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ased target screening and
similarity search for the predicted inhibitors of the
pathways in Parkinson's disease

Abbas Khan, †a Aman Chandra Kaushik,†a Syed Shujait Ali,b Nisar Ahmadb

and Dong-Qing Wei *a

Herein, a two-step de novo approach was developed for the prediction of piperine targets and another

prediction of similar (piperine) compounds from a small molecule library using a deep-learning method.

Deep-learning and neural-network approaches were used for target prediction, similarity searches, and

validation. The present approach was trained on records containing the data. The model attained an

overall accuracy of around 87.5%, where the training and test set was kept as 70% and 30% (17 226/

40 197), respectively. This method predicted two targets (MAO-A and MAO-B) and 101 compounds as

piperine derivatives. MAO-A and MAO-B are important drug targets in Parkinson's disease. Validation of

this method was also performed by considering piperine and its targets (monoamine oxidase A and B)

using molecular docking, dynamics simulation and post-simulation analysis of all the selected

compounds. Rasagiline, lazabemide, and selegiline were selected as controls, which are already FDA-

approved drugs against these targets. Molecular docking studies of the FDA-approved drugs and the

compounds we predicted using DL and neural networks were carried out against MAO-A and MAO-B.

Using the molecular docking's scoring function, molecular dynamics simulation and free energy

calculations as extended validation methods, it was observed that the compounds predicted herein

possessed excellent inhibitory effects against the selected targets. Thus, deep learning may play a very

effective role in predicting the potential compounds, their targets and can play an expanded role in

computer-aided drug approaches.
Introduction

The remarkable growth of structure-based virtual screening
techniques and condence in these approaches have acceler-
ated the drug-discovery process.1,2 These methods depend on
the binding affinity scores between a target and a candidate
molecule based on the 3D structure of their complex to predict
the top hit molecules for onward processing and the following
experimental investigation. The available scoring schemes are
based on “statistical or expert” analysis of available protein–
ligand structures.3,4 Various research studies conducted on drug
discoveries witnessed the ever-increasing use of machine
learning (ML) methodologies5–7 to identify the relationship in
protein–ligand complexes. ML models convert these relation-
ships into a scoring scheme (binding affinity scores), and these
binding affinity scores provide a simple and better alternative to
inferences based on the statistics and expert knowledge. In the
ML approaches, the input data and expected results are
Shanghai Jiao Tong University, Shanghai
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provided to the model, and the model then predicts the
outcome. A minute change in the model parameters can have
incremental effects on the scores in anML scoring system based
on the RF-Score8,9 with an enabled random forest option and
NNscore,10,11 primarily using neural networks. The outcome of
this scoring system can be laudable in virtual screening to yield
more active compounds as compared to the case of classical
approaches.9,12 The growth of substantial structural data as well
as affinity data provide a spur to researchers to explore them via
deep learning approaches. In deep learning, the information
contained in data is used to develop a meaningful relationship
with the output. Therefore, the presentation of input data and
its relationship with the output has a signicant impact on the
predictions of the model used.13 Continuous and prolonged
research efforts in this eld have enabled feature extraction to
be developed in ML models. Thus in this approach, molecule
representation is treated as the rst part of the model. The
molecule representation coupled with the predictive part is then
used to extract features to solve specic tasks. This mechanism
has been proved to be useful to nd unknown and novel
relationship.14,15

Deep learning is widely applied by bioinformaticians16,17 and
computational biologists.18 In recent years, deep-learning
This journal is © The Royal Society of Chemistry 2019
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methods have shown promising utilization in computer-aided
drug design (CADD), where rst structure-based approaches
and then ligand-based models have been used. In the simplest
deep-learning models, structure-based designs use molecular
information as vectors to develop connected neural networks on
top of them. These approaches return promising results to
predict the bioactivity,19 aqueous solubility,20 and toxicity21 of
the structures. Additionally, the multitask neural network
model can predict the activities of multiple targets, and the
results of the QSAR models are usually better than from single-
task networks due to the better representation, training of data,
and recognition of general patterns in the data.7,19,21–23 Neural
networks are exible and thus provide the best representation
of data to the model, e.g., by using convolution or a recurrent
neural network to get patterns or an acyclic representation on
the molecular graph.24,25

