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he diatomic molecules†

Taoyi Chen and Thomas A. Manz *

Bond order quantifies the number of electrons dressed-exchanged between two atoms in a material and is

important for understanding many chemical properties. Diatomic molecules are the smallest molecules

possessing chemical bonds and play key roles in atmospheric chemistry, biochemistry, lab chemistry,

and chemical manufacturing. Here we quantum-mechanically calculate bond orders for 288 diatomic

molecules and ions. For homodiatomics, we show bond orders correlate to bond energies for elements

within the same chemical group. We quantify and discuss how semicore electrons weaken bond orders

for elements having diffuse semicore electrons. Lots of chemistry is effected by this. We introduce

a first-principles method to represent orbital-independent bond order as a sum of orbital-dependent

bond order components. This bond order component analysis (BOCA) applies to any spin-orbitals that

are unitary transformations of the natural spin-orbitals, with or without periodic boundary conditions,

and to non-magnetic and (collinear or non-collinear) magnetic materials. We use this BOCA to study all

period 2 homodiatomics plus Mo2, Cr2, ClO, ClO�, and Mo2(acetate)4. Using Manz's bond order equation

with DDEC6 partitioning, the Mo–Mo bond order was 4.12 in Mo2 and 1.46 in Mo2(acetate)4 with a sum

of bond orders for each Mo atom of �4. Our study informs both chemistry research and education. As

a learning aid, we introduce an analogy between bond orders in materials and message transmission in

computer networks. We also introduce the first working quantitative heuristic model for all period 2

homodiatomic bond orders. This heuristic model incorporates s–p mixing to give heuristic bond orders

of 3
4 (Be2), 134 (B2), 23

4 (C2), and whole number bond orders for the remaining period 2 homodiatomics.
1 Introduction

Because chemical bonds bind atoms to each other to formmost
chemicals and materials, a fundamental description of chem-
ical bonds is essential to all chemical sciences. Although many
chemical bonds contain electron pairs,1 other chemical bonds
(e.g., [H2]

+) do not contain any electron pairs. Common chem-
ical bond descriptors include the chemical element identities,
the bond length, the bond order (BO), the vibrational force
constant for stretching the bond, and various bond energy
descriptors.

Although the general concept of BO originated more than
a century ago (e.g., Lewis structures1), a comprehensive deni-
tion was proposed only as recently as 2017.2 According to this
modern denition, the bond order BA,B between atoms A and B
eering, New Mexico State University, Las

su.edu
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2

in a material is the quantity of electrons dressed-exchanged
between them. Dressed-exchange is dened through the
following equations related to the quantum mechanical
exchange arising because electrons are fermions.2 First, the
total number of electrons N in a material's unit cell can be
partitioned between atom pairs:

N ¼ 1

2

 X
A

X
B

BA;Bþ
X
A

BA;A

!
(1)

where BA,A quanties the number of electrons dressed-
exchanged on the self-same atom. For a diatomic molecule, N
¼ B1,1 + B1,2 + B2,2. Second, the BO is expanded as

BA,B ¼ CEA,B + LA,B (2)

0 # LA,B ¼ ccoord_numA,B cpairwiseA,B cconstraintA,B # CEA,B (3)

where CEA,B is the contact exchange and LA,B quanties bond-
order contributions arising from exchange hole delocaliza-
tion.2 ccoord_numA,B describes coordination number effects and
equals 1 for diatomics.2 cconstraintA,B is a constraint to keep BA,A
from becoming too small.2 cpairwiseA,B is the dominant contribu-
tion to LA,B for all calculations herein. Manz derived equations
for explicitly computing CEA,B, ccoord_numA,B , cpairwiseA,B , and
cconstraintA,B .2
This journal is © The Royal Society of Chemistry 2019
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Manz's method is computationally efficient, derives from
rst-principles, applies to many bonding types and diverse
materials, yields consistently accurate results across different
quantum chemistry methods (e.g., CAS-SCF, CCSD, SAC-CI,
DFT, etc.) and different SZ values of a spin multiplet, works
well for non-equilibrium structures (e.g., stretched and
compressed bonds, transition states), works with or without
periodic boundary conditions, works with any basis set type
(e.g., Gaussian, plane-wave, etc.) with low basis set sensitivity,
and applies to non-magnetic systems as well as collinear and
non-collinear magnetism.2 As shown in Table S1 of ESI† and
prior literature,2 the DDEC6 BO is much more consistent across
different quantum chemistry methods than the Mayer bond
index.3

