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Adsorption has been the focus of research on the treatment of heavy metal mercury pollution since it is
among the most toxic heavy metals in existence. The US EPA has set a mandatory discharge limit of 10
ng Hg L7t for wastewater and for drinking water a maximum accepted concentration of 1 pg Hg L™,
Physical adsorption and chemical adsorption are the two major mechanisms of adsorption methods
used for mercury removal in aqueous sources. The recent decades' research progress is reviewed to
elaborate varieties of adsorption materials ranging from materials with large surface area for physical
adsorption to metal oxides for chemical adsorption. Many examples are presented to illustrate the
adsorption principles and clarify the relationship between the structure and performance of the
adsorbents. The combination of physical adsorption and chemical adsorption gives rise to numbers of
potential mercury removal composites. This review demonstrates the adsorption mechanism and the
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design and fabrication of new materials for the removal of heavy metal ions in water.

1. Introduction

With the development of human civilization, the conflict
between industrialization and environmental pollution has
become a serious issue and needs to be addressed in modern
society." One of the pollutions is heavy metal ion pollution.
Mercury is a major toxic element found in wastewater in the
environment.”> As a dominant constituent of environmental
inorganic mercury, Hg(i) can combine with the cysteine of
human protein. Through sulfate methylation, Hg(u) converts
into CH3;Hg - a major organic mercury causing high bio-
accumulation in food chains.>® Serious damage has been
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reported in the brain, heart, liver and kidneys as well as nervous
and metabolic systems, and it even leads to cancer.® The gath-
ering effect of food chains would increase the mercury
concentration in water by 1000 times with straightforward
delivery into the human body.”

Nowadays it is mandatory to reduce Hg(u) concentration to
0.001-0.002 mg L™ in wastewater prior to discharge into the
environment.® The upper limit of mercury in wastewater is set
as 0.001 mg L " in China (DB12 356-2018), and in the US it is
0.001 mg L™ " according to the national primary drinking water
regulations.”'®

To deal with the increasingly serious mercury pollution,
many methods have been investigated for the removal of Hg (),
including chemical precipitation, ion exchange, solvent extrac-
tion, ultrafiltration and adsorption.”*** The chemical precipi-
tation method requires hazardous chemical reagents and a long
time. Ion exchange has a specific ability to exchange its cations
with the metals in the wastewater, but it is inefficient and can
cause secondary pollution. The solvent extraction method
consumes large quantities of solvent and is limited by poor
selectivity. Ultrafiltration is a membrane technique working at
low transmembrane pressures, limited by fouling issues and
high cost.

On the other hand, adsorption is considered as the most
promising technique due to its simplicity, selectivity, high
efficiency, low cost, and operational convenience.'® The
adsorption method refers to separating pollutants from waste-
water through the interaction between the adsorbents and
pollutants.”” The interaction between the adsorbents and
pollutants is commonly divided into physical adsorption and
chemical adsorption according to the adsorption mechanism.
Physical adsorption usually involves facile fabrication but
suffers from relatively low adsorption capacity. Chemical
adsorption has the advantage of high efficiency but also has
problems with secondary pollution.

The traditional adsorbents which involve a single adsorption
way, such as marine macroalga, goethite and bentonite, are
suffering from low adsorption capacities and low removal effi-
ciencies of Hg(u). Hence, researchers continue to seek new
efficient adsorbents. Among these, the current trend for Hg(u)
removal is to combine the advantage of physical adsorption and
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chemical adsorption, based on hierarchical structure.'®'® To
date, many adsorbents of Hg(u) have been examined. New
developed adsorbents, including activated carbon, silica,
hydroxyapatite, multiwalled carbon nanotubes (MWCNTS), two-
dimensional metal carbides and many different kinds of poly-
mers etc.”*** were demonstrated to be effective for Hg(u)
removal. Hierarchical structured porous material, such as
porous carbon fabricated from bio-species is of great interests
owing to interconnected three-dimensional pore structures,
high specific surface area and surface modifiability. Magnetic
modified porous composites with fine pore structure are
promising candidates for adsorption and show dramatically
improved adsorption performance. Hierarchical porosity often
provides full accessibility of narrow cavities and efficient mass
transport property. Bioinspired carbide-derived carbons with
hierarchical pore structure were developed by C. Fischer et al.
for the adsorption of Hg(u).>* The micropore size of bioinspired
carbons can be adjusted with a high accuracy to enhance the
adsorption performance. Additionally, some novel materials
with two-dimensional nanofiber structure also provide unique
approach for heavy metal removal. Two-dimensional (2D) metal
carbides (MXenes) such as Ti;C,T,, and nanofiber material such
as CNT are promising candidates for Hg(un) adsorption.>?
Generally, one adsorbent material may involve one or more
adsorption mechanisms.

