a
low_freq
B

�2
C6;A þ

�
a
low_freq
A

�2
C6;B

(17)
reened compared to directly itemized computation. Num_lookup¼ 105.
). Computational times (in seconds) for serial execution on the Comet
undary conditions. Natoms is the number of atoms per unit cell

Screened

Lookup (s) URE (ppt) Itemized (s) Lookup (s)

0.005 0.002 0.000 0.005
0.005 0.1 0.000 0.005
0.012 14.5 0.003 0.012
0.006 0.9 0.007 0.006
0.005 0.003 0.000 0.005
0.007 0.6 2.6 0.006
0.005 0.7 0.000 0.005
0.30 0.7 176 0.27
0.87 0.7 444 0.77
3.7 0.6 7929 3.4
7.5 4.0 31 719 6.7
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Table 4 Effect of the number of Richardson extrapolations steps (RES) applied to the MCLF screening increments. Graphene was chosen as
a test system, because it has strong long-range dipole–dipole coupling. For (5,7) the results for a 20 000 atom supercell are shown in paren-
theses. Results are per atom

(5,5)a RES (6,6)a RES (7,7)a RES (5,7)a RES (7,7)a GEPPb

astatic 22.62 22.72 22.73 22.73 (22.73) 22.73
alow_freq 12.28 12.28 12.28 12.28 (12.28) 12.28
C6 53.36 53.36 53.36 53.36 (53.36) 53.36
aforce-eld 7.03 7.03 7.03 7.03 (7.03) 7.03
Relative computational cost 17 34 68 20c Cubic

a The rst number in parentheses refers to the number of RES used for non-directional screening and short-range directional screening to compute
anon-dirA (u) and ascreenedA (u), respectively. The second number in parentheses is the number of RES used for long-range directional screening to

compute a!!
static

A . b Explicit large matrix construction and inversion using Gaussian elimination with partial pivoting. c Nominal computational
cost for (5,7) algorithm includes 16 frequency points at 5 RES plus the static polarizability at 7 RES, which gives 16(1) + 1(4) ¼ 20 compared to
17 for the (5,5) algorithm.
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In our method, the polarizabilities appearing in eqn (17)
must be alow_freq, because these are the polarizabilities associ-
ated with the dispersion interaction. Of note, the TS and TS-SCS
methods use similar mixing formula, except the polarizabilities
Fig. 1 Pseudocode for the input file reading and unscreened calculation
wp are given in the companion article.1

33316 | RSC Adv., 2019, 9, 33310–33336
appearing in the mixing formula are aTS and aTS-SCS,2,4 because
those methods do not yield alow_freq.

When using the mixing rule of eqn (17), itemized computa-
tion of the C6 dispersion coefficient per unit cell requires a total
using m-scaling. The m-scaling model equations for polarizability and

This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Pseudo-code for non-directional screening to compute {anon-dirA (u)} and the force-field polarizabilities {aforce-fieldA } using inverse-free
algorithm and Richardson extrapolation.
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of (Natoms)(Natoms � 1)/2 individual C6,AB evaluations. This
itemized approach to computing Ctotal

6 would be computation-
ally expensive for unit cells containing a billion or more atoms.
Atomistic (e.g., molecular dynamics or Monte Carlo) simula-
tions employing an interaction cutoff distance require only
a small subset of {C6,AB} for large unit cells, because atoms
outside the cutoff distance do not interact. Therefore, it would
be extremely wasteful to compute and print all the individual
C6,AB values for large unit cells. It is preferred to compute and
print {alow_freqA } and {C6,A} that can be inserted into eqn (17) to
generate selected C6,AB whenever needed. For a billion atoms,
storing {alow_freqA } and {C6,A} requires only 16 gigabytes (GB),
while storing {C6,AB} would require 4 exabytes. Therefore, it is
unnecessary for the program to compute, store, or print the full
{C6,AB}.

A linear-scaling algorithm to compute Ctotal
6 is now intro-

duced to address this issue. Dening
This journal is © The Royal Society of Chemistry 2019
wpscreened
A ¼ 4C6;A

3
�
a
low_freq
A

�2 (18)

allows eqn (17) to be re-written as the following variant of the
London formula

C6;AB ¼ 3

2
a
low_freq
A a

low_freq
B

wpscreened
A wpscreened

B

wpscreened
A þ wpscreened

B

(19)

and analogously for the unscreened values

Cunscreened
6;AB ¼ 3

2
aunscreened
A aunscreened

B

wpAwpB

wpA þ wpB

(20)

Linear-scaling computation is achieved by constructing
a lookup table that uniformly spaces ln(wp_values):

x1 ¼ ln(min(wp_values)) � 10�2 (21)
RSC Adv., 2019, 9, 33310–33336 | 33317
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Fig. 3 Pseudocode for imfreq directional screening to compute {ascreenedA (u)} and {alow_freq
A } using inverse-free algorithm and Richardson

extrapolation.

33318 | RSC Adv., 2019, 9, 33310–33336 This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Pseudocode for directional static screening to compute the static polarizability tensors fa!!
static

A g using inverse-free algorithm and
Richardson extrapolation.

This journal is © The Royal Society of Chemistry 2019 RSC Adv., 2019, 9, 33310–33336 | 33319
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Fig. 5 Pseudocode for computing the screened dispersion coefficients and QDO parameters.
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xNum_lookup ¼ ln(max(wp_values)) + 10�2 (22)

Interval ¼ xi � xi�1 ¼ xNum_lookup � x1

Num_lookup� 1
(23)

wp_tablei ¼ exp(xi) (24)

The �10�2 in eqn (21) and (22) ensures the interval always
remains non-zero even if max(wp_values) ¼ min(wp_values),
and it also ensures the oor operation in eqn (25) will not
33320 | RSC Adv., 2019, 9, 33310–33336
produce an index j < 1 or > Num_lookup even in the presence
of xed precision oating point round-off. An array alpha_t-
able having Num_lookup components is initialized to zero. A
loop is then performed over all atoms in the unit cell. Each
atom A's polarizability aA contributes to two adjacent array
values:

j ¼ floor

�
lnðwp_valuesAÞ � x1

interval
þ 1

�
(25)
This journal is © The Royal Society of Chemistry 2019
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Table 5 Effect of unit cell size on the calculated results and number of FCR iterations required to converge TS-SCS/DDEC6 calculation. The
convergence threshold was 10�5 as the maximum absolute value of any conditioned residual component. The listed number of FCR iterations to
convergewas themaximum for any one direction at a single imfreq point. The total FCR iterations and largematrix-vectormultiplies are summed
over all imfreq points and directions. GEPP results are also listed for the primitive unit cells. The polarizabilities and C6 dispersion coefficients are
in atomic units: (a) per carbon atom for graphene and (b) per water molecule for ice

Graphene Ice

2 atom primitive cell
20 000
atom supercell

12 atom primitive
cell

2 107 392
atom supercell

Algorithm GEPP FCR FCR GEPP FCR FCR
astatic 20.12 20.12 20.12 8.86 8.86 8.86
C6 108.66 108.66 108.66 42.48 42.48 42.49
FCR iterations to converge — 1 1 — 6 6
Total FCR iterations — 48 48 — 181 181
Large matrix-vector multiplies — 192 192 — 724 724

Fig. 6 Three diverse chemical structures used to study the TS-SCS
convergence properties: the B-DNA decamer, the C50H24 polyacene,
and the KUCDIWmetal–organic framework. The atoms are colored by
chemical element: grey (C), pink (H), blue (N), purple (Na), red (O),
orange (P), copper (Cu), indigo (B).

Fig. 7 Plot of the conditioned residual norm (i.e., CR_zz) versus the
FCR iteration number for three diverse materials: the B-DNA decamer,
the C50H24 polyacene, and the KUCDIW metal–organic framework.
The conditioned residual norm decreased rapidly and monotonically
with increasing iteration number. The size of the real numbers (64-bit
or 128-bit) is indicated.
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cjþ1 ¼
wp_valuesA � wp_tablej

wp_tablejþ1 � wp_tablej
(26)

cj ¼ 1 � cj+1 (27)

alpha_tablej ) alpha_tablej + cjaA (28)

alpha_tablej+1 ) alpha_tablej+1 + cj+1aA (29)
Table 6 TS-SCS(FCR) convergence performance for three diverse mat
KUCDIW metal–organic framework. The convergence threshold was
component. The listed number of FCR iterations to converge was the m
iterations and largematrix-vectormultiplies are summed over all imfreq p
computing core) run on the Comet cluster. Data for 64-bit (128-bit) rea

B-DNA decamer

Atoms per unit cell 733
FCR iterations to converge 31 (26)
Total FCR iterations 483 (417)
Large matrix-vector multiplies 1932 (1668)
Total computational time in seconds 58 (104)

This journal is © The Royal Society of Chemistry 2019
Aer this loop completes, Ctotal
6 is computed by the following

double summation (that involves an outer loop over lookup
table entries and an inner loop over atoms in the unit cell):
erials: (a) the B-DNA decamer, (b) the C50H24 polyacene, and (c) the
10�5 as the maximum absolute value of any conditioned residual
aximum for any one direction at a single imfreq point. The total FCR
oints and directions. The total computational time is for a serial (i.e., one
ls is shown outside (inside) parentheses

C50H24 polyacene
KUCDIW metal–organic
framework

74 1104
25 (20) 23 (18)
360 (323) 390 (347)
1440 (1292) 1560 (1388)
0.57 (0.97) 107 (195)

RSC Adv., 2019, 9, 33310–33336 | 33321
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Fig. 8 Excerpt of OpenMP parallelized Fortran code that performs the
operations MMp(:,1) ¼ M � Mp(:) and MMq(:,1) ¼ M � Mq(:). Threads
are created by the parallel directive. The directive default(none)
specifies that each variable used in the parallel regionmust be declared
as either private or shared. Reductions are performed over MMp and
MMq. The do schedule(static) directive assigns loop values to different
threads in a round-robin manner.