Manz's bond order is also more chemically consistent than
the occupancy bond index (OBI). OBI ¼ (sum of bonding orbital
occupancies � sum of anti-bonding orbital occupancies)/2. As
discussed in ref. 2, the OBI has two fundamental limitations:

(1) Different quantum chemistry methods (even if they are
exact) can yield substantially different rst-order density
matrices and hence different NSOs and different OBI values. For
example, DFT functionals yield idempotent rst-order density
matrices at absolute zero temperature, while correlated wave-
function methods (e.g., coupled-cluster, conguration interac-
tion, etc.) yield rst-order density matrices that are not
necessarily idempotent. The NSO occupancies from DFT (at
absolute zero temperature) are either 0 or 1, but can be
anywhere over the interval [0,1] for correlated N-representable
wavefunctions.4

(2) The OBI is unreliable for stretched bonds. As a bond is
systematically stretched beyond its equilibrium value, the
bonding or anti-bonding quality of individual NSOs or localized
molecular orbitals may change abruptly even if the energy
changes smoothly. This can cause the OBI value to change
abruptly, even if the Manz BO changes smoothly. (See Fig. 1 of
ref. 2 for a plot demonstrating this behavior for the natural
localized molecular orbitals.)

Manz's bond order equation requires the spherically aver-
aged atom-in-material electron density ({ravgA (rA)}) and spheri-
cally averaged atom-in-material spin magnetization density
vector ðf~mavg

A ðrAÞgÞ as inputs.2 These inputs must be assigned
using a stockholder partitioning method. As in the prior study,2

we used this bond order equation with DDEC6 partitioning.
DDEC6 partitioning gave good results across diverse material
types.2,5–7 In this article, the term ‘DDEC6 bond order’ refers to
the bond order computing using Manz's equation with DDEC6
partitioning, while the term ‘Manz bond order’ refers to bond
order computed with this equation using any partitioning
method.

There are no prior systematic studies of quantum-
mechanically (QM) computed BOs across large numbers of
diatomics. Two old, inaccurate (e.g., BOs of 1.55 for H2, 0.953 for
P2, and 1.81 for HF), quasi-classical studies by Politzer esti-
mated BOs for 21 homodiatomics and 54 heterodiatomics.8,9

Recently, Manz's study included accurate BOs computed via eqn
(2) for 26 diatomics.2 Many studies (e.g., ref. 10–14 and others)
calculated BOs for fewer diatomics. Here, we compute BOs for
This journal is © The Royal Society of Chemistry 2019
288 diatomics to reveal systematic trends across the periodic
table.

What is and is not yet known about BOs of diatomic mole-
cules? There is widespread agreement on BOs for some
diatomic molecules (e.g., BO ¼ �1 for H2 and �3 for N2) but
others (especially C2, but also Be2 and B2) were topics of
substantial debate.15–18 S–p mixing was proposed as a semi-
quantitative textbook argument for BOs of 0–1 for Be2, 1–2 for
B2, and 2–3 for C2.15 Many computational studies of the C2

molecule argued its BO was (a) between 2 and 316,19–22 or (b)
around 4.23–27 The C–C bond length in C2 (1.242 Å) is interme-
diate between ethylene (1.329 Å, heuristic BO¼ 2) and acetylene
(1.203 Å, heuristic BO ¼ 3).28 Since log(BO) is approximately
linearly correlated to bond length,2,29 the interpolated C2 BO is
log(BO) ¼ log(2) + ((1.329 � 1.242)/(1.329 � 1.203))log(3/2)
yielding BO ¼ 2.65. Generalized valence bond (GVB) studies of
C2 revealed four17,23,25 or three20 electron pairs with favorable
energetic couplings. GVB studies of B2 revealed one strong plus
one weak s-bond components and two half-lled p-bond
components.30

