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A novel and efficient copper-catalyzed synthesis of dihydro-6H-indolo[2,3-b]quinoline derivatives has been

developed by using 3-alkyl-1-alkylindolin-2-imine hydrochlorides as the building blocks. Furthermore, easy

reduction of dihydro-6H-indolo[2,3-b]quinolines with diisobutylaluminum hydride provided tetrahydro-

6H-indolo[2,3-b]quinoline derivatives in excellent yields. The present method shows some advantages

including use of cheap cuprous chloride as the catalyst and tolerance of wide functional groups.
Indole alkaloids widely occur in nature and exhibit diverse and
interesting biological and pharmacological activities.1 For
example, perophoramidine (A) and communesins (B–I), iso-
lated from Penicillium species,2 a marine fungal strain, and
Philippine ascidian Perophora namei,3 show important cytotox-
icity and insecticidal properties (Fig. 1). Both intriguing struc-
tural complexity and interesting biological activities of these
alkaloids attract much attention for organic synthetic
chemists.4
perophoramidine and commune-
activities.
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In previous synthesis of indole alkaloids, dearomatization of
readily available indoles is oen used in the construction of
complex indole-containing structural motifs.5 In particular,
dearomatizing C3-alkylation/arylation of 3-substituted indoles
rst provides C3-quaternary indolenines, and then the indole-
nines are used as the versatile building blocks for the synthesis
of complex indole alkaloids and related compounds.6 However,
this strategy oen needs long multi-step and tedious processes.
As an alternative, dearomatizing alkylation of tryptamine
derivatives yields the C3-quaternary indolenines followed
spontaneous cyclization to afford pyrroloindolines (Scheme
1a).7 To the best of our knowledge, 1-alkyl-3-alkylindolin-2-
imine hydrochlorides as a kind of indole derivatives have not
been used in synthesis of indole alkaloids thus far. Herein, we
report application of 1-alkyl-3-alkylindolin-2-imine hydrochlo-
rides as the useful building blocks in copper-catalyzed synthesis
of polycyclic indoline scaffolds (Scheme 1b).

At the outset, copper-catalyzed reaction of 3-benzyl-1-
methylindolin-2-imine hydrochloride (1h) with 2-iodobenzyl
bromide (2a) leading to 10b-benzyl-6-methyl-10b,11-dihydro-
6H-indolo[2,3-b]quinoline (3h) was selected as the model to
optimize conditions including catalysts, base, solvents and
temperature. As shown in Table 1, six catalysts, CuI, CuBr, CuCl,
Scheme 1 Synthesis of polycyclic indoline scaffolds using tryptamine
derivatives (a) or 1-alkyl-3-alkylindolin-2-imine hydrochlorides (b) as
the useful building blocks.
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Table 1 Optimization of conditions for copper-catalyzed reaction of
3-benzyl-1-methylindolin-2-imine hydrochloride (1h) with 2-iodo-
benzyl bromide (2a) leading to 10b-benzyl-6-methyl-10b,11-dihydro-
6H-indolo[2,3-b]quinoline (3h)a

Entry Cat. Base Solvent Yieldb (%)

1 CuI tBuONa tBuOH 73
2 CuBr tBuONa tBuOH 78
3 CuCl tBuONa tBuOH 90
4 Cu2O

tBuONa tBuOH 75
5 Cu(OAc)2

tBuONa tBuOH 83
6 Cu(TFA)2

tBuONa tBuOH 81
7 CuCl tBuONa CH3CN 46
8 CuCl tBuONa iPrOH 81
9 CuCl tBuONa Toluene 42
10 CuCl tBuONa 1,4-Dioxane 38
11 CuCl tBuOLi tBuOH 89
12 CuCl K2CO3

tBuOH 91
13 CuCl Cs2CO3

tBuOH 88
14 CuCl K3PO4

tBuOH 86
15 CuCl NaOAc tBuOH 43
16 CuCl DIPEA tBuOH Trace
17c CuCl K2CO3

tBuOH 80
18d CuCl K2CO3

tBuOH 91

a Reaction conditions: under nitrogen atmosphere, 3-benzyl-1-
methylindolin-2-imine hydrochloride (1h) (0.33 mmol, 1.1 equiv.), 2-
iodobenzyl bromide (2a) (0.3 mmol, 1.0 equiv.), catalyst (30 mmol,
10 mol%), base (1.2 mmol, 4.0 equiv.), solvent (3.0 mL), temperature
(100 �C), time (20 h) in a sealed Schlenk tube. b Isolated yield.
c Temperature (80 �C). d Temperature (120 �C).

Table 2 Substrate scope for copper-catalyzed synthesis of dihydro-
6H-indolo[2,3-b]quinolines (3)a

3 (time, yieldb)

a Reaction conditions: under nitrogen atmosphere, 3-alkyl-1-
alkylindolin-2-imine hydrochloride (1) (0.33 mmol, 1.1 equiv.),
substituted 2-iodobenzyl bromide (2) (0.3 mmol, 1.0 equiv.), CuCl (30
mmol, 10 mol%), K2CO3 (1.2 mmol, 4.0 equiv.), tBuOH (3.0 mL),
temperature (100 �C), time (20 h) in a sealed Schlenk tube. b Isolated
yield.
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Cu2O, Cu(OAc)2 and Cu(TFA)2, were tested using NaOBut as the
base and HOBut as the solvent under nitrogen atmosphere at
100 �C for 20 h (entries 1–6), and CuCl gave the highest yield
(90%) (entry 3). Subsequently, other four solvents, MeCN,
HOPri, toluene and 1,4-dioxane, were attempted (entries 7–10),
and they were inferior to HOBut (compare entries 3, 7–10). Next,
effect of bases including LiOBut, K2CO3, Cs2CO3, K3PO4, NaOAc
and diisopropylethylamine (DIPEA) was investigated (entries
11–16), and the results showed that K2CO3 was a suitable base
(entry 12). Finally, we attempted variation of temperature and
found that 100 �C was an optimal temperature (compare entries
12, 17 and 18). Therefore, the copper-catalyzed optimal condi-
tions for synthesis of 10b-benzyl-6-methyl-10b,11-dihydro-6H-
indolo[2,3-b]quinoline are as follows: 10 mol% CuCl as the
catalyst, K2CO3 as the base, and HOBut as the solvent under
nitrogen atmosphere at 100 �C for 20 h.