According to US Environmental Protection Agency (EPA),
mercury has a low limit of 0.01 mg L™" for hazardous waste. It
clearly indicated the stringent environmental remediation for
Hg(u) to be substantially removed from the aqueous sources
before being discharged. This review critically analyzes earlier
research work in area of Hg(r) removal from aqueous sources
using physical and chemical adsorption techniques, and high-
lights the relationships between the structure and performance
of adsorbents. In addition, elaboration of specific adsorption
materials corresponding to different adsorption mechanisms
and their principle is illustrated in details.

2. Adsorption method for HG(i)
removal

2.1. Physical adsorption for Hg(u) removal

Utilizing the large surface area of adsorbent particles, a physical
adsorption process involves van der Waals interaction or elec-
trostatic interaction between the adsorbent and Hg(u).>* Porous
structured materials can remove Hg(u) from aqueous solution
mainly through physical adsorption, such as activated carbon,
mesoporous silica and zeolite. Porous structured materials are
generally prepared from various agricultural waste and plant
residues such as bagasse, silk cotton hull, coconut tree sawdust,
maize cob, peanut hull, wood dust and coir pith etc.>* Thus, the
adsorbents that adopt physical adsorption are usually easy to
develop and can also be made eco-friendly.

As early as 1966 Fornwalt et al. purified liquids by activated
carbon through physical adsorption.>® Since then various forms
of carbon-based materials have been developed to remove metal
ions. Skodras et al. prepared activated carbon by using

This journal is © The Royal Society of Chemistry 2019
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agricultural residues and waste tires, and studied Hg(u) removal
through physical adsorption.” Fig. 1 displays the nitrogen and
carbon dioxide adsorption isotherms for the as-prepared acti-
vated carbon to demonstrate the relationships between the
surface area and adsorption behaviors. The carbon produced
from olive seed has the BET surface area of 1690 m* g~ and the
high mercury adsorption capacity of 869 pg g '. Large BET
surface area and total micropore volume were found to promote
mercury adsorption capacity. This indicates that large surface
area and an efficient micropore structure would provide
necessary space and sites for physical adsorption of mercury to
further optimize the adsorption capacity (Table 1).

M. Zabihi et al. fabricated porous carbons with surface area
of 780 m*> g~ ' from walnut shells, which exhibited a high
monolayer adsorption capacity of 151.5 mg g for Hg(n)
removal.”’ Zhang et al studied various activated carbons
extracted from organic sewage sludge (SS) via variety kinds of
chemical activation.?® Of these, ZnCl, activated carbon exhibi-
ted the highest adsorption capacity, and approximately 60 to
80% of the Hg(um) adsorbed by activated carbon could be
recovered via sonication. Owing to the chemical activation by
ZnCl,, comprehensive properties of the activated carbon were
dramatically enhanced. The effect of adsorbent dosage on the
Hg(u) adsorption efficiency was studied in Fig. 2. Apparently,
the percentage of Hg(u) removal increased with the increase of
the adsorbent dosage. It is noticed that more dosage of the
activated carbons offered more active sites for Hg(u) to anchor
on.

Except carbon materials, zeolites and silica also possess
abundant pore channels and can be also promising adsorbents
for Hg(u) through physical adsorption. Sedigheh et al. synthe-
sized hierarchical nanoporous ZSM-5 zeolite from bagasse
using for Hg(un) removal.*® Silica powder was used in the
synthesis of adsorbent. Hierarchical zeolites demonstrated
excellent adsorption efficiency of 96.3% due to their unique
surface to overcome the diffusion and mass transport limitation
of micropores and active sites posited within interface.****
Several other studies have been also devoted to the adsorbents
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with fine porous structure and high surface area, such as
magnetic mesoporous silicas,* regenerable multifunctional
mesoporous silica,*® magnetic self-assembled zeolite clusters,**
multi-walled carbon nanotubes® and LTA nanozeolite.?

The adsorption kinetics and isotherms mechanism of Hg (i)
adsorption are interpreted by the following example, as pre-
sented in Fig. 3. In one of recent work by our group, a hierar-
chically structured carbon-based materials derived from
bagasse was fabricated for Hg(u) adsorption.*” The maximum
Hg (1) removal efficiency of 96.8% was achieved at equilibrium.

Commonly, pseudo-first order model and pseudo-second
order model are applied to simulate the kinetics data of Hg(u)
adsorption, expressed as eqn (1) and (2) in the Table 2. Where g,
and q correspond to the adsorption capacities at equilibrium
and time ¢ (min) respectively; K; and K, are the sorption rate
constants; and R” is the resultant fitting parameter. Fig. 3(a)
adopted pseudo-second order model (R* = 0.999) to describe
the adsorption kinetics, which fitted well with the experimental
ones, suggesting that the rate limiting step was the adsorption
process instead of the diffusion process.*®

Adsorption isotherms in Fig. 3(b) describes the amount of
Hg adsorbed by unit mass adsorbent at constant temperature as
a function of Hg(u) concentration at equilibration. The Lang-
muir isotherm model was applied for monolayer adsorption
with all binding sites equal.*

The Freundlich isotherm model described multilayer
adsorption on a heterogeneous surface.* Equations of two
models are given as eqn (3) and (4) in Table 2, where C, is the
equilibration concentration of Hg; gmax is the maximum
adsorption capacity; Ky, and Ky are Langmuir and Freundlich
constants; 1/n is the constant related to adsorption intensity.
The curves in Fig. 3(b) are fitting well with Freundlich isotherm
model (R* = 0.989), suggesting the heterogeneity of the porous
carbons. Physical adsorption is consistent with multilayer
adsorption because of its space limitation.