2 Results and discussion
2.1 Periodic trends of bond orders

First, we summarize the computed DDEC6 BOs: (a) Table 1 (65
homodiatomics) with additional information for these mole-
cules listed in Table S2 of ESI,† (b) Table S3 of ESI† (217 het-
erodiatomics), (c) Table 2 (6 ions), and (d) Table S1 of ESI†
(molecules and ions isoelectronic to C2). All of these tables list
each molecule's spin multiplicity. Tables S2 and S3† compare
calculated to experimental (where available) bond lengths and
list the CRC handbook dissociation energies ðDo

298KÞ.28 Tables 2
and S3† also list net atomic charges (NACs) for the hetero-
diatomics. To the best of our knowledge, this is the largest
collection of diatomics for which computed BOs have been re-
ported. We computed the electron and spin density distribu-
tions using the coupled-cluster or conguration interaction
methods CCSD, SAC-CI, or CAS-SCF selected to give reasonable
agreement between calculated and experimental (where avail-
able) equilibrium bond lengths as summarized in Fig. 8.

Fig. 1 plots BO trends across the periodic table. Fig. 1A and B
plot dissociation energy versus BO for each of the eight main
chemical groups. They show that within each main chemical
group, larger BO is strongly correlated to larger bond energy.
There are two mild exceptions: (i) the calculated BO of S2 is 6%
larger than O2, even though O2 has larger dissociation energy
than S2, and (ii) I2 has much larger BO and slightly lower Do

298K

than F2. Exception (i) is not signicant, because the DDEC6 BO
has an absolute accuracy around �5%.2 This unusual behavior
of the halogens (exception (ii)) is discussed later in this section.
Fig. 1C plots dissociation energy versus BO for the homo-
diatomics and shows the BO to dissociation energy correlation
across different chemical groups is only weak with large vari-
ance. Fig. 1D plots atomic charge magnitude versus BO for the
heterodiatomics. Data points in Fig. 1D show collections of
several diagonal downward streaks indicating a partial trade-off
between ionicity and BO, but the spread is huge. This means the
RSC Adv., 2019, 9, 17072–17092 | 17073
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Table 1 Bond orders of 65 homodiatomics. The spin multiplicity is also listed

Spin mult. Bond order Spin mult. Bond order Spin mult. Bond order Spin mult. Bond order

H2 1 0.938 Ar2 1 0.027 Br2 1 1.264 Xe2 1 0.048
He2 1 0.004 K2 1 0.705 Kr2 1 0.034 Cs2 1 0.618
Li2 1 0.925 Ca2 1 0.365 Rb2 1 0.658 Ba2 1 0.376
Be2 1 0.648 Sc2 5 2.326 Sr2 1 0.349 W2 1 3.194
B2 3 1.808 Ti2 3 2.920 Y2 5 2.116 Ir2 5 2.396
C2 1 2.727 V2 3 3.231 Zr2 3 3.291 Pt2 3 1.801
N2 1 2.917 Cr2 1 3.858 Nb2 3 3.517 Au2 1 1.171
O2 3 1.962 Mn2 1 0.463 Mo2 1 4.120 Hg2 1 0.214
F2 1 0.982 Fe2 7 1.977 Rh2 5 2.109 Tl2 3 0.910
Ne2 1 0.012 Co2 5 1.550 Pd2 3 1.571 Pb2 3 1.398
Na2 1 0.784 Ni2 3 1.265 Ag2 1 0.991 Bi2 1 1.956
Mg2 1 0.281 Cu2 1 1.050 Cd2 1 0.115 Po2 3 1.620
Al2 3 1.091 Zn2 1 0.114 In2 3 0.984 At2 1 1.176
Si2 3 1.745 Ga2 3 1.053 Sn2 3 1.510 Rn2 1 0.063
P2 1 2.555 Ge2 3 1.617 Sb2 1 2.124
S2 3 2.094 As2 1 2.305 Te2 3 1.758
Cl2 1 1.357 Se2 3 1.870 I2 1 1.262
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relationship between ionicity and BO is not simple and involves
multiple factors.

In a recent study of polyatomic molecules and porous solid
catalysts, Rohling et al. demonstrated correlations between
DDEC6 bond orders and Crystal Orbital Hamilton Populations
(COHP).31 These correlations between density-based bond
orders and orbital-based bond energies occurred only within
families of chemically related structures.31 Those results as well
as results of the present paper show bond orders are correlated
to bond energies within families of sufficiently similar mate-
rials, but not necessarily across different bond types or vastly
different materials.