Fig. 9 Plot of required computational time and random access
memory (RAM) to perform MCLF analysis on ice crystals containing
different numbers of atoms in the periodic unit cell: 12, 96, 324, 768,
1500, 2592, 4116, 6144, 8748, 20 736, 32 928, 49 152, 69 984, 111 132,
165 888, and 263 424. For 12 atoms, the required RAM was <1 MB.
Beyond a certain system size (governed by the dipole interaction
cutoff length), the required computational time and memory scale
linearly with increasing system size. TS-SCS results using GEPP for 12
to 4116 atoms per unit cell are also shown for comparison. Because of
direct matrix inversion, the TS-SCS method using GEPP has nearly
cubic scaling computational cost, which makes it infeasible for large
unit cells. Each calculation time is the average of three runs in serial
mode.

Fig. 10 Comparison of failproof conjugate residual (FCR) and
Gaussian elimination with partial pivoting (GEPP) algorithms for per-
forming TS-SCS analysis. The same ice supercells were studied as
listed in the caption of Fig. 9. The required RAMwas <1 MB for 12 atoms
(GEPP and FCR) and 96 atoms (FCR). Beyond a certain system size
(governed by the dipole interaction cutoff length), the required
computational time and memory for the FCR algorithm scale linearly
with increasing system size. In contrast, the GEPP algorithm has nearly
cubic scaling computational cost, which makes it infeasible for large
unit cells. Each calculation time is the average of three runs in serial
mode.
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Ctotal
6 ¼

XNum_lookup

i¼1

 
3

2
ðalpha_tableiÞ

XNatoms

k¼1

�
ðakÞ wp_tableiwp_valuesk

wp_tablei þ wp_valuesk

�!
(30)

The code skips the inner loop over atoms whenever alpha_tablei
¼ 0.
33322 | RSC Adv., 2019, 9, 33310–33336
Since each atom contributes to exactly two alpha_table
components (eqn (28) and (29)), the total number of loop iter-
ations performed is always #min(2(Natoms2), (Natoms �
Num_lookup)) (eqn (30)) + Natoms (eqn (25)–(29)) + Num_-
lookup (eqn (24)). For Natoms > Num_lookup this method
exhibits linear-scaling computational cost, because as Natoms
increases only the size of the inner loop in eqn (30) increases
linearly while the outer loop over lookup table entries has xed
size. For systems containing a small number of symmetry
distinct atoms, each symmetry identical atom contributes to the
same two alpha_table components, so the number of non-zero
alpha_table components never exceeds twice the number of
symmetry distinct atoms, which results in super acceleration for
computations on large supercells comprised of many symmetry
equivalent primitive cells (e.g., see graphene and ice in Table 3).

The ESI† contains a Fortran le that implements this algo-
rithm (eqn (21)–(30)) as a function Ctotal

6 (alpha_va-
lues, wp_values, Natoms, Num_lookup). This function
parallelizes eqn (30) using OpenMP. Using appropriate argu-
ments, this same function can be called to compute either
Cunscreened
6 or Cscreened

6 .
This method has astonishingly high precision. As proved in

Section S3 of the ESI,† the unsigned relative error (URE) in
Ctotal
6 is always less than interval2/16, which is #�4 �

Num_lookup�2. Thus, with Num_lookup ¼ 105, the URE is
usually#�4 � 10�10. Table 3 conrms this high computational
precision for several example materials.

All real variables were 64-bit, except Ctotal
6 (both eqn (2) and

(30)), alpha_table, and a temporary variable to accumulate the
inner sum of eqn (30)) were 128-bit reals. The need for a 128-bit
real (aka ‘quadruple precision’) for the Ctotal

6 variable is
straightforward to demonstrate. For a unit cell containing one
billion similar atoms, Ctotal

6 z 1018C6,A. Since 64-bit reals have
This journal is © The Royal Society of Chemistry 2019
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Table 7 Calculation time breakdown in seconds for MCLF analysis of ice crystals. Each time is the average of three runs. The standard deviation is
based on the total time per run

Atoms in unit cell / 324 1500 4116 8748 20 736 49 152 111 132 263 424

Input le reading 0.01 0.3 0.4 0.1 0.2 0.8 1.6 3.3
Unscreened a & C6 0.1 0.1 0.3 0.9 3.4 16.6 79.5 12.8
Atom image pair matrix initialization 0.4 2.3 8.6 31.0 115.3 394.1 1174.0 2610.9
Non-directional screening 0.4 1.9 5.3 12.8 28.0 66.1 164.3 360.2
Fluctuating screening 16.2 329.7 2230.2 7878.4 23 807.5 54 089.5 123 403.6 281 602.7
Static a screening 4.1 82.4 557.3 1923.0 5929.8 13 226.3 29 717.1 69 835.3
Total 21.7 417.1 2798.0 9848.4 29 890.5 67 815.5 154 627.4 355 216.5
Standard deviation 0.9% 2.7% 0.1% 0.2% 0.5% 1.1% 1.4% 0.7%

Table 9 Parallelization efficiency for MCLF analysis of ice crystals

Atoms in unit
cell

Number of processors

1 2 4 8 16

324 113% 112% 107% 88% 73%
1500 113% 111% 109% 104% 100%
4116 108% 107% 105% 98% 103%
8748 121% 112% 117% 111% 114%
20 736 110% 118% 116% 107% 100%
49 152 111% 113% 112% 102% 109%
111 132 115% 105% 111% 106% 108%
263 424 112% 111% 111% 108% 104%

Table 10 Parallelization efficiency for TS-SCS analysis of ice crystals
using FCR algorithm

Atoms in unit
cell

Number of processors

1 2 4 8 16

324 98% 97% 93% 74% 58%
1500 103% 99% 97% 91% 89%
4116 97% 97% 96% 95% 94%
8748 101% 99% 97% 92% 95%
20 736 98% 98% 95% 98% 98%
49 152 100% 100% 93% 93% 96%
111 132 97% 100% 97% 96% 94%
263 424 101% 102% 101% 99% 97%

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

1/
15

/2
02

5 
7:

10
:1

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
approximately 15 signicant base-ten digits, attempting to
accumulate Ctotal

6 in the traditional manner by adding C6,AB one-
at-a-time would cause the accumulation to stall at Ctotal

6 z
1015C6,A which would be off by a factor of �103. For a unit cell
containing one million atoms, accumulating Ctotal

6 one atom
pair at a time using a 64-bit real number will not stall, but the
nal working capacity will be reduced to �3 precision digits: 15
(digits for 64-bit reals) � 12 digits (for Ctotal

6 /C6,A z 1012) ¼ �3
remaining digits of precision for individual C6,AB addition. 128-
Bit reals have approximately 34 signicant base-ten digits,
which is adequate. Although using 128-bit reals for alpha_table
and the temporary variable are not required, this helps preserve
quadruple precision during Ctotal

6 computation.
Computational times in Table 3 refer to the time required to

call and compute the Ctotal
6 function (i.e., eqn (2) and (17) or

(21)–(30)) and do not include times required to compute func-
tion inputs. As shown in Table 3, the wp lookup table compu-
tation can sometimes be slower than directly itemized
computation when Natoms is small but is always faster when
Natoms is large. Therefore, the program is normally congured
to perform directly itemized computation of Ctotal

6 when Natoms
< threshold_wp_lookup, and wp lookup table computation
otherwise. For all calculations in this paper except those listed
in Table 3, we set threshold_wp_lookup ¼ 2 � Num_lookup.
When Natoms > �2 � Num_lookup, the lookup table algorithm
always requires fewer iterations than directly itemized
computation.

This same wp lookup table method for computing Ctotal
6 is also

employed in the TS-SCS(FCR) method described in Section 3
below. The same Num_lookup ¼ 105 and threshold_wp_lookup
¼ 2 � Num_lookup are used there. The same function described
Table 8 Calculation time breakdown in seconds for TS-SCS analysis of ic
is based on the total time per run

Atoms in unit cell / 324 1500 4116

Input le reading 0.07 0.01 0.04
Unscreened a & C6 0.1 0.1 0.3
Atom image pair matrix initialization 0.2 1.7 6.8
TS-SCS screening 4.4 91.0 608.6
Total 4.8 92.7 615.8
Standard deviation 0.5% 2.3% 0.2%

This journal is © The Royal Society of Chemistry 2019
above is used, but called with the alpha_values and wp_values
appropriate for computing CTS

6 or CTS-SCS
6 for the TS-SCS(FCR)

method.
e crystals. Each time is the average of three runs. The standard deviation

8748 20 736 49 152 111 132 263 424

0.03 0.07 0.8 0.3 0.6
0.8 3.4 16.7 75.7 11.6

25.1 106.1 365.1 1033.3 2534.6
2027.7 6170.3 14 779.4 32 851.3 81 153.8
2053.7 6279.9 15 162.0 33 960.5 83 700.7

1.6% 1.3% 0.4% 0.4% 2.9%

RSC Adv., 2019, 9, 33310–33336 | 33323
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Table 11 Comparison of RAM required in GB for serial and parallel
program execution. Results are listed for both MCLF and TS-SCS(FCR)
analysis of ice crystals

Atoms in unit
cell

MCLF TS-SCS(FCR)

Serial 8 core Serial 8 core

324 0.011 0.012 0.008 0.008
1500 0.15 0.15 0.081 0.082
4116 0.98 0.98 0.50 0.53
8748 3.2 3.2 1.6 1.6
20 736 9.3 9.3 4.8 4.8
49 152 22 22 11.5 11.5
111 132 50 50 26 26
263 424 115 115 60 60
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2.5 Avoiding direct inversion of large matrices