Activated carbon fiber (ACF) was developed with optimize
morphology based on activated carbon. Its strong mechanical
property, large surface area and fine pore structure bring the
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Fig.1 Njand CO, adsorption isotherms of the activated carbon produced from different starting materials.?® This figure has been adapted from

ref. 26 with permission from Elsevier.
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Table 1 Activated carbons A, B, C1, C2, C3, D1 and D2 produced under different conditions®®

Raw material Pine wood Oak wood Waste tires Olive seed waste
Activated carbon A B C1 Cc2 C3 D1 D2
Pyrolysis conditions (°C, h) 800/0.75 800/0.75 800/1

Chemical treatment — — KOH

Activating gas/flow rate (cm® min ") H,0-CO0,/758 x 10° H,0-CO,/758 x 10° N,/100
Activating conditions (°C, h) 900/2.5 900/0.5 900/1 900/2 800/1 800/3

Hg ( II) removal (%)

0 T T T T 1
0 2 4 6 8 10
Adsorbent dosage (g/L)

Fig. 2 Effect of adsorbent dosage on Hg() removal. (Hg®*
200 mg L% pH 5.0, time 7 h, 25 °C.) S-S, SS-P, SS-Z and SS-C rep-
resented activated carbons treated by H,SO4, HzPO4, ZnCl, and that
with no treatment.?® This figure has been adapted from ref. 28 with
permission from Elsevier.

advantage of fast adsorption. Nabais et al. prepared ACF from
a commercial acrylic textile fiber for the removal of mercury
from aqueous solution and from flue gases.** The ACF samples
displayed quite large BET surface area range of 848-1259 m> g~ "
and could remove HgCl, from aqueous within the range of 290-
710 mg g~ . Carbon nanotube (CNT), also has great prospect for
heavy metal Hg(u) removal. Its unique carbon atom hexagon
array and w-m interaction offer large numbers of physical
adsorption sites for Hg(u).**** Aerogels materials, in addition,
can give assistance to physical adsorption through 3D cross-
linking structured network.*

Porous structured materials are ideal candidates for heavy
metal Hg(1) removal because they have large surface area and
fine pore structure. The pore channels offer large numbers of
physical adsorption sites for Hg(u). Hierarchically adsorbents
are often easy to synthesize and possess considerable surface
area and adsorption capacity. Nevertheless, pure porous mate-
rials work through physical adsorption only, which may be
disadvantaged by relatively long interaction period, low
adsorption capacity and the challenging recovery process of
adsorbents.*>°

2.2. Chemical adsorption for Hg(u) removal

In chemical adsorption, adsorbents react with the contaminant
or have chemical complexation effects with the contaminant.”
The adsorbents that remove Hg(u) in aqueous through chemical
adsorption include inorganic active matters and organics.
Inorganic active matters are generally metal oxides or metal
oxide composites. Metal oxides possess a strong binding affinity
with Hg(u) cations or molecules, and offer plentiful active
adsorption sites for Hg(u) via coordination through oxygen
atoms. Organic adsorbents involve macromolecules, functional
group chains and proteins (cysteine) etc.**** As compared with
physical adsorption, chemical adsorption often has a faster
removal rate and higher removal efficiency on trace Hg(i1). Some
magnetic chemical adsorbents can be recovered from the
pollutant through magnetic separation for reuse and
recycling.”

Naturally abundant metal oxides such as iron oxide and
manganese oxide exhibit outstanding performance in Hg(u)
chemical adsorption. One of the mechanisms of the common
chemical adsorption is through oxidation-redox reaction.>
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Fig.3 (a) Pseudo-second order model for Hg sorption (pH 6, adsorbent 80 mg L%, Hg?* 1.0 mg L™, 25 + 2 °C). (b) Freundlich isotherm model
for Hg sorption (Hg?* 0.5-5.0 mg L™, pH 6, adsorbent 80 mg L™, time 24 h, 25 + 2 °C).3 This figure has been adapted from ref. 37 with

permission from Elsevier.
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Table 2 The kinetics and isotherms parameters, and the correlation coefficients, R%“

Pseudo-first order constants Pseudo-second order constants

In(ge — g) =Inge — Kyt (1) tlg = 1/(Kxq.) + tlge (2)

ge(mgg™) K (g mg™' min™") R ge(mgg™) K (gmg " min") R
9.8 0.005 0.944 9.8 0.083 0.999
Langmuir constants Freundlich constants

% = KL;max qi:x (3) In ¢ge = In Ky + }11 InC. (4)

Gmax (Mg g™ ") Ky (L mg™") R? 1/n Ke (Lg™) R*
51.8 9.280 0.502 0.898 304.3 0.989

“ Where e, Gmax, K1, Kz, 1/n, Ky, Kg are defined by eqn (1)-(4), respectively.