From Table 1, the BOs of halogen dimers peak at Cl2. This
trend is consistent with the dissociation energy trend (see Table
S2 of ESI†). We hypothesized this effect comes from exchange
polarization. We rst performed Hartree–Fock (HF) calculations
to determine whether this effect comes from electron exchange
or correlation. HF yields BO of 1.10 for F2 and 1.38 for Cl2
showing the effect comes from electron exchange not correla-
tion. We then removed different polarization functions from the
def2QZVPPD basis set and reran the HF calculations. In all of
these calculations, the bond length was re-optimized at each
level of theory. Removing d functions yielded BO of 0.95 for F2
and 1.01 for Cl2. Removing both g and f functions yielded BO of
1.07 for F2 and 1.31 for Cl2. With all d, f, and g functions
removed, the BOs were 0.92 for F2 and 0.93 for Cl2, which are
almost identical. This shows the effect mainly comes from the
Table 2 Calculated bond orders for selected diatomic ions. The
multiplicity, bond length (B.L.), and NACs are also listed

Spin mult. B.L. (Å) Bond order NACs

H2
+ 2 1.057 0.300 0.500 (H)

HO� 1 0.959 1.158 0.234 (H), �1.234 (O)
CN� 1 1.171 3.393 �0.469 (C), �0.531 (N)
CN+ 1 1.176 2.219 0.714 (C), 0.286 (N)
BC� 1 1.383 3.044 �0.360 (B), �0.640 (C)
ClO� 1 1.667 1.740 �0.313 (Cl), �0.687 (O)

17074 | RSC Adv., 2019, 9, 17072–17092
d functions but f and g functions also contribute. These tests
conrmed our theory that the peak of BO and dissociation
energy at Cl2 is due to exchange polarization. Similar tests
cannot be performed for Br2 and I2, because their d electrons
prevent removing d basis functions. Moreover, the Laplacian of
the electron density (V2r) is positive at the bond midpoint for F2
but negative for Cl2.32

Table 2 summarizes results for selected diatomic ions. The
BO of H2

+ was discussed in detail in an earlier work.2 The
calculated DDEC6 BOs of HO� and CN� are slightly greater than
their heuristic BOs of 1 and 3, respectively. The BOs for CN+ and
BC� singlets, which are isoelectronic to singlet C2, are modestly
lower and higher than the C2 bond order, respectively. These
effects can be attributed to electron cloud contraction towards
the atomic nuclei in a cation and electron cloud expansion away
from the atomic nuclei in an anion compared to a similar
uncharged diatomic. This effect arises, because the outermost
electron is usually more tightly bound in a cation than in an
anion. This oen causes the Manz BO of a diatomic cation
(anion) to be smaller (larger) than the heuristic BO. This effect
was most pronounced for the hypochlorite anion, which has
a computed DDEC6 BO of 1.74 compared to the heuristic BO of
1. As discussed in Section 2.5 below, this unusual BO for ClO� is
also due to p-orbital shape-shiing that affects the Virial
equilibrium between kinetic and potential energies during
bonding.

We investigated relativistic effects including spin–orbit
coupling. For selected diatomics, relativistic all-electron calcu-
lations were performed in Gaussian09 (ref. 33) near the
complete basis set limit using the 4th order Douglas–Kroll–
Hess34 Hamiltonian with spin–orbit coupling (DKHSO) and
a Gaussian nuclear charge model.35 These were performed
using the PBE36 exchange–correlation functional and
a universal Gaussian basis set (MUGBS37). Manz reported these
calculations for 26 diatomics and compared their bond lengths
and BOs to those computed using the CCSD method with
relativistic effective core potentials (RECPs) and non-relativistic
valence electrons.2 Here, we extend these calculations to Tl2,
This journal is © The Royal Society of Chemistry 2019
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Fig. 1 (A) and (B) Bond order versus bond energy for homodiatomics of each main group; (C) bond order versus bond energy for all homo-
diatomics studied; (D) bond order versus atomic chargemagnitude for all heterodiatomics studied. These plots do not include any diatomic ions.
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Pb2, Bi2, Po2, At2, and Rn2. Table S4 of ESI† shows the PBE/
MUGBS calculations with DKHSO gave bond lengths 2.8%
longer on average (and BOs 11% lower on average) than CCSD/
def2QZVPPD for these six homodiatomics. A PBE/MUGBS
calculation using DKHSO was also performed for W2 (see
Section 2.2). Because CCSD calculations including DKHSO were
not available in the Gaussian16 program, we had to choose
between the more accurate exchange–correlation theory (i.e.,
CCSD vs. PBE) and whether to use DKHSO.