Numerous deep-learning studies have been conducted,
where auto-encoders or recurrent neural network methods used
in deep models have been used to propose new molecules with
the desired properties.26–29 The application of deep-learning
approaches to ligand-based and structure-based analysis has
resulted in the development of various ligand-based and
structure-based neural networks, such as AtomNet30 and other
models like those proposed by ref. 31 and 32. In AtomNet,
a molecular complex (input) is fed in to the convolutional
neural network, which recognizes the interacting atoms and
assigns a score of 1 for the active ligands and 0 for inactive
ligands. The model proposed by ref. 31 was based on activity
and prediction, while that in ref. 32 was based on the energy gap
between a protein–ligand complex and the apo states. Deep
learning utilizes a exible architecture as compared to the other
existing methods to design a problem-specic neural network
(NN) to resolve it. Determining the protein–ligand interaction is
the fundamental part of the molecular docking program, and
for this, many scoring functions have been developed either on
the basis of force elds or knowledge of existing complex
protein–ligand structures.33

Considering the current ndings and approaches above, we
developed a two-step de novo approach using the PERL script,
where specic inputs are used in order to have a good output
efficiency. The overall dataset comprised a 70% training set and
the remaining 30% was used as the test dataset. Piperine and
eight targets were considered for training and testing the
dataset for the prediction of piperine targets. Piperine and its
compounds in PubChem and ZINC databases were used for
training and testing the dataset for the prediction of similar
compounds from small molecules libraries (ZINC and Pub-
Chem), with 101 compounds studied as potential inhibitors.
The dataset was split in a 70/30 ratio for training and testing
using the PERL script for our novel deep neural network tailored
to 8 experimentally reported structures, and then for the
derivative prioritization of piperine screening. The predicted
top ve compounds were then validated by comparing with
experimentally reported FDA approved drugs (lazabemide,
rasagiline, and selegiline) by using rational docking, molecular
dynamics simulation, and free energy calculations. Overall
these methods reported that the compounds predicted by our
This journal is © The Royal Society of Chemistry 2019
methodology possessed a higher potential than those of the
drugs experimentally reported to be active.
Materials and methods
Deep learning approach

Step 1: A dataset was normalized using the PERL script, where
specic inputs were used in order to achieve a good output
efficiency. The dataset was divided into a 70% training set and
the remaining 30% was used as the test dataset. The validation
observed for the test dataset was about 87.5%. The overall ow
of the work is given in Fig. 1.

Step 2: Piperine and eight targets were used for training and
testing the dataset for the prediction of piperine targets.
Piperine and 57 423 compounds were used for the training and
testing of the dataset for the prediction of similar compounds
from small molecules library (ZINC and PubChem), with 101
compounds studied as a potential inhibitors, with the dataset
categorized in a 70/30 ratio into a training and testing set using
the PERL script. These steps are given below:

Step1: Normalization of 57 423 compounds in the dataset.
Step2: Input the data for training:
(1) Prediction of the piperine targets' interrelated values of

input and output to execute for training.
(2) Prediction of similar (piperine) compounds' interrelated

values of input and output to execute for training.
Step 3: Set network constraint.
Step 4: Calculate the neurons of the output, with every

neuron output signal calculated.
Step 5: Signal for the output layers calculation.
Step 6: Compute the error of the neuron and repeat step 3

and step 6 until the network is congregated and the error is
computed.