Some metal oxides possess reducibility on Hg(u), such as MnO,.

Ma et al. evaluated the effectiveness of in situ MnO, on Hg(u) HO3S H03S SO3H SO3H

removal. Their results suggested that the reducing properties of /b

MnO, significantly enhanced flocculation and improved the
performance of Hg(u) removal.”> Metal oxide composites exhibit
higher adsorption efficiency than single metal oxides. Metal
oxides often coexist in soil and water and easily form mixed
oxides.* Binary oxides with surface charge and variable valence
elements have higher surface activities than single oxides and

o
can take advantage of both unique properties of them.>* Ali et al.
studied the adsorption capacities of binary oxides and found

that nanoparticles containing silver and zinc had better
performance than singe silver or zinc oxide.*® Fe, Mn, Zn and Ag
oxides, for their high surface activity and modifiability, are HN NH
promised to be the new generation of environmental remedia-
tion materials.

The reaction mechanism of chemical adsorption by metal
hydroxide composite is generally involved in complexation— N
flocculation. Lu et al. investigated the removal of trace Hg(u) in
aqueous by manganese-ferric hydroxide (in situ formed).”® The
Mn-Fe oxide was fabricated by reacting KMnO, with Fe(u) in
simulated natural water. The mercury in the experimental
solution existed mainly in the non-charged forms, including NH

I
0=S=0

KMnO,

] Fe(lll) ~—1MnQ
L g, redox. Fe(ll)

8 OH
Cl hydrolysi
o(1l) icomplexation flocculation
complexation
redox Hg(OH)2
HgCIO| @

Hg(ll)

adsorption N
Fig. 5 The molecule structure of the coated calixarene in the
Fig. 4 Schematic diagram of the mechanisms of Hg(i) removal by in nuclear—shell hybrid.®* This figure has been adapted from ref. 61 with

situ Mn—Fe.® This figure has been adapted from ref. 55 with permis- permission from Elsevier.
sion from Elsevier.
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Fig. 6 TEM image of (a) MIONPs and (b) M-MIONPs.%¢ This figure has been adapted from ref. 66 with permission from Elsevier.

Hg(OH),, HgCIOH and HgCl,. It was reported that the Hg(u)
removal mechanisms were mainly surface complexation and
flocculation—precipitation process, with the transformation
from liquid phase to solid phase of Hg(u). 40 mg L' Mn-Fe
oxide could effectively remove 80% Hg(un) with the initial
concentration of 30 pg L™ ", revealing a considerable adsorption
efficiency and extensive low concentration limits for Hg(i)
solution. Besides, the Mn-Fe oxide required only 22 min to
obtain the maximum Hg(u) removal efficiency of 80%. This
indicated the notable advantage of chemical adsorption
through fast adsorption rate. The scheme for the formation
mechanism of the Mn-Fe oxide and Hg(u) removal mechanism,
was depicted in Fig. 4. During the adsorption, the mercury
species were removed as ligands, via surface complexation. The
mercury preferred to form complexes with the active sites on the
surface of the Mn-Fe oxide. The formed Hg-Mn-Fe complex
flocculated into large particles, removing Hg(u) via the transfer
to the complex solid phase.

Except for inorganic metal oxides, organic macromole-
cule materials are also ideal chemical adsorbents for Hg(u).
Some macromolecules can form well-organized organic
functional group chains by self-assembly ways and these are
combined with other active matters to make synergetic
effects of adsorption.’”*® Asif et al. synthesized a nuclear-
shell hybrid material containing iron nanoparticles coated
with chitosan and calixarene composite.®* The organic cal-
ixarene macromolecules possess adsorptive activity. As
Fig. 5 is shown, the calixarene molecule has abundant inner
and outer functional groups, forming the size-adjustable
cup-like cavity. Thus, the adsorbents can combine with Hg
ions to form host-and-guest complex, obtaining the highest
removal rate of Hg(u) in all heavy metals. Zadmard et al. also
fabricated calixarene-based crab-like molecular sensors for
highly selective detection of mercury ions.®” These similar
organic macromolecules remove Hg(u) through ligand
exchange and complexation.

Fig. 7 Schematic of the preparation of the chemically crosslinked CNC/GQD hydrogel.®* This figure has been adapted from ref. 95 with

permission from ACS Nano.
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Fig. 8 Schematic structure of the composite formed by MXenes and
Fe,03.22 This figure has been adapted from ref. 22 with permission
from Elsevier.