2.2 Bond order component analysis (BOCA)

Controversy surrounding BOs arises from the fungible role
orbitals play in quantum chemistry. On the one hand, orbitals
are useful for chemical interpretation and prediction (e.g.,
orbital hybridization38 and Woodward–Hoffmann rules39). On
the other hand, orbitals depend on the chosen calculation
method. Two quantum chemistry calculations describing the
same multi-electronic state may have dramatically different
orbitals, and even different orbital sets can be constructed to
describe the same quantum chemistry calculation.26 Any unitary
transformation of the orbitals does not change the system's
energy or electron density. Because correlated wavefunction
(e.g., CAS-SCF, CCSD, SAC-CI) and density functional theory
(DFT) approaches can have different orbital occupancies and
different rst-order density matrices producing equivalent
electron density and system energy, BOs should be dened in
a way that does not depend on individual density matrix
components or eigenstates.2

How can this paradox be resolved in a meaningful way that
acknowledges both the usefulness and inherent limitations of
orbitals in chemistry? By introducing bond order component
This journal is © The Royal Society of Chemistry 2019
analysis (BOCA) that: (a) expresses bond order BA,B for atoms in
a material as a functional of the material's electron and spin
density distributions via eqn (2) with no explicit orbital
dependence and (b) assigns a bond order component BA,B(4i) to
each spin-orbital 4i so the sum over all spin-orbitals recovers
the BO:

BA;B ¼
X
i

BA;Bð4iÞ (4)

This resolves the paradox by making the BO independent of
orbital representation, while simultaneously assigning bond
order components (BOCs) to orbitals. Using rst-principles
reasoning, we now show that BA,B(4i) can be expanded as the
sum of an exchange interference term and an exchange non-
interference term.

BA;Bð4iÞ ¼ kA;BsA;Bð4iÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
exchange

interference

þ hA;BCEA;Bð4iÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
exchange

non-interference

(5)

Using the Pauli spin notation, the ith spin-orbital has the
form

4i

�
~r
�
¼
2
44①

i

�
~r
�

4②
i

�
~r
�
3
5 (6)

where 4①
i (~r) is the spin-up (alpha) component and 4②

i (~r) is the
spin-down (beta) component of the spin-orbital. Let {4�i(~r)} be
the natural spin-orbitals (NSOs) (i.e., eigenvectors of the rst-
order density matrices) and {gi} be the NSO occupancies (i.e.,
RSC Adv., 2019, 9, 17072–17092 | 17075
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eigenvalues of the rst-order density matrices). Then dene the
atomic overlap matrix (AOM) for atom A as

S
A

i;j ¼
þ
f AOM
A

�
~r
���

4①
i

�
~r
�
*
�
4①
j

�
~r
�
þ
�
4②
i

�
~r
�
*
�
4②
j

�
~r
��

d3~r

(7)

f AOM
A

�
~r
�
¼

�
rA

�
~r
��4

P
B;L

�
rB

�
~r
��4 ¼ ðwAðrAÞÞ4P

B;L

ðwBðrBÞÞ4
(8)

where rB is the distance from position~r to the nuclear position
of atom B's image. Herein, * denotes complex conjugation and
superscript H denotes the transposed complex conjugate (aka
Hermitian conjugate). Here, summation over B, L means
summation over all atoms in the unit cell {B} and their periodic
images (if any) {L}. The total electron density is partitioned
using

rA

�
~r
�
¼ wAðrAÞP

B;L

wBðrBÞ r
�
~r
�

(9)

Different denitions of wA(rA) dene different Stockholder-
type charge partitioning schemes. Here, we use the DDEC6
charge partitioning method.2,5,7 Then dene