RMSE and MAE (mean absolute error) were used to measure
the prediction error. A correlation was assessed by using Pear-
son's correlation coefficient (R) and the standard regression
(SD) deviation (i) methods.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN
i¼1

½ti � ðayi þ bÞ�2
vuut (i)

where ti and yi are the measured and predicted affinities for the
ith complex, whereas a and b are the slope and the intercept of
the regression line the between measured and predicted values,
respectively.

pjðtÞ ¼
X
i

oiðtÞwij (ii)

pjðtÞ ¼
X
i

oiðtÞwij þ w0j

where w0j is a bias.

aj
l ¼

 X
k

wljkak
l�1 þ bj

l

!
(iii)
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Fig. 1 The overall flow of the work was divided into three parts: (A) prediction of the piperine targets based on a deep-learning methodology, (B)
similarity search for prediction of the top 100 best hits based on piperine from the ZINC and PubChem databases using a machine learning
approach, (C) validation and comparison of our predicted compounds with the FDA-approved drugs against the selected targets.
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where the sum is over all the neurons kk in the (l � 1)th(l � 1)th
layer. To rewrite this expression in a matrix form, we dened
a weight matrix wlwl for each layer, ll. The entries of the weight
Fig. 2 Prediction of neural connectivitywhere the graph represents the tra
testing, and validation for drug screening, where a single curve indicates t

10328 | RSC Adv., 2019, 9, 10326–10339
matrix wlwl are just the weights connected to the lthlth layer of
the neurons, that is, the entry in the jthjth row and the kthkth
column is wljkwjkl. Similarly, for each layer ll, we dened a bias
ining, validation, testing, and target outputs. The graph shows the training,
he comparative analysis of NN and deep-learning performance.

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Depiction of the experimentally reported targets for piperine. The deep-learning-based scoring to predict the targets for piperine was
applied to filter the top targets for piperine. Ranking of each target was carried out by the scoring given against each target.
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vector, blbl. You can probably guess how this works—the
components of the bias vector are just the values bljbjl, i.e., one
component for each neuron in the lthlth layer. Finally, we
dened an activation vector alal whose components are the
activations aljajl.

Validation

Molecular docking. The docking estimation was performed
on the retrieved protein structures, namely monoamine oxidase
A (PDB ID: 2BXS) and monoamine oxidase B (PDB ID: 1GOS),
from the protein data bank (RCSB) (http://www.rcsb.org).34

MMFF force eld was used to optimize the structure of piperine.
An energy minimization step was performed using Powell's
method and the default setting. The binding potential of
piperine with protein was estimated by using the Lamarckian
genetic algorithm in Autodock 4.0.35 The binding energies
between the protein and ligand were estimated on a grid map
generated by the AutoGrid program. The compounds with the
lowest energy values were selected for onward processing.

Interaction pattern and poses analysis. The interactions of
the selected ligands with MAO-A and MAO-B were sampled by
using the Pymol Visualization tool36 and Protein–Ligand Inter-
action Proler (PLIP) (https://projects.biotec.tu-dresden.de/plip-
web/plip/index).37 The hydrogen bonding, electrostatic interac-
tions, hydrophobic, and other interactions were visualized.

All atoms simulations. The AMBER 14 molecular dynamics
package38 was used to conduct the MD simulations for all the
selected complexes. The addition of Na+ ions and hydrogen
This journal is © The Royal Society of Chemistry 2019
helped to neutralize the systems counter with the application
the “tleap” package in Amber. A TIP3P water box of 8.0 Å was
used. Energy minimization of the complexes was carried out in
AMBER 14 using the SANDER module at two stages (each of
6000 steps) in order to remove all the constraints atoms in the
systems. PMEMD.cuda39 was used for the MD simulations. The
SHAKE and Particle-Mesh Ewald (PME) methods with a non-
bond contacts cutoff radius of 10 Å were used for the long-
term interactions. Isotropic molecule-based scaling with 310 K
(Langevin temperature) and (constant pressure) 1 atm was
considered for 10 000 picoseconds equilibration time, followed
by a total simulation of 20 ns. Aer every 2.0 ps time scale, MD
trajectory sampling was performed. RMSD, RMSF, and
hydrogen bonding were calculated by using CPPTRAJ and
PYTRAJ.40 The following equation was solved to calculate the
stability of the complexes aer 100 ns.

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼0

h
miðXi � YiÞ2

i
M

vuuut
(iv)

where,N¼ represents total atoms,mi¼mass of atom i, Xi and Yi
¼ coordinate vectors for the target and reference atom i, M ¼
total mass.