Direct inversion of large matrices is extremely computationally
expensive. Gaussian elimination with partial pivoting (GEPP) is
a common matrix inversion algorithm that exhibits numerical
instability for somematrices but is usually stable in practice.32,33

GEPP, QR factorization, Cholesky and LDL decomposition (for
positive denite Hermitian matrices), and other common
matrix inversion algorithms have computational costs scaling
proportional to the number of rows (Nrows) cubed.11,33 The
more complicated Strassen algorithm has scaling proportional
to Nrowslog(7)/log(2) ¼ Nrows2.807..11

A direct matrix inversion algorithm would rst construct the
dipole interaction tensor, then invert it to get the multibody
polarizability matrix, and then contract the multibody polariz-
ability matrix to get the AIM polarizability tensors.34 Consider
a material containing 1 million atoms in the unit cell. For this
material, the dipole interaction tensor has 3 million rows and
an equal number of columns. The computational cost of the
matrix inversion step would be on the order of Nrows3 ¼ (3 �
106)3 ¼ �2.7 � 1019 oating point operations (i.e., �27 exaop).
This corresponds to �7500 computational hours on a teraop
computer or �7.5 computational hours on a petaop computer
for each imfreq point. Since the dipole interaction tensor would
need to be inverted at several (e.g., 16) imfreq points, a TS-SCS
or MCLF calculation on this material would be computation-
ally prohibitive when using direct matrix inversion. Moreover,
storing the full multi-body polarizability matrix in double-
precision arithmetic would take (8 bytes per double precision
real) � (3 � 106 rows) � (3 � 106 columns) ¼ 7.2 � 1013 bytes ¼
72 terabytes of random access memory (RAM). This is a huge
amount of memory.

To address this problem, we developed a new computational
algorithm that converges to the same solution without
requiring any matrix inversions. This inverse-free algorithm is
conceptually related to the iterative Schulz method for matrix
inversion. In the Schulz method, an estimate P(i�1) for the
inverse of matrix Q is iteratively rened by35

P(i) ¼ 2P(i�1) � P(i�1)QP(i�1) (31)
33324 | RSC Adv., 2019, 9, 33310–33336
where index i is the Schulz iteration. The key difference between
our inverse-free algorithm and the Schulz matrix inversion
method is that we exploit the particular structures of the dipole
interaction tensor and multi-body polarizability matrix
contraction to enable us to work with Natoms scalars for the
non-directional screening and Natoms 3 � 3 matrices for the
directional screening instead of working with Natoms �
Natoms and 3Natoms � 3Natoms matrices for matrix inver-
sions using GEPP or Schulz method. This allows us to reduce
the computational cost from cubic scaling (for GEPP or Schulz
method using conventional matrix multiplications) to linear in
Natoms as the unit cell becomes sufficiently large.

Substituting Qj+1 ¼ Dj + Djsj (see companion article1 for
specic denitions ofDj and sj) into (31) with i¼ 1 gives the rst
Schulz iteration as

Pj+1
(1) ¼ 2P(0)

j+1 � P(0)
j+1(Dj + Djsj)P

(0)
j+1 (32)

where

P(0)
j+1 ¼ inv(Dj) (33)

is the initial estimate for inv(Qj+1). The subscript j + 1 is the
screening iteration and should not be confused with the Schulz
iteration (superscript i). Dj is the screening increment.
Substituting eqn (33) into (32) and simplifying yields

Pj+1
(1) ¼ inv(Dj) � inv(Dj)(Djsj)inv(Dj) (34)

Note that: (1) sj includes non-zero blocks only for interacting
atom pairs (i.e., atom pairs in the ‘small’ and/or ‘large’ lists), (2)
Dj and inv(Dj) are block-diagonal matrices, (3) the non-zero
blocks of inv(Dj) are the partially screened atomic polarizabil-
ities {aj

A} (which are scalar for non-directional screening and
tensor for uctuating and static screening), and (4) the multi-
body polarizability matrix P is only needed in its contracted
form as partially screened atomic polarizabilities {aj

A}.
Three different types of atomic polarizabilities are computed

using this inverse-free algorithm. As explained in the
companion article,1 atoms with larger pre-screened polariz-
ability get a proportionally larger piece of the screening mixed
polarizability contribution:

anon-dir
A ðuÞ ¼

X
B

PABðuÞ
�

2aunscreened
A ðuÞ

aunscreened
A ðuÞ þ aunscreened

B ðuÞ
�

(35)

Pst
AðuÞ ¼

X
B

�
anon-dir
A ðuÞ

anon-dir
A ðuÞ þ anon-dir

B ðuÞ
	
Pst

ABðuÞ þ Pts
ABðuÞ
�

(36)

Pst
A ¼

X
B

 
aforce-field
A

aforce-field
A þ aforce-field

B

	
Pst

AB þ Pts
AB

!

(37)

where s and t represent spatial directions ˛{x, y, z}. Eqn (35),
(36), and (37) correspond to the non-directional, uctuating,
and static polarizabilities, respectively. Using these to simplify
eqn (34) yields
This journal is © The Royal Society of Chemistry 2019
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ajþ1
A ¼ aj

A �
X
b

��
ain

A

ain
A þ ain

B

��
aj

A
�
Djsj

Ab
�
aj

B

þ aj
B
�
Djsj

Ab
�
aj

A
��

(38)

For non-directional screening to compute anon-dirA (u), eqn
(38) becomes

ajþ1
AðuÞ ¼ aj

AðuÞ �
X

b˛small_list

��
2aunscreened

A ðuÞ
aunscreened
A ðuÞ þ aunscreened

B ðuÞ
�

�
�
aj

AðuÞ
�
Djsnon-dir;j

AbðuÞ
�
aj

BðuÞ
��

(39)

snon-dir,j
Ab(u) is dened in the companion article,1 where the

attenuation length for the pair of atoms A and B

sAB;jðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA;j

2ðuÞ þ sB;j
2ðuÞ

q
(40)

is updated at the start of screening iteration j + 1 using aj
A(u)

and aj
B(u) to compute the spherical Gaussian dipole width

sA;jðuÞ ¼
 ffiffiffiffi

2

p

r
aj

AðuÞ
3

!1=3

(41)

The process starts with

aj¼1
A(u) ¼ aunscreenedA (u) (42)

and ends with anon-dirA (u) as the value on the le-side of eqn (39)
aer the last screening increment nishes.

For directional screening to compute ascreenedA (u), eqn (38)
becomes

M1 ¼
�
Dj fMBS

Abfcutoff
Ab
4j

AbðuÞ
��

a!!j

A

ðuÞ$
�
h!!

Ab

ðuÞ
�
$a!!j

B

ðuÞ
�
(43)

M2 ¼ Dj a
!!

j

A

ðuÞ$h!
!AB

ðuÞ$a!!j

B

ðuÞ (44)

a!!jþ1

A

ðuÞ ¼ a!!j

A

ðuÞ

�
X

b˛small_list

��
anon-dir
A ðuÞ

anon-dir
A ðuÞ þ anon-dir

B ðuÞ
�	

M1þM1T

�

�
X

B˛large_list

��
anon-dir
A ðuÞ

anon-dir
A ðuÞ þ anon-dir

B ðuÞ
�	

M2þM2T

�

(45)

where M1 and M2 are square matrices with 3 rows and

4j
AbðuÞ ¼ �

 
1

ðdAbÞ3
erfc

�
dAb

sAB;jðuÞ
�
þ
�

2ffiffiffiffi
p

p
� 

1

ðdAbÞ2sAB;jðuÞ

þ 2

3
	
sAB;jðuÞ


3
!
exp

 
�
�

dAb

sAB;jðuÞ
�2
!!

(46)
This journal is © The Royal Society of Chemistry 2019
aj
AðuÞ ¼ trace

�
a!!j

A

ðuÞ
�.

3 (47)

In eqn (46), the attenuation length sAB,j(u) is updated at the
start of screening iteration j + 1 using aj

A(u) and aj
B(u) from eqn

(47) inserted into eqn (40) and (41). The process starts with

a!!j¼1

A

ðuÞ ¼
2
4anon-dir

A ðuÞ 0 0

0 anon-dir
A ðuÞ 0

0 0 anon-dir
A ðuÞ

3
5 (48)

and ends with ascreenedA (u) as one-third the trace of the tensor on
the le-side of eqn (45) aer the last screening increment
nishes.

For directional screening to compute a!!
static

A , eqn (38)
becomes

M1 ¼
�
Dj fcutoff

Ab
4j

Ab
��

a!!j

A

$
�
h!!

Ab�
$a!!j

B�
(49)

M2 ¼ Dj a
!!

j

A

$g!!
AB

$a!!j

B

(50)

a!!jþ1

A

¼ a!!j

A

�
X

b˛small_list

" 
aforce-field
A

aforce-field
A þ aforce-field

B

!	
M1þM1T


#

�
X

B˛large_list

" 
aforce-field
A

aforce-field
A þ aforce-field

B

!	
M2þM2T


#
(51)

where 4j
Ab and aj

A are dened analogous to eqn (46) and (47)

except based on a!!j

A
from eqn (51). The attenuation length

sAB,j(u ¼ Nimfreqs) is updated at the start of screening iteration
j + 1 using aj

A and aj
B inserted into eqn (40) and (41). The

process starts using eqn (48) and ends with a!!
pre-corrected

A as the
tensor on the le-side of eqn (51) aer the last screening
increment nishes. As explained in the companion article,1 the
following anisotropic polarizability correction is then applied to
get the static polarizability tensors

a!!
static

A ¼ ð1� C:F:Þa!!
pre-corrected

A þ ðC:F:Þastatic
A (52)

astatic
A ¼ trace

�
a!!

pre-corrected

A

�.
3 ¼ trace

�
a!!

static

A

�.
3 (53)

using a correction factor (C.F.) ¼ 0.2. Summing a!!
static

A over all
atoms in the unit cell gives the unit cell (or molecular) polar-
izability tensor. Taking one-third the trace of the AIM or
molecular static polarizability tensors yields the corresponding
isotropic static polarizabilities.