Aer obtaining the optimized conditions, we surveyed
substrate scope for the copper-catalyzed reactions of 1-alkyl-3-
alkylindolin-2-imine hydrochlorides (1) with substituted 2-
iodobenzyl bromides (2) leading to dihydro-6H-indolo[2,3-b]
quinolines (3). As shown in Table 2, we rst surveyed reactivity
of substrates (1) using 2-iodobenzyl bromide (2a) as the partner.
When substituents R3 in 1 were aliphatic alkyls (see 3a–3e),
substituted benzyls (see 3f–3l), substituted phenylethyls (see
3m–3o), phenylpropyl (see 3p) and phenyl (see 3q), and the
8370 | RSC Adv., 2019, 9, 8369–8372
reactions were performed well. Subsequently, variation of
substituent groups R2 including ethyl (see 3r), propyl (see 3s),
butyl (see 3t), allyl (see 3u), benzyl (see 3v) and phenylpropyl (see
3w) in 1 was investigated, and the substrates provided the cor-
responding target products (3r–3w) in 82–92%. Next, several
substrates 1 containing different R1 substituents including
electron-donating (see 3x–3ab), poor electron-withdrawing (see
3ac–3ae), strong electron-withdrawing (see 3af–3ah) groups
This journal is © The Royal Society of Chemistry 2019
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Scheme 4 Reduction of dihydro-6H-indolo[2,3-b]quinolines (3) with
DIBAL-H leading to tetrahydro-6H-indolo[2,3-b]quinolines (5).
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were tested, and they afforded 3x–3ah in 80–90%. Finally,
several substituted 2-iodobenzyl bromide (2) were applied with
3-benzyl-1-methylindolin-2-imine hydrochloride (1h) as the
partner, and the target products (3ai–3an) were obtained in high
yields. The copper-catalyzed reactions showed tolerance of
various functional groups including C–F (see 3i, 3ac, 3aj and
3ak), C–Cl (see 3j, 3ad and 3al), C–Br (see 3k, 3o, 3ae and 3am)
bonds, ether (see 3f, 3m, 3ab and 3ai), triuoromethyl (see 3l
and 3af), cyano (see 3ag) and nitro (see 3ah and 3an) groups.

To explore mechanism on the copper-catalyzed reactions of 1
with 2, two control experiments were carried out as follows: (a)
reaction of 3-benzyl-1-methylindolin-2-imine hydrochloride
(1h) with 2-iodobenzyl bromide (2a) produced 4 in 95% yield in
the absence of copper catalyst at room temperature (Scheme
2a). (b) Copper-catalyzed intramolecular N-arylation of 4 gave
the target product (3h) in 93% yield under the standard
conditions (Scheme 2b). According to the results above, the
copper-catalyzed reactionmechanism is proposed in Scheme 3.8

First, 1 transforms into anion I in the presence of base (K2CO3),
and nucleophilic attack of I to 2 yields II. Coordination of CuCl
with nitrogen in imine group of II provides III, and oxidative
addition of III forms IV in the presence of base. Finally,
reductive elimination of IV gives the target product (3) freeing
copper catalyst.

Furthermore, easy reduction of dihydro-6H-indolo[2,3-b]
quinolines (3) with diisobutylaluminum hydride (DIBAL-H) in
toluene at 0 �C led to another kind of N-heterocycles, tetrahy-
dro-6H-indolo[2,3-b]quinolines (5a–5f) with wide biological
activities2,3 (Scheme 4). However, the traditional methods for
Scheme 2 (a) Reaction of 3-benzyl-1-methylindolin-2-imine hydro-
chloride (1g) with 2-iodobenzyl bromide (2a) in the absence of copper
catalyst leading to 4. (b) Copper-catalyzed intramolecular cyclization
of 4 under the standard conditions.

Scheme 3 Reactionmechanism for the copper-catalyzed synthesis of
dihydro-6H-indolo[2,3-b]quinolines (3).

This journal is © The Royal Society of Chemistry 2019
synthesis of this kind of compounds need long multi-step
processes by using common indoles as the starting materials.
Therefore, the present method using 3-alkyl-1-alkylindolin-2-
imine hydrochlorides as the building blocks is very simple
and practical strategy for construction of dihydro-6H-indolo[2,3-
b]quinoline and tetrahydro-6H-indolo[2,3-b]quinoline
derivatives.

In summary, we have developed a novel and efficient copper-
catalyzed synthesis of dihydro-6H-indolo[2,3-b]quinoline deriv-
atives by using 3-alkyl-1-alkylindolin-2-imine hydrochlorides as
the building blocks. Furthermore, easy reduction of dihydro-
6H-indolo[2,3-b]quinolines with DIBAL-H provided tetrahydro-
6H-indolo[2,3-b]quinolines. The present method shows some
advantages including use of cheap CuCl as the catalyst, and
tolerance of wide functional groups. We believe that 3-alkyl-1-
alkylindolin-2-imine hydrochlorides as the building blocks
will nd wide application in synthesis of complex polycyclic
indoline scaffolds.
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