Binding free energy calculation. The binding of ligands to
MAO-A and MAO-B could be quantitatively measured by using
MM-GBSA combined with MD simulation.41 For each molecular
species, apo and holo, the Gbind (binding free energy) was
calculated by using the following equation:
RSC Adv., 2019, 9, 10326–10339 | 10329
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Fig. 4 Chemical structures of the predicted compounds (panel B). Lazabemide, selegiline, and rasagiline in panel A were selected as controls to
compare the activity of our predicted compounds.

Table 1 Molecular docking based scoring of selected and predicted
compounds against the selected targets monoamine oxidase A and B

S. no. Compounds

Docking score

Monoamine oxidase A Monoamine oxidase B

1 Piperine �7.96 �7.7
2 Lazabemide �6.06 �5.7
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(Gbind) ¼ GR+L – (GR + GL) (v)

The different components (GR+L, GR, and GL) required for the
free energy calculation of the apo and holo states are given in eqn
(v). In the MM/GBSA and MM/PBSA methods, each free energy
term in eqn (v) is calculated using the following equation:

G ¼ Ebond + Evdw + Eelec + GPB + GSA � TSS (vi)

In eqn (vi), Ebond, Evdw, and Eelec are the bond energies, van der
Waals, and electrostatic energy, including the dihedral bonds and
angles, GPB and GSA. TSS represents the solvation energy corre-
sponding to the polar and non-polar contributions, including
absolute energy and solute entropy. The optimized parameters and
MIEC model, as proposed recently, work for calculating the free
energies between protein–protein interfaces,42–45 but here we
utilized theMM-PBSA.pymethod using interior solute and exterior
solvent values as constant46 to calculate the free energy.
3 Rasagiline �5.96 �6.1
4 Selegiline �5.90 �6.3
5 Compound 1 �8.5 �9.6
6 Compound 2 �9.8 �9.3
7 Compound 3 �9.5 �8.8
8 Compound 4 �8.5 �9.5
9 Compound 5 �8.1 9.3
Results
Deep-learning-based target screening and similarity search

This study was categorized into two parts. The rst part predicted
targets for piperine and potential compounds using piperine as the
10330 | RSC Adv., 2019, 9, 10326–10339
input. A deep-learning model was then used for the prediction of
piperine's targets and its derivatives. The potential of the nal
predicted compounds was tested by using rational docking,
molecular dynamics simulation, and free energy calculations. The
pipeline was supplemented with FDA-approved drugs as controls.
The approach was written in PERL script, where the prediction
accuracy achieved was 87.5% based on a deep-learning network
(Fig. 2). Piperine and eight targets (Fig. 3) were taken for training
This journal is © The Royal Society of Chemistry 2019
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Fig. 5 Interaction pattern of the selected FDA-approved drugs and the predicted top compounds with monoamine oxidase A. The ligands are
colored in green, while the important interacting residues contributing hydrogen, hydrophobic, and electrostatic interactions are colored in
yellow. Hydrogen bonding is colored in blue.
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and testing of the dataset for the prediction of piperine targets;
while Piperine and 57 423 compounds were taken for training and
testing of the dataset for the prediction of similar compounds from
small molecules library (ZINC and PubChem), where 101
compounds were studied as potential inhibitors.

(1) Initialize the weight and parameters m (m ¼ 0.01)
(2) Compute the sum of the squared errors overall input F(w) ¼ eTe,
where the weight of network w ¼ [w1, w2, w3,.wn) and e is the error
vector for the network
(3) Solve to obtain the increment of weightDw¼ [JTJ + mI]�1JTe, where J is
a Jacobianmatrix, m is learning rate neither m is multiplied by decay rate
b(0<b<1)
(4) Using w+ Dw

F(w) < F(w) then (go back to step 2)
W ¼ w+ Dw

m ¼ mb (b ¼ 0.1) (go back to step 2)
ELSE
m ¼ m/b (go back to step 2)
END IF
This journal is © The Royal Society of Chemistry 2019
Validation of the predicted targets and compounds

Scaffold evaluation. The scaffold similarity of the predicted
compounds and those of the FDA-approved drugs as control
was carried out to mark the identity among these compounds.
Fig. 4 shows the structural models of all the predicted and
control compounds. It can be observed from the scaffolds that
overall some rings that form hydrophobic interactions are
similar to those of the control compounds. The backbones in
the predicted compounds containing variable atoms signi-
cantly contribute to the formation of hydrogen bonding and
thus produce strong inhibitory effects.