The order of the error residual is now derived. Since Pj+1
(1) is

a calculated estimate of inv(Qj+1), we begin by dening the error
residual as

Residual ¼ kI � Qj+1Pj+1
(1)k (54)

where kk is any desired matrix norm and I is the identity matrix.
Multiplying eqn (34) by Qj+1 ¼ Dj + Djsj gives

Qj+1Pj+1
(1) ¼ I � Djsjinv(Dj)(Djsj)inv(Dj) (55)
RSC Adv., 2019, 9, 33310–33336 | 33325
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Multiplying each side of eqn (55) by�1, adding I, and taking the
norm gives

kI � Qj+1Pj+1
(1)k ¼ kDjsjinv(Dj)Djsjinv(Dj)k ¼ (Dj)

2ksjinv(Dj)

sjinv(Dj)k (56)

The right-most side follows from the theorem that norm(scalar
� matrix) ¼ scalar � norm(matrix).36 For convenience, we used
xed size screening increments: Dj ¼ D. Eqn (56) shows that at
each screening iteration, the difference between this inverse-
free algorithm and direct matrix inversion will be on the order
of D2, where D is the screening increment. Since the total
number of screening iterations is 1/D, the total difference
between this inverse-free algorithm and direct matrix inversion
will be on the order of D.

By taking the limit D / 0, the inverse-free and direct matrix
inversion algorithms converge to the identical solution. We
used Richardson extrapolation30,37 to evaluate the limit D / 0.
As explained in the prior paragraph, without Richardson
extrapolation the overall error using screening increment D is of
Order(D). Each Richardson extrapolation step removes
a successive power of D in the error. Aer K Richardson
extrapolation steps (RES), the remaining error will thus be of
Order(DK+1). We extrapolated using screening increments of 1,
2�1, 2�2, .2�K. During each such screening process, the
screening increments sum to 1X

j

Dj ¼ 1 (57)

Therefore, this extrapolation corresponds to extrapolating from
results computed with 1, 2, 22, .2K screening points. The nal
D ¼ 2�K undergoes K RES leading to a residual error of
Order(2�K(K+1)). Note that 7 RES is approximately twice as
expensive as 6 RES and four times as expensive as 5 RES.

Richardson extrapolation was applied to the following
atomic polarizabilities:

Non-directional screening:

anon-dir
A ðuÞ ¼

XKþ1

x¼1

c
extrap

ðKþ1Þ;xa
non-dir;x
A ðuÞ (58)

Frequency-dependent directional screening:

ascreened
A ðuÞ ¼

XKþ1

x¼1

c
extrap

ðKþ1Þ;xa
screened;x
A ðuÞ (59)

Static induced directional screening:

a!!
static

A ¼
XKþ1

x¼1

c
extrap

ðKþ1Þ;x a
!!static;x

A (60)

As explained above, aforce-eld,xA , ascreened,xA (u), a!!
static;x

A are the
values computed using 2x�1 screening points (i.e., screening
increment of 21�x). The coefficients cextrap(K+1),x for K¼ 1 to 7 RES are
given in the ESI.† Note that

alow_freq ¼ ascreenedA (u ¼ Nimfreqs) (61)
33326 | RSC Adv., 2019, 9, 33310–33336
aforce-field ¼ anon-dirA (u ¼ Nimfreqs) (62)

Table 4 lists computed results for graphene. Aer testing, we
settled on ve RES for the force-eld polarizabilities (i.e., non-
directional screening), ve RES for the uctuating polarizabil-
ities used to compute C6 coefficients, and seven RES for the
static polarizabilities. The static polarizability requires more
RES than the force-eld and uctuating polarizabilities,
because of the longer range dipole–dipole interactions
contributing to the static polarizability. The inverse-free and
GEPP algorithms converged to the same results in the limit D
/ 0. The inverse-free algorithm is preferable, because it
exhibits better computational cost scaling than GEPP. As an
additional test, the (5,7) RES calculation was repeated using
a 20 000 atom supercell (which is a 100 � 100 replication of the
2 atom primitive unit cell) which shows the MCLF results for
a large supercell are identical to those computed for a primitive
unit cell. The 20 000 atom graphene supercell was constructed
using DDEC6 AIM properties from the primitive cell; no DFT
calculation on the large supercell was needed.
2.6 Code design and parallelization

The MCLF code was parallelized using OpenMP. OpenMP
divides the work among different computing cores on a single
cache-coherent node.38,39 The Fortran code was parallelized by
adding OpenMP compiler directives that parallelized the most
computationally intense loops. OpenMP codes can be compiled
in serial mode by simply instructing the compiler to ignore the
OpenMP directives. We used several techniques for efficient
OpenMP parallelization discussed in one of our previous arti-
cles.12 Specically, the array indices were ordered in a cache
friendly manner, large arrays were declared as shared variables
to avoid large memory increases when adding more parallel
threads, and when needed reductions were used with the
parallel directive rather than with the do schedule directive (see
Section 3.3 for example).12 Directives such as single, atomic, and
critical that require one thread to wait on another should be
kept to a minimum.12,38,39 To maximize parallelization effi-
ciency, each thread should be given enough work such that the
overhead time to set up the threads is a small percentage of the
parallel region time.12,38,39 For example, when parallel work is
done over the ‘small’ and ‘large’ atom pair lists (e.g., Fig. 3 and
4), the parallel threads were created just prior to looping over
the ‘small’ list and terminated just aer looping over the ‘large’
list.

Paradoxically, the computer code to perform MCLF analysis
is actually simpler than the mathematical equations that dene
MCLF analysis. The reason is that many array indices that
appear in the mathematical equations are actually not required
in the computer code, because these quantities can be
computed in-place. For this reason, pseudocodes for the main
parts of MCLF analysis are illustrated in this section. Fig. 1
illustrates the pseudocode for input le reading and
unscreened calculation using m-scaling. Fig. 2, 3, and 4
illustrate pseudocodes for Richardson extrapolation
with inverse-free algorithms used to compute
This journal is © The Royal Society of Chemistry 2019
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{anon-dirA (u)}, {ascreenedA (u)}, and fa!!
static

A g, respectively. The array
indices in these gures correspond to what is actually needed in
the computer program: (1) the atom number appears as an array
index rather than as a subscript, (2) the screening increment
does not appear as an array index because temporary results for
each screening increment are computed in-place, (3) the imfreq
integration point u appears as an array index only where
needed, etc. Fig. 5 illustrates a pseudocode for computing the
screened dispersion coefficients and QDO parameters. On each
gure, the OpenMP parallelized loops are marked with ‘(this
loop index is parallelized)’.
3. Linear-scaling TS-SCS algorithm
3.1 Overview and problem statement

The TS-SCS calculation consists of four main parts: (a) input le
reading and unscreened calculation using the TS scaling law4 to
compute aTS and CTS

6 for each atom, (b) setting up the ‘small’
and ‘large’ atom pair lists, (c) self-consistent screening to
computed the TS-SCS polarizability at each imfreq point, and
(d) Casimir–Polder integration to compute the TS-SCS C6 coef-
cients. Just as for MCLF, we used Romberg integration with 16
imfreq points to compute C6 for TS-SCS.

Step (b) follows a procedure analogous to that described in
Section 2.2 with the following differences. For the ‘small’ list,
similar information was stored for TS-SCS as for MCLF, except
fMBS

A,b does not need to be stored for TS-SCS. For the ‘large’ list,

only g!!
AB

needs to be stored and h
!!AB

does not need to be stored
for TS-SCS. This allowed each pair in the ‘large’ list for TS-SCS to
be stored in a single cache line (i.e., 8 double-precision real
numbers), while two cache lines were used to store data for each
pair in the ‘large’ list of MCLF analysis. (Stored data for each
pair in the ‘large’ list of MCLF analysis required slightly less
than two cache lines, but this was rounded up to two whole
cache lines to give different atom pairs their own cache lines.)
Using whole cache lines provides a slight simplication for
tasks that parallelize over atom pairs in the ‘large’ list.)

For MCLF analysis, the smooth cutoff function described in
the companion article was used.1 This same smooth cutoff
function could also be used for TS-SCS. However, for consis-
tency with prior literature,40 we used the sharp cutoff function

fcutoff(dAb) ¼ (1 � H(dAb � dcutoff)) (63)

for TS-SCS analysis, where dAb ¼ rAB,L is the distance between
atom A and the image b in bohr. dcutoff is the dipole interaction
cutoff length. H is the Heaviside step function. In this article as
well as the companion one,1 we set dcutoff to 50 bohr.

Eqn (1) is analogous to solving for induced dipole moments
in a polarizable force-eld

X3
t¼1

XNatoms

B¼1

 
dst

aforce-field
A

� sst
ABðuÞ

!
m!induced

B ¼ ~E
0

A (64)

where ~E0
A is the electric eld acting on site A due to perma-

nent charges, permanent multipoles, and externally applied
This journal is © The Royal Society of Chemistry 2019
electric eld. m!induced
B is the dipole moment induced on site

B. aforce-eld
A is the polarizability of site A. Specically, setting

aforce-eld
A to aunscreened

A (u) and ~E0
A to (1, 0, 0) yields m!induced

B

that gives the rst column of a!!
SCS

B ðuÞ. Solving again with

~E0
A set to (0, 1, 0) yields m!induced

B that gives the second column

of a!!
SCS

B ðuÞ. Finally, solving with ~E0
A set to (0, 0, 1) yields

m!induced
B that gives the third column of a!!

SCS

B ðuÞ. Hence,
a mathematical procedure that is optimized for solving the
polarizability eqn (64) can be an efficient way to solve the TS-
SCS eqn (1).