Magnetic adsorbents are readily separated and recovered
and can selectively remove the toxic pollutant from water.*
Utilizing certain selective organic functional groups to modify
the surface of magnetic adsorbent, the chemical adsorption
performance would be further enhanced.®*® Parham et al
employed modified magnetic iron oxide with 2-mercapto-
benzothiazole (MBT) to remove low-concentration of Hg(u) from
water effectively.®® The adsorbent was easily prepared and ach-
ieved high removal efficiency within a very short time. The
modified magnetic iron oxide nanoparticles (M-MIONPs) could
adsorb up to 98.6% of 50 pug L™ of Hg(n) and the complete
removal process required just 4 min. Non-modified magnetic
iron oxide nanoparticles (MIONPs) could remove only 43.47%
for the same concentration of Hg(u). The obtained adsorption
capacity of M-MIONPs for Hg(n) was 590 pg g '. The
morphology of MIONPs was presented as aggregated flocs in the
TEM image of Fig. 6. For M-MIONPs, MBT functional groups
were coated on the surface of MIONPs. Such a fast adsorption
with a superior removal efficiency was attributed to the strong
affinity between the special organic functional ligand and
Hg(1).””° The outstanding adsorption performance of organic
functional groups makes them promising compound for many
other adsorbents. Mobina et al. also designed and grafted

This journal is © The Royal Society of Chemistry 2019

View Article Online

RSC Advances

aminopyrazole functional groups into multi-walled carbon
nanotubes for the removal of Hg(u). The adsorption perfor-
mance was remarkably enhanced.”™

Other forms of chemical adsorbents, proteins or amino
acid composite, and doped metal oxide composite, are also
capable to display superior performance in heavy metal
adsorption. Marcia et al. fabricated a novel mackinawite
modified with L-cysteine as an active adsorbent for Hg(u)
removal.”> Xu et al. added Sn and Fe into manganese oxide to
obtain a novel Fe-Sn-MnO, composite as an effective
adsorbent for capturing mercury from coal-fired flue gas
through chemical adsorption.” The adsorption perfor-
mance of the composite was remarkably enhanced due to
the synergetic effect of Fe-Sn and MnO,. Compared to
physical adsorption, chemical adsorption is faster and
exhibits higher removal efficiency for Hg(u). This is because
of the diversity of adsorption mechanism induced by
abundant chemical functional groups.”*7® However, chem-
ical adsorption methods often suffer from secondary pollu-
tion of the adsorbents. The saturate adsorption capacity of
chemical adsorption can still be promoted.”

2.3. Combination of physical adsorption and chemical
adsorption for Hg(u) removal

For a preferable adsorption option, physical and chemical
adsorptions can be combined to take the advantages of the
both. Hence, these two adsorptions have been combined for
porous structured materials with some modifications to attain
higher adsorption performance. For example, hierarchical
structure can be the basis of the combination of physical and
chemical adsorption. Hierarchical morphology of an adsorbent
is a significant impact factor on the adsorption performance.”
Kim et al. fabricated hierarchically structured MnO,-coated
nanocomposite (Fe;0,/Mn0,) for the efficient removal of Hg
ions in aqueous.” The amorphous MnO, coated on the
composite has a flowerlike structure. The hierarchical structure
has plenty of oxygen-containing groups on the surface of thin
lamellae and a large BET surface area. The maximum adsorp-
tion capacity was up to 53.2 mg g~ '. Ravi et al. also fabricated
novel hierarchically dispersed mesoporous silica spheres as
effective adsorbents, whose hierarchically mesoporous struc-
ture ensured superior thermodynamic behaviors in the
adsorption process.** Fardmousavi et al. synthesized a thiol-
functionalized hierarchical zeolite nanocomposite for Hg(u)
adsorption.* The zeolite nanocomposite combines the strongly
hydrothermal stability of zeolites with the superior mass
transport property of mesoporous materials. Thus, this adsor-
bent displayed excellent ability to bind Hg(u) with a high
selectivity and achieved an adsorption capacity of 8.2 mequiv.
¢~ '. From the microcosmic perspective, the 3D hierarchically
structure consists of mainly micropores and mesopores. The
micropores directly lead to the enhanced adsorption capacity.
Meanwhile, the well-developed mesopores promoted the
optimum adsorption kinetics.*> The mesopores channels serve
as liquid flow pathways and allow for the fast transport of Hg(u)
to the active adsorption sites.

RSC Adv., 2019, 9, 20941-20953 | 20947
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(b)

(a) Schematic of a 3D wood membrane decorated with Pd NPs for water treatment. (b) In situ formmed Pd NPs (black dots) within the wood

demonstrated he plasmonic effect inside the wood channels.**” This figure has been adapted from ref. 107 with permission from ACS Nano.