Ranking the interaction poses. Validation of our predicted
best compounds against the selected targets was done by using
the rational docking approach. To sample the best conforma-
tions of the predicted inhibitors in the active site, the 3D
coordinates of the screened and selected targets (monoamine
oxidase A and B) were retrieved from RCSB and prepared for
docking simulation. Lowest energy conformational sampling,
out of the total allowed ve poses for each ligand, was done by
RSC Adv., 2019, 9, 10326–10339 | 10331
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Fig. 6 Interaction pattern of the selected FDA-approved drugs and the predicted top compounds with monoamine oxidase B. The ligands are
colored in green, while the important interacting residues contributing hydrogen, hydrophobic, and electrostatic interactions are colored in
yellow. Hydrogen bonding is colored in blue.
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analyzing the docking scores. For validation of our predicted
compounds, we selected the top three active drugs against these
targets as controls. The dataset containing the control and
testing compounds was docked into the active pockets of our
selected targets. The results showed that our selected
compounds possessed stronger activity than the three control
drug candidates. Table 1, summarizes the scores of each
compound against the dened targets. Our induced-t docking
approach revealed that lazabemide, rasagiline, and selegiline
possessed low binding affinities, specically �6.06, �5.96, and
�5.90 kcal mol�1, respectively, when compared to the predicted
compounds. Among the deep-learning-based predicted
compounds, compound 2 possessed the highest binding
affinity �9.8 kcal mol�1 against MAO-A, followed by compound
3, with a binding affinity of �9.5 kcal mol�1, while compound 1
and 4 (�8.5 kcal mol�1) and compound 5 (�8.1 kcal mol�1)
showed lower binding affinities but still better than the
controls. These results suggest that our predicted compounds
10332 | RSC Adv., 2019, 9, 10326–10339
possessed better inhibitory property than those of the experi-
mentally reported active compounds.

On the other hand, compounds such as lazabemide, rasa-
giline, and selegiline showed docking scores of �5.7, �6.1, and
�6.3 kcal mol�1 against MAO-B. Docking of our deep-learning-
based predicted compounds resulted in higher binding affini-
ties compared to the control compounds. The total binding
score for each compound (compound 1 to compound 5) was
predicted to be �9.6, �9.3, �8.8, �9.5 and �9.3 kcal mol�1,
respectively. These results suggest that our deep-learning-based
method outperformed the controls and the predicted
compounds had higher inhibiting potential than the experi-
mentally active reported. It is also essential to explain that the
predicted compounds possessed higher activity against MAO-B
when compared to MAO-A.

Interactions of the top ranking poses (Fig. 5 and 6) also
showed that besides having the benzene ring in common
responsible for hydrophobic interactions, we predicted the
This journal is © The Royal Society of Chemistry 2019
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Fig. 7 Conformational stability of the different complexes of monoamine oxidase A with the docked ligands during the MD simulations using
Amber. The RMSD of the apo structure used as the reference structure is shown, with different colors showing the holo systems. The figure
shows the number of frames on the x-axis, while RMSD (Å) is on the y-axis.
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differences in the backbone of the compounds are strongly
associated with the formation of hydrogen bonds with the active
site residues. The docking scores of all the control and our
predicted compounds are summarized in Table 1. These results
conrmed that our methodology based on deep learning pre-
dicted potential compounds better than the already approved
drugs and thus showed this technique could be applied to other
targets for potential drug candidates discovery.