As described by Applequist et al., the coefficients matrix in
the polarizability equation can be expressed as a two-
dimensional array (i.e., as a matrix with rows and columns) by
combining spatial and atomic indices.34 Since there are three
spatial components (i.e., x, y, and z) in the dipole moment for
each atom, the coefficients matrix for the polarizability equa-
tion (see eqn (1) and (64)) has Nrows ¼ 3 � Natoms and an
equal number of columns.34 This coefficients matrix is formed
by splicing together Natoms � Natoms blocks, where each
block is a 3 � 3 unit for the spatial indices.34 From a program-
ming perspective, it is simply a matter of choice as to whether to
employ a two-dimensional array with combined atomic and
spatial indices or to keep the atomic and spatial indices as
distinct array dimensions. Equivalent mathematical problems
arise in both cases. Regardless, a large-sized coefficients array
arises when there is a large number of atoms in the unit cell.

Developing algorithms to solve large linear equation systems
(e.g., Ax ¼ B) played a key role in the history of electronic
computing.41–44 (The typeface is used to distinguish A as
a matrix from A as an atom.) Here, we are particularly interested
in solving large systems of sparse linear equations, and many
different algorithms have been described in the prior literature
for doing this.42,43,45,46 Krylov subspace techniques solve a linear
equation system using iterations in which some error norm is
minimized in a Krylov subspace whose order increases with
iteration number.47,48 A Krylov subspace of order n dened by
matrix M and vector W is48

Kn(M,W) ¼ span[W, MW, M2W, M3W, .Mn�1W] (65)

A key consideration is how to generate an orthonormal
vector basis that spans the Krylov subspace sequence without
having to store vectors from all prior iterations.49,50 For a Her-
mitian matrix M, short-term recurrences can be constructed
that span the Krylov subspace while requiring only vectors from
a few recent iterations to be explicitly stored (e.g., from the
current and two most recent prior iterations).44,47,48 By deni-
tion, a Hermitian matrix equals its Hermitian conjugate (i.e.,
complex conjugate transpose). Conjugate gradient algorithms
are a widespread class of Krylov subspace techniques.43,47,48,51

Conditioning plays a key role in conjugate gradient type
methods.42,46,47,51,52 Conditioning multiplies the original coeffi-
cients matrix by one or more matrices to transform the original
linear equation Ax¼ B into a new linear equationMy¼W that is
RSC Adv., 2019, 9, 33310–33336 | 33327
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easier to solve.42,46,47,51,52 Either le multiplication or right
multiplication, or a combination of both, can be used during
conditioning.42,47,51,52 Conditioning can accomplish one of more
of the following:42,47,51,52

(i) If the original coefficients matrix A is not Hermitian,
conditioning may make the new coefficients matrix M Hermi-
tian., or

(ii) If the original coefficients matrix A is not positive (semi)
denite, conditioning may make the new coefficients matrix M
positive (semi)denite., or

(iii) If the original coefficients matrix A is not square,
conditioning may make the new coefficients matrix M square.
This is important for solving least-squares problems., or

(iv) To improve convergence speed, conditioning may
make the eigenspectrum of M more clustered than that of A.
Aer conditioning, conjugate gradient methods minimize
some error norm within the Krylov subspace Kn(M,W).

Recently, truncated conjugate gradient algorithms were used
to solve for induced dipole moments, polarization energies, and
the corresponding forces in polarizable force elds.53,54 Aviat
et al. used the Orthomin47 conjugate gradient algorithm (also
called Hestenes' and Stiefel's method55) truncated at xed order
to solve themultibody polarization equations efficiently without
introducing spurious energy dris during molecular dynamics
simulations using polarizable force elds.53,54 The key limitation
of the Orthomin conjugate gradient algorithm is the coefficients
matrix M in the linear equation My ¼ W must be Hermitian
positive denite.47 Although the polarization eqn (64) contains
a Hermitian coefficients matrix, we do not know whether or not
it is always positive denite. The coefficients matrix is positive
denite if and only if all of its eigenvalues are positive.56 For
many common circumstances the coefficients matrix in this
polarization equation is likely to be positive denite, but we do
not have any information at hand about exceptions that could
potentially give an indenite coefficients matrix in the polari-
zation equation. If the coefficients matrix M is indenite, the
Orthomin conjugate gradient algorithm will fail if hz(i)|Mz(i)i ¼
0 at any iteration, when z(i) s 0.

Herein, x(i) is the estimated x at iteration i, r(i) is the residual,
and z(i) is the conditioned residual:47

r(i) ¼ B � Ax(i) (66)

z(i) ¼ Cr(i) ¼ W � My(i) (67)

In this article, the dot product of two vectors v and w is
dened as

hvjwi ¼ vHw ¼ ðv*ÞTw ¼
X
i

v*i wi (68)

Three old conjugate gradient algorithms are Orthomin,
Orthodir, and Orthores.47,50 As mentioned above, Orthomin can
fail for indenite coefficient matrices. Orthores is algebraically
equivalent to Orthomin, and Orthores converges if and only if
Orthomin converges.47
33328 | RSC Adv., 2019, 9, 33310–33336
The Orthodir conjugate gradient algorithm can work for
both positive denite and indenite Hermitian coefficients
matrixM.47 However, it suffers from the accumulation of round-
off errors. In the Orthodir algorithm, the y-search direction at
each successive iteration is computed as

p(i) ¼ Mp(i�1) � 2(i)p(i�1) � w(i)p(i�2) (69)

where 2(i) and w(i) are chosen to fulll some chosen conjugacy
condition.47 In exact arithmetic, eqn (69) would enforce
orthogonality between Mp(i), Mp(i�1), and Mp(i�2). Because the
choice of direction p(i) does not explicitly depend on the resid-
ual's value (see eqn (69)), a buildup of round-off errors over
many iterations can cause the chosen z-search directionMp(i) to
become uncorrelated to the residual's value. When this occurs,
the Orthodir algorithm does not operate as intended and may
fail to converge.

Conjugate gradient of the normal equations rearranges the
linear equation system so that the coefficients matrix is M ¼
AHA, thereby ensuring a positive semidenite Hermitian coef-
cients matrix M.42,43,47 Because each eigenvalue of M ¼ AHA is
the squaredmagnitude of the corresponding eigenvalue of A, all
eigenvalues of M ¼ AHA are non-negative real-valued. Two
common variants are CGNE (also called Craig's method57) and
CGNR.42,43,47,55 Unfortunately, both of these algorithms oen
converge slowly.42,43,47 For example, we programmed CGNE and
CGNR for TS-SCS analysis and tested them on the C50H24 pol-
yacene, but convergence was not reached within 100 iterations
for at least one direction at a single imfreq point. For these tests,
we used the same convergence threshold as for the FCR algo-
rithm; namely, <10�5 for the maximum absolute value of each
conditioned residual component.
3.2 The FCR algorithm

This provided motivation to develop a failproof conjugate
residual (FCR) algorithm that converges robustly and resists
round-off errors. FCR solves any linear equation system with
Hermitian coefficients matrix

Ax ¼ B (70)

for an exact solution (within the convergence tolerance) if one
exists or for a conditioned least-squares solution if no exact
solution exists. The matrices x and B may contain a single
column or more than one column. Matrix A is non-singular if
and only if its determinant is nonzero (i.e., all of its eigenvalues
are non-zero). In this case, matrix A is invertible and the equa-
tion Ax ¼ B has the unique solution x ¼ A�1B. If matrix A is
singular, then Ax ¼ B has either no solution or an innite
number of solutions. If the linear equation system is consistent
(i.e., has at least one solution), this FCR algorithm returns one
of its solutions. When matrix B has more than one column, the
FCR algorithm is applied separately to each column.When B¼ I
(identity matrix), the method solves for x ¼ A�1, the inverse of
matrix A.

The goal of conditioning is to rotate and scale matrix A to
improve convergence speed:
This journal is © The Royal Society of Chemistry 2019
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M ¼ CACH (71)

My ¼ CACHy ¼ C(B � Ax0) ¼ W (72)

where

x ¼ CHy + x0 (73)

Here, x0 is any initial guess for x. This shi always makes y0 ¼
0 as the initial guess for y. The conditioning matrix C must be
non-singular. Since A is Hermitian, the matrix M will auto-
matically be Hermitian for any conditioning matrix C:

MH ¼ (CACH)H ¼ (CH)HAHCH ¼ CACH ¼ M (74)

In this article, the dot product of two vectors v and w is
dened as

hvjwi ¼ vHw ¼ ðv*ÞTw ¼
X
i

v*i wi (75)

A Hermitian matrix M ¼ MH can be freely moved between sides
of the dot product. For example,

hMMq|pi ¼ hMq|Mpi ¼ hq|MMpi ¼ qHM2p (76)

As commonly known, the Hermitian conjugate of a matrix
product follows

(YL)H ¼ LHYH (77)

If the linear equation system (i.e., eqn (70)) is inconsistent
(i.e., has no exact solution), this FCR algorithm returns a state-
ment that the linear equation system has no exact solution
along with a value y ¼ yFCR that minimizes the least-squares
problem

Minimize F ¼ hz|zi ¼ |W � My|2 (78)

This represents a best possible choice for y irrespective of
whether an exact solution to eqn (70) exists. There are some
applications where this least-squares t has utility even if an
exact solution to eqn (70) does not exist. (Note: the case where
My¼W is consistent arises as the special case of eqn (78) where
the least-squares error is simply zero.)