On the other hand, surface interaction is the core of
combination of physical and chemical adsorption. Faulconer
et al. impregnated the activated carbon with iron oxide to
fabricate a composite MPAC (magnetic powdered activated
carbon) which achieved a high Hg(u) removal efficiency of
96.3% with a sorbent recovery ratio of 92.5%.* The recovery of
the adsorbent was achieved by magnetic separation. This
composite adsorbent could remove Hg(u) to obtain the final
concentration of 0.2 pg L™". The high performance was attrib-
uted to iron oxide that in the adsorption process formed strong
binding affinity with Hg species and offered many adsorption
sites for Hg(u) through coordination with oxygen atoms. Yao Li

Table 3 Comparison of various adsorbents with physical adsorption

et al. also fabricated N-doped porous carbon with magnetic
particles (Fe;O, and Fe) formed in situ for heavy metal
removal.®* The high adsorption capacity (16 mg g ') was
resulted by the synergetic effects of physical adsorption from
the surface area and chemical adsorption from complexation
interaction. Na Yang et al. also synthesized magnetic activated
carbon nanocomposite modified by Fe;0, particles applied for
water purification, contributed from combination of physical
adsorption and chemical adsorption.**

Physical adsorption itself provided by porous materials with
large surface areas is insufficient for Hg(u) removal. Contrary to
this, chemical adsorption brings strong synergetic effects

No. Adsorbent BET surface area Hg(u) removal efficiency Adsorption capacity Ref.
1 Activated carbon 1690 m> g~ ! ~82% 0.869 mg g * 26
2 Porous carbon 780 m* g ! ~95% 151.5 mg g’ 27
3 Activated carbon 555 m* g " 60-80% 128 mg g " 28
4 ZSM-5 zeolite 189 m* g ! 96.3% 51.54 mg g’ 29
5 ACF 848-1259 m* g~ * — 290-710 mg g~ " 41
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Table 4 Comparison of various adsorbents with chemical adsorption (BET surface area is irrelevant)

No. Adsorbent BET surface area Hg(n) removal efficiency Adsorption capacity Ref.
1 Ag-Zn nanoparticles — 92% 554 mg g " 55
2 Mn-Fe oxides — 80% — 56
3 Calixarene/Fe hybrid — ~90% 0.43 yM g~ " 61
4 Modified Fe oxide — 98.6% 0.59 mg g ! 66
5 Fe-Sn-MnO, — — 3.75mgg " 73

through effective interaction such as oxidation-reduction
reaction.*® Moghaddam et al. prepared MnO,-coated carbon
nanotubes (MnO,/CNT) to remove Hg(u) from aqueous solution
and obtained 58.8 mg g~ ! adsorption capacity, in which MnO,
went through oxidation-reduction reactions.*” Manganese
oxides have superior chemical adsorption properties with Hg ().
The highly conjugated CNT walls provided (i) Hg(u) ions with
both van der Waals and electrostatic interactions and (ii) the
adsorbent matrix with electrical conductivity for surface charge
transport. Moreover, the high-conductive CNT was negatively
charged after an acidic treatment, the CNT will improve the
adsorption performance of the composite on Hg(u) ions.
Furthermore, Xu et al. synthesized 3D MnO,/carbon sphere
composite for the catalytic oxidation and adsorption of Hg.*®
Carbon spheres served as the core and MnO, nanorods grew on
the surface of carbon spheres, leading to the enlargement of
surface areas and pore volumes. The final removal efficiency
was up to 99%, benefiting from the chemical oxidation and
physical adsorption.

Besides active metal oxides, many chemical compounds can
be combined with porous matrix materials to achieve the
synergetic effects of physical and chemical adsorptions as
adsorbent. For instance, the combination of porous carbon and
polymer brings not only large surface area from the pore
structure but also masses of functional groups from the
synthesis of polymer. Moonjung et al. synthesized polypyrrole-
impregnated porous carbon via vapor infiltration polymeriza-
tion.* Owing to the amine groups of polypyrrole, the modified
porous carbon revealed superior binding affinity for metal ions
like Hg(u). The adsorption efficiency of this modified porous
carbon was 20 times higher than that of other similar adsorbent
with amine groups. In addition, carbon nanotubes (CNT) can

also be organically modified to enhance the adsorption
performance. Hadavifar et al. introduced amine and thiol
functional groups onto the walls of CNT to obtain the func-
tionalization of multi-walled CNT.” Due to the synergetic
effects of CNT and organic groups, the adsorbent could achieve
the Hg(m) removal capacity of 105.65 mg g~ ' and removal effi-
ciency of 88.7%. Saleh et al. also fabricated silica and CNT
composite (SiO,-CNT) for Hg(u) removal and the removal effi-
ciency reached up to above 98% after five adsorption circles.”