Stability analysis of the bound complexes. Post-simulation
analysis, such as root mean square deviation (RMSD), of all
the selected complexes was carried out to test the stability of our
predicted compounds in the active pockets. Both apo and holo
systems were subjected to 100 ns simulation time. An initial
analysis revealed that the average RMSD for all the systems lay
between 1 Å and 2.5 Å, which conrmed the dynamic stability of
all the systems. Acceptable uctuations were observed in some
systems, but later on, the production stage was stable until 100
ns. Fig. 7 and 8 show the RMSD graphs of all the systems. The
complexes (protein–ligands) systems attained the equilibrium
state in the rst 10–20 ns. The RMSD increased up to 2.1 Å and
then reduced to 1.5 Å. Aerward, the RMSD remained constant
This journal is © The Royal Society of Chemistry 2019
around 1.5 Å with acceptable ux. In the case of the selegiline-
MAO-A complex, the system attained a weak equilibrium state
around 2 Å in 70–80 ns as compared to the apo system.
Lazabemide-MAO-A complex also lost its stability from 70 ns
and onwards with little uctuation. The compound 3-MAO-A
system lost the equilibrium state from 52–60 ns and remained
stable for the rest of the MD simulation. The RMSD analyses
showed the stable behavior of the predicted ligand complexes to
conrm the strong binding and thus inhibiting inuence on the
receptor.

In the case of monoamine oxidase B systems, for the
selegiline-MAO-B complex, the system attained equilibrium
soon aer reaching 15 ns, but uctuations up to 3 Å were also
observed between 70–80 ns. In the case of compound 4-MAO-B,
the complex showed higher uctuations up to 4 Å until 8 ns, but
later on, the system attained the equilibrium state and followed
the stability path until the end. On the other hand, compound
4-MAO-B complex was unstable until 40 ns from the very
beginning. Later on, the system remained stable for the rest of
the simulation time. In the case of the other systems, little
uctuations in the acceptable range were observed, but overall
RSC Adv., 2019, 9, 10326–10339 | 10333
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Fig. 8 Conformational stability of the different complexes of monoamine oxidase B with the docked ligands during the MD simulations with
Amber. The RMSD of the apo structure used as the reference structure is shown, with holo systems shown in different colours. The figure shows
the number of frames on the x-axis, shows RMSD (Å) is on the y-axis.
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the binding of ligands in the active site stabilized the systems by
contributing a different bonding energy. These results suggest
that the binding of our predicted compounds tightly occupied
the binding sites of MAO-A and MAO-B and thus produced
a strong inhibitory effect as compared to the other systems.

In order to nd the residual uctuations inMAO-A andMAO-
B systems, both in the apo and complex state, root mean square
uctuation (RMSF) values of Ca were calculated. Fluctuations in
both the apo and holo states of MAO-A were negligible. In all the
systems, most of the uctuations occurred in the N-terminus
part. However, it was also observed that the binding of the
inhibitor in the active site stabilized the systems by decreasing
the residual uctuation. In the case of MAO-B complexes when
compared to the apo state, the C-terminus part also showed
higher uctuations. It is clear from the RMSF graphs (Fig. 9 and
10) that the binding of our predicted inhibitors signicantly
affected the residual uctuation of the complexes.

Binding free energy analysis. MM/PBSA and MM/GBSA
methods are popular approaches to estimate the free energy
of the binding of small ligands to biological macromolecules. In
order to validate the accuracy of our method, the predicted top 5
10334 | RSC Adv., 2019, 9, 10326–10339
ligands and also the controls were subjected to free energy
calculations (Fig. 11). The results from the calculations onMAO-
A-ligands and MAO-B ligands complexes suggested that our
predicted compounds were stronger inhibitors than those
already reported. Energies calculations on MAO-A-ligands
complexes reported that the predicted compounds were
sequentially stronger inhibitors than the controls. Considering
the total free energy (DGbind) as tabulated in Table 2, it is sug-
gested that compound 1 possessed stronger binding affinity
(�59.24 kcal mol�1) energy, followed by compound 2
(�53.31 kcal mol�1), compound 3 (�51.32 kcal mol�1),
compound 4 (�49.08 kcal mol�1), and nally compound 5
(�43.63 kcal mol�1), respectively.