As commonly dened, the kernel ofM is the set of all y values
that solve My ¼ 0,

kernel(M) 0 My ¼ 0 (79)

When M is non-singular, y ¼ 0 is the only vector in the kernel.
When M is singular, the kernel includes y ¼ 0 along with an
innite number of non-zero vectors. Manifestly, any vector from
the kernel of M can be added to yFCR without changing the
conditioned residual value. Therefore, the set of all equally good
(aka ‘best’) solutions to eqn (78) is

yall ¼ yFCR + span[kernel(M)] (80)
This journal is © The Royal Society of Chemistry 2019
If the kernel(M) is known, this allows calculating the entire set
of {yall} that give the same minimum value of F. If My ¼ W is
consistent, this is the set of y values yielding F ¼ 0 (i.e., satis-
fying eqn (72)). The number of vectors in {yall} is one ifM is non-
singular; otherwise, {yall} contains an innite number of
vectors.

The FCR method minimizes the conditioned residual norm

G(i) ¼ hz(i)|z(i)i (81)

Each iteration involves two search directions, p(i) and q(i):

y(i) ¼ y(i�1) + g(i)p(i) + s(i)q(i) (82)

z(i) ¼ z(i�1) � g(i)Mp(i) � s(i)Mq(i) (83)

subject to the constraints

p(i), q(i) ˛ K2i(M,W) (84)

K2i(M,W) ¼ span[p(1), q(1), .p(i), q(i)] (85)

In exact arithmetic, all z-search directions are chosen to be
orthogonal (aka ‘conjugate’):

hMq(i)|Mq(jsi)i ¼ hMp(i)|Mq(j)i ¼ hMp(i)|Mp(jsi)i ¼ 0 (86)

The conditioned residual component along z-search direc-
tions Mp(i) and Mq(i) are removed in iteration i:

hMq(i)|z(i)i ¼ hMp(i)|z(i)i ¼ 0 (87)

This yields

gðiÞ ¼
�
MpðiÞ

��zði�1Þ

hMpðiÞjMpðiÞi (88)

sðiÞ ¼
�
MqðiÞ

��zði�1Þ

hMqðiÞjMqðiÞi (89)

Substituting eqn (88), (89), and (83) into (81) yields (see ESI† for
derivation):

G(i) ¼ G(i�1) � |g(i)|2hMp(i)|Mp(i)i � |s(i)|2hMq(i)|Mq(i)i (90)

Aer computing the new values of z(i) and hMz(i)|Mz(i)i, the
following convergence tests are performed: (1) if the absolute
value of every conditioned residual component is less than
a chosen CR_convergence_tol, the algorithm exits and returns
a message that the linear equation system is consistent and
returns the current value of y (which is a nearly exact solution).
(2) Else if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hMzðiÞjMzðiÞi

p
is less than a chosen Mz_length_tol-

erance, the algorithm exits and returns a statement that the
linear equation system is inconsistent and returns the current
value of y (which is the solution to the least-squares problem in
eqn (78)). (3) Else if the number FCR iterations reaches
max_CR_steps, the algorithm exits with a message the
maximum number of FCR iterations was reached and returns
the current value of y (which is the partial solution to the FCR
problem). (4) Else the algorithm continues to the next iteration.
RSC Adv., 2019, 9, 33310–33336 | 33329
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In some circumstances (A) an exit due to condition (3) is
considered an error, but in other circumstances (B) it is the
preferred exit condition. In this case (A), the goal is to reach
a specied precision rather than a specied number of FCR
iterations. In this case, max_FCR_iterations is set to a large
value (e.g., 100–1000) and exit via condition (3) represents
a convergence failure. In case of convergence failure, the algo-
rithm could be restarted using a different (and hopefully better)
conditioning matrix. In case (B), the goal is to reach a specied
number of FCR iterations rather than a specied precision. In
classical atomistic simulations via polarizable force elds,
using a xed number of conjugate gradient iterations leads to
continuous forces with enhanced energy conservation; there-
fore, exiting aer a small constant number of iterations is
preferred.53,54 This behavior can be achieved by setting max_F-
CR_iterations to a small whole number (e.g., �5) and setting
FCR_convergence_tol and Mz_length_tolerance to very small
values.

The direction p(i) is chosen to ensure

hMp(i)|z(i�1)i ¼ hMz(i�1)|Mz(i�1)i > 0 (91)

when the linear equation system is consistent. This guarantees

0 # G(i) < G(i�1) (92)

even if round-off errors occurred during prior computations.
Hence themethodmakes forward progress towards the solution
in each and every iteration. As derived in the ESI,† these
requirements are fullled by choosing

p(i) ¼ Mz(i�1) � b(i)p(i�1) � x(i)q(i�1) (93)

bðiÞ ¼
�
M2pði�1Þ��Mzði�1Þ

hMpði�1ÞjMpði�1Þi (94)

xðiÞ ¼
�
M2qði�1Þ��Mzði�1Þ

hMqði�1ÞjMqði�1Þi (95)

The length of p(i) is non-zero (see ESI† for derivation):

hp(i)|p(i)i ¼ hMz(i�1)|Mz(i�1)i + hb(i)p(i�1) + x(i)q(i�1)|b(i)p(i�1)

+ x(i)q(i�1)i > 0 (96)

As explained in the ESI,† the Krylov subspaces will be
spanned with resistance to round-off errors by assigning q(i) via
the following ordered sequence:

k1
ðiÞ ¼ �

�
M2pðiÞ

��M2qði�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhM2pðiÞjM2pði�1Þij2 þ jhM2pðiÞjM2qði�1Þij2

q (97)

k2
ðiÞ ¼

�
M2pðiÞ

��M2pði�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhM2pðiÞjM2pði�1Þij2 þ jhM2pðiÞjM2qði�1Þij2

q (98)

q(i) ) k1
(i)M2p(i�1) + k2

(i)M2q(i�1) (99)

c2
ðiÞ ¼

�
M2pði�2Þ��qðiÞ


hMpði�2ÞjMpði�2Þi (100)
33330 | RSC Adv., 2019, 9, 33310–33336
s2
ðiÞ ¼

�
M2qði�2Þ��qðiÞ


hMqði�2ÞjMqði�2Þi (101)

q(i) ) q(i) � c2
(i)p(i�2) � s2

(i)q(i�2) (102)

c1
ðiÞ ¼

�
M2pði�1Þ��qðiÞ


hMpði�1ÞjMpði�1Þi (103)

s1
ðiÞ ¼

�
M2qði�1Þ��qðiÞ


hMqði�1ÞjMqði�1Þi (104)

q(i) ) q(i) � c1
(i)p(i�1) � s1

(i)q(i�1) (105)

c0
ðiÞ ¼

�
M2pðiÞ

��qðiÞ

hMpðiÞjMpðiÞi (106)

q(i) ) q(i) � c0
(i)p(i) (107)

Eqn (106) and (107) ensure that

hMq(i)|Mp(i)i ¼ 0 (108)

even if round-off errors occurred during prior computations.
With this result, eqn (103)–(105) and (93)–(95) ensure that

hMq(i)|Mp(i�1)i ¼ hMq(i)|Mq(i�1)i ¼ 0 (109)

hMp(i)|Mp(i�1)i ¼ hMp(i)|Mq(i�1)i ¼ 0 (110)

even if round-off errors occurred during prior computations. In
exact arithmetic, the length of q(i) is non-zero in all iterations
before the last one, and may either be zero or non-zero on the
last iteration (see ESI† for derivation).

The algorithm is initialized with

p(i#0) ¼ q(i#0) ¼ 0 (111)

p(1) ¼ Mz(0) ¼ MW (112)

qð1Þ ¼ zð0Þ � hMW jM2Wi
hMpð1ÞjMpð1Þip

ð1Þ (113)

All denominators in the method have the form hMp(i)|Mp(i)i or
hMq(i)|Mq(i)i. Since M is Hermitian, its eigenvalues are real-
valued. Since the eigenvalues of M2 are the squared eigenvalues
of M, then all eigenvalues of M2 are non-negative. Thus,
hMp(i)|Mp(i)i and hMq(i)|Mq(i)i are non-negative. As derived in
Section S2 of the ESI,† hMp(i)|Mp(i)i ¼ 0 can only occur if
hMz(i�1)|Mz(i�1)i ¼ 0 which would have already led to the algo-
rithm exiting due to convergence in iteration (i � 1). hMq(i)|Mq(i)i
¼ 0 may arise from (a) round-off errors or (b) on the last iteration
if all components of z(i) not in kernel(M) are already made zero by
the Mp(i) search direction. The algorithm includes division by
zero protection at all steps. Specically, the value of the param-
eter g(i) (eqn (88)), s(i) (eqn (89)), b(i) (eqn (94)), x(i) (eqn (95)), k1

(i)

(eqn (97)), k2
(i) (eqn (98)), c2

(i) (eqn (100)), s2
(i) (eqn (101)), c1

(i)

(eqn (103)), s1
(i) (eqn (104)), or c0

(i) (eqn (106)) is set to zero if the
This journal is © The Royal Society of Chemistry 2019
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denominator appearing in the respective equation is zero. (As
derived in the ESI,† this is the rigorously correct parameter value
in the limit of zero denominator.)

In exact arithmetic, the algorithm converges to the exact
solution in a nite number of iterations. The conditioned
residual is eliminated along two directions in each iteration
(i.e., along Mp(i) and Mq(i)). In exact arithmetic, these directions
are orthogonal to all previous directions Mp(j<i) and Mq(j<i). The
number of independent directions in the residual z(i) is less
than or equal to Nrows, where Nrows is the number of rows in
matrix M. Therefore, in exact arithmetic the algorithm
converges to the exact result in at most ceiling(Nrows/2) itera-
tions. In nite arithmetic, the FCR algorithm resists round-off
errors as described above.