As a 1D material, crystal nanocellulose (CNC) fabricated
from plants is also promising material for Hg(u1) removal, for
its cross-linking structure and large surface area.”*** Moien
et al. fabricated a nanocolloidal hydrogel formed by CNC and
graphene quantum dots (GQD).** As shown in Fig. 7, the CNC
and GQD were combined through the surface organic func-
tional groups by chemical cross-linking reaction, utilizing
the advantage of molecular hydrogels and nanoparticle-
based scavengers. By selecting different ratio of CNC to
GQD, the structure of the composite can be adjusted from
lamellar to nanofiber, with the change of hydrogel perme-
ability. The scavenging capacity for Hg(u1) can be obtained up
to 164 mg g~ " after first adsorption circle and 120 mg g *
after second circle. The nanocolloidal hydrogel exhibited
outstanding adsorption capacity and good recyclability,
attributed to the large surface area of nanohydrogel and
abundance of ion-coordinating sites on the surface of nano-
particle quantum dots. In other studies, cellulose was also
modified with guanyl groups and used for heavy metal
removal.’® The participation of active functional groups led
to the wide-range adsorption performance on Hg(u) and
many other heavy metal ions. CNC can also form membrane
but its mechanical properties still require improvement.®”**

Table 5 Comparison of various adsorbents involving both physical and chemical adsorption

No. Adsorbent BET surface area Hg(u) removal efficiency Adsorption capacity Ref.
1 Thiol-functionalized zeolite 82m>g ! — 8.2 mequiv. g ' 81
2 MPAC 790.11 m> g~! 96.3% — 83
3 Polyamide magnetic palygorskite 380 m> g ! 95% 211 mgg " 86
4 MnO,/CNT 110.38 m*> g * 91.7% 58.8mg g " 87
5 MnO,/carbon sphere 1341 m* g™ ! 99% — 88
6 MWCNTSs-SH — 88.7% 105.65 mg g~ 90
7 Si0,/CNT — 98% 140 mg g 91
8 Nanocolloidal hydrogel (CNC/GQD) ~500m* g " — 164 mg g~ 95
9 Ti,C,T,/Fe,05 56.51 m* g ! 99.9% 112841 mg g ' 22
10 GO/Fe-Mn 153 m> g~ " 91.1% 43.88 mgg! 113

This journal is © The Royal Society of Chemistry 2019
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With the development of advanced materials, novel two-
dimensional (2D) nanosheets or membranes materials
(MXenes, boron nitride, graphene oxide and conjugated poly-
mers etc.) have recently attracted much attention for remedia-
tion and treatment for water.”*'®* Meanwhile, the
functionalization and surface modification of 2D material
adsorbents improve the metal ion trapped capacity and
comprehensive adsorption performance. 2D MXenes are one of
the most popular structure materials investigated in recent
years.'® Liu et al. studied an ultrathin 2D MXene membrane
and its outstanding performance in nanofiltration.'® Shahzad
et al. developed a recoverable titanium carbide magnetic
nanocomposite to capture Hg(n) ions in wastewater, as shown
in Fig. 8.> The hybrid nanocomposite was formed from Ti;C, T,
MXene and Fe,O; nanoparticles using a facile hydrothermal
method. The 2D hybrid composite finally demonstrated
a maximum experimental Hg(u) uptake capacity of 1128.41 mg
g~', and could adsorb ~99.9% Hg(n) in the presence of back-
ground metal ions. After the adsorption and desorption tests,
the composite showed excellent recyclability of up to five
adsorption/desorption circles. The graphene-like 2D nanolayer
structure of titanium carbides provided a high surface area for
physical adsorption. Meanwhile, the ferric oxide nanoparticles
offered plenty of coordinate sites for chemical adsorption.
Among numerous 2D materials, boron nitride (BN) based
materials also have potential application in environment
remediation. BN nanosheets with a structure like graphene
possess large surface area and high chemical stability. BN-based
composite materials could removal heavy metals in water
mainly through the mechanisms of surface complexation, -
stacking and electrostatic interactions.' The synergetic effect
of physical and chemical adsorptions brought supreme
performance for Hg(u) removal.

Membrane materials show great potential in water purifica-
tion, owing to their high degrees of mechanical strength and
excellent reusability.’*>'*® Wood is ubiquitously used as a raw
structural material for Hg(u) removal. Chen et al. fabricated
mesoporous 3D wood membrane decorated with Pd nano-
particles for highly efficient water treatment.'” This kind of
wood membrane material was original and didn't require
complicated process of calcination. As Fig. 9 is shown, natural
wood contained partially aligned nanochannels and lumens
that stretch along its growth direction, which afforded plenty of
active sites for physical adsorption. Additionally, Pd nano-
particles showed excellent catalytic properties thus could
promote chemical adsorption on Hg(u). The wood membrane
composites exhibited high removal efficiency of 99.8% at
a treatment flow rate up to 1 x 10° L m > h™". Song et al. also
prepared a nature-inspired flexible 3D porous wood membrane
via a facile one-step chemical treatment method directly from
natural wood.*® The superb flexibility and facile modification
on the wood membrane made it efficient material for water
treatment. Moreover, wood membrane is more advantageous
than powder adsorbents owning to the high flux rate of the
abundant open vessel channels, as well as natural abundance
and biodegradability.'*® Except for wood membrane, some other
flexible and modifiable membranes such as carbon paper films,
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polyacrylonitrile or cellulose membranes are also promising
candidates for Hg(u) removal. These materials are not only
ultrathin but also possess stable chemical resistance, high
recycling performance and excellent antifouling
properties.*****?