On the other hand, the compounds taken here as the
controls produced weaker binding energies as compared to our
predicted compounds. Specically, the total free energies for
rasagiline, lazabemide, and selegiline were reported to be
�33.00, �31.72, and �39.42 kcal mol�1, respectively. The total
free energy for piperine, which was considered as an input for
the similarity search, was reported to be �51.77 kcal mol�1,
which is ultimately better than the three selected controls. It
This journal is © The Royal Society of Chemistry 2019
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Fig. 9 Ca RMSF of individual residues of all the apo and holo systems of monoamine oxidase A. Different colors show the RMSF of the apo
structure and holo systems. The figure shows the number of residues on the x-axis, while RMSF (Å) is on the y-axis.
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could be inferred from these binding energies against MAO-A
that our predicted compounds could efficiently inhibit MAO-A
better than those of the already experimentally reported
compounds.

The binding affinities of ligands and MAO-B were also
calculated from the last 10 ns of the MD trajectory. As can be
seen from Table 2, the total DGbind values of rasagiline, laz-
abemide, and selegiline were �38.60, �33.19, and
�38.23 kcal mol�1, respectively. The results of our top predicted
compounds showed values of �59.81, �51.90, �52.57, �53.95,
and �55.17 kcal mol�1, respectively, which conrmed the
strong inhibition properties of these compounds. The interac-
tion of piperine with MAO-B also possessed strong binding
affinity by contributing a total energy of �52.69 kcal mol�1.
These results essentially validate our prediction method and
thus the reported novel ligands that could robustly inhibit these
targets.
Discussion

The discovery of novel small molecules with strong inhibitory
potential is a common practice used by researchers. Essential
This journal is © The Royal Society of Chemistry 2019
drug features, such as HBD, HBA, and others, are used by
computational chemists to nd novel drug candidates based on
these dened features. Machine-learning methods, such as
ANN, have long been used in the prediction of molecule activity.
Generally, DL strategies are enacted in the rst place to handle
the issues of activity prediction. When compounds are por-
trayed with the same number of molecular descriptors,
researchers use fully connected DNNs to build models, which is
considered a straightforward method.47 Evaluating the interac-
tion between a protein and a ligand is the key element in the
molecular docking program, and many scoring functions have
been built up either by force elds or using the knowledge of
existing complex protein–ligand structures to assist this
process.48 A typical example is given in the investigation done by
Ragoza et al.31

In this work, a deep neural network combined with a ML
approach was used as a scoring function in the virtual screening
or as an affinity predictor for novel molecules aer a complex is
generated. It can be either applied to test multiple compounds
against a single protein or to test multiple proteins against
a single compound. The model was applied to a single drug,
namely piperine, and its experimental targets. A general
RSC Adv., 2019, 9, 10326–10339 | 10335
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Fig. 10 Ca RMSF of individual residues of all the apo and holo systems of monoamine oxidase B. Different colors show the RMSF of the apo
structure and holo systems. The figure shows the number of residues on the x-axis, shows while RMSF (Å) is on the y-axis.
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docking approach and molecular dynamics simulation
approaches were used as supplementary validation methods to
investigate the potential of the predicted compounds against
the prioritized targets. A total of eight experimental targets were
selected, including TRPV1,49 nuclear factor-kB,50 monoamine
oxidase A, monoamine oxidase B,51 carbonic anhydrase I,
carbonic anhydrase II,52 lipoxygenase,53 P-glycoprotein I and
CYP3A4,54 which were reported to be inhibited by piperine. Our
deep-learning-based approach discovered that piperine could
efficiently inhibit MAO-A and MAO-B. Monoamine oxidase
(MAO) catalyzes primary, secondary, and tertiary amines and is
considered one of the essential enzymes in neurotransmitter
metabolism. Its physiological roles and inhibitors play a signif-
icant role in understanding the functional roles of dopamine
(DA), norepinephrine, and serotonin (5-HT) neurotransmission
in the central nervous system (CNS). It is, therefore, an essential
drug target for the treatment of Parkinson's disease.