Further convergence analysis can be obtained by expanding
W in terms of the eigenvectors {~V j} of M:

W ¼
X
j

cj~V j (114)

The building blocks of the Krylov subspace are thus

MkW ¼
X
j

cj
	
lj

k~V j (115)

where {lj} are the corresponding eigenvalues of M. These
building blocks can generate at most X linearly independent
vectors, where W is a linear combination of eigenvectors of M
having exactly X distinct eigenvalues lj. Since each FCR itera-
tion searches 2 independent directions, in exact arithmetic the
algorithm will converge in at most ceiling(X/2) iterations. For
example, if matrix M contains Nrows ¼ 1 million, but matrix M
has only 12 distinct eigenvalues, then FCR will converge to the
solution in at most 6 iterations in exact arithmetic.

FCR expands y(i) as

yðiÞ ¼ a0W þ a1MW þ.a2i�1M
2i�1W ¼

X
j

cjPoly
ðiÞ	

lj


~V j

(116)

where {ak} are some optimized coefficients and

PolyðiÞðlÞ ¼
X2i�1

k¼0

akðlÞk (117)

is the associated polynomial. Expanding,

MyðiÞ ¼
X
j

cjljPoly
ðiÞ	

lj


~V j ¼

X
j

cj~V j

 X2i�1

k¼0

akðlÞkþ1

!
(118)

The conditioned residual value at each FCR iteration is given
by

zðiÞ ¼ W �MyðiÞ ¼
X
j

cjVj �
X
j

cjljPoly
ðiÞ	

lj


~V j

¼
X
j

cjVj

	
1� ljPoly

ðiÞ	
lj




(119)

Therefore, the exact solution is reached when

Poly(i)(lj) 0 1/lj (120)
This journal is © The Royal Society of Chemistry 2019
The FCR convergence properties are thus dictated by the diffi-
culty of representing {1/lj} via a polynomial Poly(i)(l). When the
eigenvalues are close to one, this is trivial because

1

1þ 	lj � 1



|fflfflfflfflffl{zfflfflfflfflffl}
3j

¼ 1� 3j þ 3j
2 � 3j

3 þ 3j
4. (121)

When the eigenvalues are extremely spread out in values, then it
takes a higher-order polynomial (and hence a larger number of
FCR iterations) to make Poly(i)(l) z 1/l for all of the present
eigenvalues. Thus, the primary goal of conditioning (eqn (71)) is
to make the eigenvalues less spread out in values.

All FCR equations presented here apply to both complex-
valued and real-valued matrices. If M or W are complex-
valued, then {p(i)}, {q(i)}, {z(i)}, and g(i), s(i), b(i), x(i), k1,2

(i),
c0,1,2

(i), s1,2
(i) must be declared as complex variables. On the

other hand, if M and W are real-valued, then all of those
quantities should be declared as real variables. For solving the
TS-SCS and polarizability equations, the corresponding
matrices were real-valued.

For singular M, My does not contain any contributions from
any zero eigenvalues, because multiplying by M multiplies the
corresponding basis eigenvector by its eigenvalue (which is zero)
as shown in eqn (118). Consequently, if W contains any nonzero
contribution (i.e., cj s 0) from an eigenvector ~V j having associ-
ated zero eigenvalue (i.e., lj ¼ 0), then the linear equation system
is inconsistent. Since only the basis eigenvectors appearing inW
need to be represented by My (see eqn (116)–(119)), the linear
equation system is consistent and solved exactly by the FCR
algorithm if and only if all nonzero contributions (i.e., cj s 0) of
W have non-zero eigenvalues (i.e., lj s 0). Therefore, even My ¼
W systems for singularM can be solved exactly by FCR as long as
the zero eigenvalues (i.e., lj ¼ 0) have zero contribution (i.e., cj ¼
0) to W. In this case, the returned solution yFCR has no contri-
bution from any eigenvector whose associated eigenvalue is zero
(i.e., yFCR is orthogonal to kernel(M)).

As shown in eqn (118), My cannot contain any eigenvectors
from the kernel(M), because each term contributing to My
contains the factor (lj)

k+1$1 which is zero for any Vj in kernel(M).
Consequently, any Vj in kernel(M) having non-zero cj cannot be
removed from the conditioned residual (see eqn (118) and
(119)). Therefore, whenMy ¼W is inconsistent, minimizing |W
� My|2 corresponds to removing all conditioned residual
components that are not in kernel(M), while conditioned
residual components in kernel(M) remain at their initial levels
(i.e., same contribution as in W).

The ESI† explains further details. Section S2.1† denes
the problem denition and matrix conditioning. Section
S2.2† contains eigenvalue decomposition analysis using
Krylov subspaces. Section S2.3† denes conjugate search
directions that span the Krylov subspaces. Section S2.4†
details vector lengths in exact arithmetic. Section S2.5†
explains robust convergence and round-off error resistance.
Section S2.6† presents a step-by-step computational proce-
dure of this FCR algorithm.
RSC Adv., 2019, 9, 33310–33336 | 33331
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3.3 Using FCR to solve the TS-SCS equations

The following procedure was used to solve the TS-SCS equations
using the FCR algorithm. First, the following quantities were
dened

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aunscreened
A ðuÞ

q
~E

0

A (122)

M ¼
�
dst �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aunscreened
A ðuÞaunscreened

B ðuÞ
q

sst
ABðuÞ

�
(123)

for one value of u with~E0
A set to (1, 0, 0). The FCR algorithm was

then used to solve the linear equation My ¼ W for y which was
solved for m!induced

B by multiplying by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aunscreened
B ðuÞ

p
:

y ¼ m!induced

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aunscreened
B ðuÞ

p (124)

m!induced
B gives the rst column of a!!

SCS

B ðuÞ. In this scheme,
m!induced

B corresponds to ‘x’ in the linear equation system ‘Ax ¼
B’, and B corresponds to the externally applied electric eld,

{~E0
A}. The conditioning matrix C is diagonal with

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aunscreened
A ðuÞ

p
g along the diagonal. Solving again with ~E0

A set

to (0, 1, 0) yields m!induced
B that gives the second column of

a!!
SCS

B ðuÞ. Finally, solving with ~E0
A set to (0, 0, 1) yields m!induced

B

that gives the third column of a!!
SCS

B ðuÞ. This entire process is
repeated at each imfreq point u.

We now discuss a few computational examples. For the
examples we studied, the FCR algorithm indicated the linear
equations were consistent and converged to a nearly exact
solution. Table 5 shows the FCR algorithm converged to the
same solution in the same number of iterations for a large
supercell as for the small primitive unit cell of the same mate-
rial. Table 5 also shows FCR converged to the same solution
(within the convergence tolerance) as direct matrix inversion
using GEPP. Since the number of diverse atom types in gra-
phene and ice is not large, we explored three more diverse
chemical structures shown in Fig. 6. These included a large
biomolecule (B-DNA) whose geometry was taken from a prior
study,14 the C50H24 polyacene geometry taken from the
companion article,1 and a metal–organic framework whose
geometry was taken from the Computation Ready Experimental
(CoRE) metal–organic framework (MOF) database.58 We used
the MOF having Cambridge Structural Database59 code KUC-
DIW. Electron densities for these three materials were gener-
ated in VASP using the PBE functional, a 400 (B-DNA and MOF)
and 750 (C50H24) eV planewave cutoff, and the PAW method.
The k-point mesh and grid spacing followed previous recom-
mendations.12 FCR convergence for these three materials is
summarized in Table 6 and Fig. 7. As shown in Fig. 7, the
conditioned residual norm decreased rapidly and mono-
tonically with increasing iteration number for all three mate-
rials. Table 6 shows that a summed total of up to a couple
thousand large matrix-vector multiplies may be required to
complete TS-SCS(FCR) analysis across all imfreq points.
Convergence was highly efficient, with FCR convergence along
one direction for a single imfreq point occurring in #31
33332 | RSC Adv., 2019, 9, 33310–33336
iterations. Each FCR iteration required four large matrix-vector
multiplies.

Except where otherwise specied, all computations in this
article and the companion article1 were performed using 64-bit
real numbers. For comparison, computations performed using
128-bit reals are also displayed in Table 6 and Fig. 7. Using 128-
bit reals increases computational cost and decreases round-off
errors compared to 64-bit reals. Calculations converged in
fewer FCR iterations using 128-bit reals, but the overall
computational time was higher. The converged results were
equivalent within the convergence tolerance.

We used OpenMP to parallelize the most computationally
intense parts of this TS-SCS algorithm. The loops parallelized
included calculation of unscreened and screened total C6 for
the unit cell (analogous to the loops parallelized in Fig. 1 and 5)
and all of the large matrix-vector multiplies in the FCR algo-
rithm. Fig. 8 shows an excerpt of the OpenMP enabled code for
the large matrix-vector multiplies to compute MMp(:,1) ¼ M �
Mp(:) and MMq(:,1) ¼ M � Mq(:).

The TS-SCS(FCR) code achieves linear-scaling computational
cost for sufficiently large Natoms when the number of FCR
iterations does not increase appreciably with increasing system
size. To date, we have not observed any materials for which TS-
SCS(FCR) converges slowly. However, the xed number of
required iterations for MCLF is a clear advantage compared to
the variable number of iterations to converge TS-SCS. First, it
makes MCLF convergence highly repeatable, which will become
important for applications that involve differentiation with
respect to atomic positions (e.g., computing forces). Second, it
makes MCLF computational times highly predictable, because
the number of required iterations is known up front.

4. Performance results
4.1 Required computational time and memory

In addition to the linear-scaling MCLF and TS-SCS algorithms
described in Sections 2 and 3 above, MCLF and TS-SCS were also
programmed using direct matrix inversions via Gaussian elim-
ination with partial pivoting (GEPP). GEPP is a widespread
algorithm described in many numerical methods textbooks.60

This allowed us to compare both the computational time and
precision (see Tables 4 and 5) of the inverse-free algorithms to
the direct inverse algorithms.