3. Remarks on the different adsorption methods

The Hg(u) removal capacities and efficiencies of some typical
adsorbents reported in the literatures above are summarized in
the tables below. Generally, porous carbon, activated carbon
fibers and zeolites as adsorbents work through physical
adsorptions. While, metal oxides, organic macromolecules and
functionally modified metal oxides work through chemical
adsorptions; carbon-based composites (MPAC), functionalized
CNC, 2D MXenes, boron nitride, polymer composites and the
rest mainly involve both physical and chemical adsorptions.

From Table 3, it is evident that the adsorbents with physical
adsorption usually possess high BET surface area. Porous
structured carbon materials and zeolites exhibit relatively high
Hg(u) removal efficiency. Activated carbon fiber has excellent
adsorption capacity. The improvement of removal efficiency
and adsorption capacity still attracts further investigation by
researchers. Table 4 indicates that the adsorbents with chem-
ical adsorption play their role through chemical interactions
rather than surface area. The metal oxides combined with active
organic functional groups have the highest removal efficiency.
However, the adsorption capacity of these adsorbents requires
further improvement.

As Table 5 is shown, most adsorbents which involve both
physical and chemical adsorption possess high Hg(n) removal
efficiency and outstanding adsorption capacity, respectively. On
one hand, the hierarchically structured matrix of these
composites with large surface area plays its role in physical
adsorption, typically as MPAC and polyamide magnetic paly-
gorskite. On the other hand, active oxides and organic
compounds make contribution in chemical adsorption. In
particular, materials like MnO,/carbon sphere and SiO,/CNT
reveal splendid removal efficiency for Hg(n). It is noteworthy
that new emerging titanium carbide materials have the
extremely high adsorption capacity and supreme adsorption
efficiency. The fact may open a new avenue for the exploration
of novel 2D advanced materials in the field of water treatment.

For these types of materials, the mechanisms of physical
adsorption mainly include van der Waals interaction and elec-
trostatic attraction to benefit from the high surface area of
porous material adsorbents. The mechanisms of chemical
adsorption often involve ligand exchange, surface complexation
and oxidation-reduction reaction, sometimes along with floc-
culation—precipitation process. Generally, physical adsorption
is multilayer adsorption, but chemical adsorption is monolayer
due to its space limitation. Commonly, pseudo-first order
model and pseudo-second order model are used to simulate the
kinetics data of adsorption. Pseudo-first order model indicates
the adsorption process is up by diffusion of adsorbents while
pseudo-second order model highlights the interaction of
matters. Furthermore, the adsorption isotherms models mainly

This journal is © The Royal Society of Chemistry 2019
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include the Langmuir isotherm model and the Freundlich
isotherm model. The Langmuir isotherm model corresponds to
monolayer adsorption with all binding sites equal, which is
often consistent with pure chemical adsorption. The Freundlich
isotherm model describes multilayer adsorption with adsorp-
tion energy different on a heterogeneous surface, which is
always related with combination of physical adsorption and
chemical adsorption.

From our perspectives, the following criteria are proposed
for the development of ideal adsorbents for Hg(i1) removal:

e Hierarchical porous structure offers aqueous accessible
tunnel networks and mesopores channels as liquid flow path-
ways and allows for the fast transport of Hg(u) to the active
adsorption sites,

e The combination of physical adsorption benefited from
large surface areas and chemical adsorption provided from
large numbers of functional group binding sites brings poten-
tial synergetic effects,

Thus, a composite that consists of a hierarchically structured
porous matrix with a high surface area and adsorptive-active
nanoparticles which are dispersed in the porous matrix,
should have an excellent performance in terms of the removal of

Hg(u).

4. Conclusion

In summary, we discussed the principles of Hg(u) adsorption and
clarified the relationships between the structure and performance
of adsorbents by reviewing research progress in recent decades on
physical adsorption and chemical adsorption. The combination of
physical adsorption and chemical adsorption exhibits a superior
performance than physical or chemical adsorption alone. The main
advantages of physical adsorption are low cost and simple operation
process. Chemical adsorption, on the other hand, brings fast
adsorption rate and high adsorption capacity. The combination of
the both has been of great interests due to the synergetic effects of
the large surface area and functional complexation interaction. This
review provides a comprehensive view on the design of an efficient
composite adsorbent and explores the potentials of nanocomposite
materials for Hg(u) and other heavy metal treatment with high
performance. There are still many challenges in the development of
adsorbents for Hg(u) removal. The regeneration performance of the
adsorbents still deserves our study to improve and the adsorbed
heavy metal ions need to be recovered and reused. Also, the
adsorption capacity of the adsorbents can be well improved with the
more and more advanced nanomaterial technology.
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