FDA-approved experimental ligands, such as rasagiline, laz-
abemide, and selegiline, were compared to piperine by using
a conventional docking approach, which reported that piperine
is better than all the others. Using a machine-learning
approach, piperine was considered as an input for similarity
search considering its inhibitory features. PubChem and ZINC
10336 | RSC Adv., 2019, 9, 10326–10339
databases were subjected to similarity searches to obtain the
top 100 hits. Using ML scoring function, only the top 5
compounds were selected for further evaluation to evaluate the
prediction power and accuracy of our method. Molecular
docking, molecular dynamics simulations, post-simulation
analyses, and free energy calculations conrmed that the
compounds we predicted based on piperine were more potent
inhibitors of MAO-A and MAO-B. Interaction pattern evaluation
helped in understanding the bonding pattern. It was observed
that the extra ring in the predicted compounds structures and
different atoms in the backbones potentially formed hydrogen
bonds with the active site residues. Overall the performance of
our prediction method outperformed the controls by predicting
the most potent compounds. It can, therefore, help in discov-
ering new potential drugs, but also in investigating the side
effects of bioactive molecules. By anticipating the potential
impact of new drugs on the biology of the cell, deep-learning
approaches may contribute to such disciplines as systems
medicine and systems biology. The results obtained and the
careful analysis of the results revealed reliable predictions
based on relevant features. Thus, deep learning and ML-based
features can signicantly increase the reliability and accuracy
of predicting novel inhibitors.
This journal is © The Royal Society of Chemistry 2019
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Fig. 11 Total free energy of the controls and predicted compounds against monoamine oxidase A and B are given in the graphs. All the energies
are calculated in kcal mol�1.

Table 2 Binding free energies of the predicted inhibitors to monoamine oxidase A and monoamine oxidase B calculated by using MM-GBSA
approach. Rasagiline, lazabemide, selegiline, and piperine were grouped as the controls. Compounds 1–5 are our predicted compounds based
on the similarity search

Targets
Experimental
compounds DvdW

a Dele
b DSASA

c DGbind
d

Monoamine oxidase A Rasagiline �34.36 �0.29 �3.34 �33.00
Lazabemide �33.69 �0.22 �3.10 �31.72
Selegiline �40.77 �0.54 �4.13 �39.42
Piperine �56.88 �4.15 �5.49 �51.77
Compound 1 �64.16 �3.15 �6.07 �59.24
Compound 2 �57.56 �0.85 �5.53 �53.31
Compound 3 �59.44 �4.83 �5.52 �51.32
Compound 4 �52.80 �2.95 �5.49 �49.08
Compound 5 �45.60 �2.29 �5.51 �43.63

Monoamine oxidase B Rasagiline �40.56 �1.71 �3.56 �38.60
Lazabemide �35.01 �0.27 �3.44 �33.19
Selegiline �40.44 �0.35 �4.28 �38.23
Piperine �57.66 �4.19 �5.25 �52.69
Compound 1 �63.52 �3.26 �5.91 �59.81
Compound 2 �57.01 �2.02 �5.61 �51.90
Compound 3 �58.30 �4.59 �5.79 �52.57
Compound 4 �61.57 �4.22 �5.30 �53.95
Compound 5 �60.75 �3.984 �5.444 �55.17

a van der Waals energy. b Electrostatic energy. c Solvent accessible surface area energy. d Total binding free energy.
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Conclusion

This study was based on deep learning and machine-learning
approaches to determine the impact of these state-of-the-art
This journal is © The Royal Society of Chemistry 2019
methods in predicting novel compounds against disease-
causing targets. The prediction of targets and then similarity
searches predicted potential compounds based on already
approved drugs. Integrated MD simulations and free energy
RSC Adv., 2019, 9, 10326–10339 | 10337
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calculations revealed that the predicted compounds possessed
stronger inhibitory potential than those of the already FDA-
approved compounds, thus showing the enhanced reliability
and accuracy of our method.
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