Both the required computational time and memory of the
inverse-free algorithms are proportional to the number of atoms
in the unit cell times the number of separately cataloged pairwise
interactions per atom. Case 1: for an isolated molecule much
smaller than the dipole interaction cutoff length, increasing the
number of atoms in the molecule also increases the number of
pairwise interactions per atom. In this case, the required
computational time and memory scale proportional to the
number of atoms squared. Case 2: quadratic scaling of compu-
tational time and memory is also observed for periodic materials
having small unit cells. As the number of atoms in the unit cell
increases, the number of separately cataloged pairwise interac-
tions per atom also increases. Case 3: when the unit cell is large
enough to completely enclose a sphere of dipole interaction cutoff
This journal is © The Royal Society of Chemistry 2019
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length radius, the number of separately cataloged pairwise inter-
actions per atom saturates. Making the unit cell even larger does
not increase the number of separately cataloged pairwise inter-
actions per atom. In this case, both the required computational
time and memory scale linearly with increasing system size.

Fig. 9 plots required computational time and RAM to perform
MCLF analysis on ice crystals containing different numbers of
atoms in the periodic unit cell. These calculations described the
same hexagonal ice crystal structure, but with different sized unit
cells. MCLF results from these different sized unit cells are
numerically equivalent. Electron densities for the unit cells
containing 12 to 8748 atoms were taken from ref. 18. Herein, we
also constructed periodic unit cells containing 20 736 to 263 424
atoms from the computed DDEC6 AIM properties of the smaller
unit cells; no DFT calculations on these large supercells were
needed. As shown in Fig. 9, the required computational time and
memory for MCLF analysis scaled linearly with increasing
number of atoms in the unit cell when the unit cell was large
enough to enclose a sphere of dipole interaction cutoff length
radius. The TS-SCS method using direct matrix inversion (GEPP
algorithm) is plotted for comparison, because the prior literature
used a similar approach.2 As shown in Fig. 9, MCLF is less
computationally expensive than TS-SCS using GEPP. While TS-
SCS(GEPP) calculations larger than 4116 atoms per unit cell did
not complete in one week on a single processor, an MCLF
calculation with 263 424 atoms in the unit cell completed in 4.1
days on a single processor.

Fig. 10 compares the FCR and GEPP algorithms for per-
forming TS-SCS analysis on these ice supercells. Direct matrix
inversion using GEPP had nearly cubic scaling computational
time with increasing number of atoms in the unit cell, which
made it infeasible for unit cells containing >4116 atoms. Similar
to MCLF analysis, the required computational time and
memory for the TS-SCS(FCR) algorithm scaled linearly with
increasing number of atoms in the unit cell when the unit cell
was large enough to enclose a sphere of dipole interaction cutoff
length radius. The TS-SCS(FCR) calculation with 263 424 atoms
in the unit cell completed in 0.97 days on a single processor. TS-
SCS(FCR) requires only about 50–60% of the memory as MCLF.

The computational cost of the GEPP algorithm for direct
matrix inversion could be minimized by using a highly opti-
mized linear algebra package such as LAPACK. This would
result in faster computational times for GEPP than we reported
here. However, this optimization would only lower the pre-
factor and not the exponent in the required computational
time scaling relation. Even for highly optimized code, the cubic-
scaling computational time of GEPP makes it impractical for
materials containing a large number of atoms in the unit cell.

Tables 7 and 8 list the calculation time breakdowns for MCLF
and TS-SCS methods using the inverse-free algorithms. The
computational times were consistent between runs, as demon-
strated by the small standard deviations (<5%). For MCLF, the
most time consuming section is the uctuating screening, fol-
lowed by static polarizability screening, and atom image pair
matrix initialization. For TS-SCS, the most time consuming
section is TS-SCS screening, followed by atom image pair matrix
initialization. For both methods, the other sections take only
This journal is © The Royal Society of Chemistry 2019
negligible time. Fluctuations in le reading times were presum-
ably due to variations in how quickly the les could be accessed,
which depended on current le system load across users. The
drop in computational time for unscreened a & C6 computation
from 111 132 to 263 424 atoms is due to switching to the wp
lookup table method for computing C6 with 263 424 atoms.
4.2 Parallelization efficiency

The parallelization efficiency is dened as (time for serial
calculation)/((time for parallel calculation) � (number of
parallel computing cores)). (Serial and parallel computational
times were the average of three runs.) Tables 9 and 10 list the
calculated efficiency of MCLF and TS-SCS methods for selected
ice crystals. The parallelization efficiencies were excellent. Some
jobs had efficiencies greater than 100%, because the parallel
program uses OpenMP while the serial program does not. When
enabled, OpenMP can speed up the calculation even if only one
processor is used.

Table 11 compares the RAM requirements for serial execu-
tion to 8 parallel cores. Results are listed for both MCLF and TS-
SCS(FCR) algorithms. Our results show that running the
program in serial and parallel modes requires about the same
amount of memory regardless of the number of cores used. In
other words, adding parallel cores does not signicantly
increase the program's memory requirements.

To quantify the performance of these algorithms for larger
systems, an ice supercell containing >2 million atoms in the unit
cell was prepared from the DDEC6 AIM properties. Specically,
a 2� 2� 2 supercell of the 263 424 atom unit cell gave a periodic
supercell containing 2 107 392 atoms. Due to the large size, serial
(i.e., one processor) TS-SCS(FCR) and MCLF calculations could
not complete in less than one week; therefore, only parallel
calculations were run. Secondly, the source code had to be
compiled using 64-bit integers to accommodate the large range
of array index values. This 64-bit integer source code and a large
memory node were also used for the 1 053 696 atom system re-
ported in Table 3 above. (All other calculations reported in this
paper used 32-bit integers, because this was the compiler's
default.) Thirdly, the program had to run on a large memory
node, because a normal node does not contain enough RAM to
complete the calculation. The processor speed for the large
memory node on the Comet cluster was 2.2 GHz compared to 2.5
GHz for its normal nodes. Therefore, one must exercise caution
when comparing timing results for this large supercell to results
reported above for the other ice supercells that ran on the normal
nodes. The MCLF calculation for this material took 21.7 hours
(average of 3 runs with standard deviation of 5%) on 48 parallel
computing cores with 950 GB RAM. The TS-SCS(FCR) calculation
took 5.6 hours (average of 3 runs with standard deviation of 2%)
on 48 parallel computing cores with 500 GB RAM.
5. Conclusions

We developed computationally efficient algorithms to compute
atom-in-material polarizabilities and dispersion coefficients
using MCLF and TS-SCS analysis. Our MCLF algorithm uses
RSC Adv., 2019, 9, 33310–33336 | 33333
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Richardson extrapolation of the screening increments. Our TS-
SCS algorithm uses a special conjugate residual algorithm that
resists round-off errors. Both our algorithms have computa-
tional time and memory requirements scaling linearly with the
number of atoms in the unit cell when the unit cell is much
larger than the dipole interaction cutoff distance. For both
small and large systems, our algorithms require less computa-
tional time and memory than direct matrix inversion, with
negligible change in computational precision. Our algorithms
achieved this by avoiding both large matrix inversions and large
dense matrix multiplies. This is an important achievement,
because direct matrix inversion and dense square matrix
multiplication have computational costs scaling between
Nrows2 and Nrows3.11 Other important algorithms to achieve
linear scaling included: (a) classication of atoms into spatial
regions followed by constructing two lists of interacting atom
pairs and (b) a lookup table method to compute Ctotal

6 .
Our algorithms were easily parallelized to take advantage of

multiple computing cores. To minimize false sharing, our
algorithms access data in cache line friendly order. Excellent
parallelization efficiencies were obtained. Moreover, adding
parallel computing cores did not signicantly increase memory
requirements.

This made it possible to apply the MCLF and TS-SCS
methods to materials containing orders of magnitude more
atoms per unit cell than previously feasible. Our algorithms can
be readily applied to materials containing millions of atoms in
the unit cell. The largest example studied herein was an ice
crystal containing >2 million atoms in the unit cell. To perform
TS-SCS on this material, the FCR algorithm solved a linear
equation system containing >6 million rows, 7.57 billion
interacting atom pairs in the large list and 87 million in the
small list, 45.4 billion stored non-negligible matrix components
used in each large matrix-vector multiplication, and �19
million unknowns per frequency point (>300 million total
unknowns). This problem was solved in 5.6 hours by 48 parallel
computing cores with 500 GB RAM. The MCLF calculation for
this material took 21.7 hours on 48 parallel computing cores
with 950 GB RAM.

TheMCLF and TS-SCS soware programs described here will
be distributed through the same code repository as the Char-
gemol program. Required inputs for the TS-SCS program are: (i)
an xyz le containing the list of atoms (as element symbols and
x, y, z coordinates in Å), unit cell information (i.e., lattice vectors
if system is periodic), and AIM hr3i moments and (ii) a calcu-
lation_parameters.txt le listing calculation parameter values.
Required inputs for the MCLF program are: (i) separate xyz les
for AIM volumes, hr3i moments, hr4i moments, weighted hr4i
moments, and net atomic charges, and (ii) a calculation_par-
ameters.txt le listing calculation parameter values. Settings in
the calculation_parameters.txt le choose whether to use an
inverse-free method or direct matrix inversion, the Romberg
integration order, the dipole interaction cutoff length, whether
to ignore PBC, the number of Richardson extrapolation steps
(for MCLF), the convergence threshold (for TS-SCS(FCR)), etc.
The default values are reliable and almost never need to be
changed.
33334 | RSC Adv., 2019, 9, 33310–33336
Finally, the new failsafe conjugate residual algorithm should
nd widespread applications to a plethora of scientic
computing problems, because it resists round-off errors and
solves any linear equation system with Hermitian coefficients
matrix. This conjugate residual algorithm has many desirable
mathematical properties, because it minimizes the norm of the
conditioned residual within a Krylov subspace of increasing
order with each successive iteration.
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