G
A

i;j ¼ S
A

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

�
gi;gj

�q
(10)

By denition, a unitary matrix U has the propertiesX
i

U*
i;jUi;k ¼ dj;k (11)

where dj,k is the Kronecker delta. In this article, we are interested
in energy eigenstates of time-independent quantum systems.
For such systems, a unitary transformation of the NSOs takes
the form

4i

�
~r
�
¼
X
j

Ui;j4j

�
~r
�

(12)

where U, 4i(~r), and 4�j(~r) do not depend on time. This unitary
transforms G�A into GA ¼ U*G�AUT. The occupancy-weighted
electron exchange between compartments A and B from 4i to all
spin-orbitals is

sA;Bð4iÞ ¼
X
j

�
GA
i;jG

B
j;i þ GB

i;jG
A
j;i

�
(13)

The contact exchange assigned to 4i is

CEA;Bð4iÞ ¼ 2

þ
r!avg

A ðrAÞ$ r!avg

B ðrBÞ
r!avg

�
~r
�
$ r!avg

�
~r
� pð4iÞd3~r (14)

where

pð4iÞ ¼
1

2

 
4H
i

�
~r
�X

j

Qi;j4j

�
~r
�
þ
 X

j

4H
j

�
~r
�
Qj;i

!
4i

�
~r
�!

(15)
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and Q ¼ U(diag(g))UH. Diag(g) is the diagonal matrix with
elements of the vector g along its diagonal.
r!avg

A ðrAÞ ¼ ðravgA ðrAÞ; ~mavg
A ðrAÞÞ is the four-vector formed from the

spherically averaged electron density (ravgA (rA)) and spin-
magnetization density vector ð~mavg

A ðrAÞÞ assigned to atom A.2

r/avg(~r) is the sum of these four-vectors over all atoms in the
material. As previously explained, r!avg

A ðrAÞ and r!avgð~rÞ are
dened using density-derived electrostatic and chemical
(DDEC) partitioning.2

The scaling factors

kA,B ¼ max(min(BA,B/sA,B, 1), 0) (16)

hA,B ¼ (BA,B � kA,BsA,B)/CEA,B (17)

are invariant to spin-orbital unitary transformations, ensure the
spin-orbital-independent BO is correctly reproduced, and have
bounds 0# kA,B # 1 and 0# hA,B # 2. Eqn (4)–(17) apply to non-
periodic and periodic materials with no magnetism, collinear
magnetism, and non-collinear magnetism. This BOCA is always
stable. See ESI† for derivations.

This BOCA assigns BOCs to any desired set of orbitals that
can be expressed as a unitary transformation of the NSOs. For
small molecules, NSOs are oen convenient. For medium and
large systems, orbitals localized via unitary transformation (e.g.,
Pipek–Mezey, Foster–Boys, Edmiston–Ruedenberg, etc.) provide
more concise descriptions of bonding interactions.40 Modern
variants of Pipek–Mezey localization41,42 are especially useful to
quantify individual s, p, and d-bonding contributions.

Fig. 2A displays the NSOs, their occupancies, and their BOCs
for the carbon dimer, C2. (Here, we adopted the convention of
labeling the rst valence orbital (rather than the core orbital) as
1sg.15) The 1sg, 1su, and 2sg orbital shapes show strong s–p
mixing. Four NSOs had signicantly positive BOCs. The 1pu,x

and 1pu,y components (BA,B(4i)¼ 0.786) were larger than the 1sg

component (BA,B(4i) ¼ 0.667) which was larger than the 1su

component (BA,B(4i) ¼ 0.407). The 2sg orbital had negligible BO
contribution (BA,B(4i) ¼ 0.045). These bond order components
sum to BO¼ 2.727. Our ndings are in agreement with a carbon
dimer bond order of 2–3 caused by four bonding components
(i.e., two smaller s-bonding components and two larger p-
bonding components) reported by several research groups as
discussed by Hermann and Frenking.16

Fig. 2B displays corresponding information for Mo2. Six
NSOs (two p, two s, and two d) have nearly equal BOCs (BA,B(4i)
¼ 0.625–0.649) to give BO ¼ 4.120. The p and d NSOs are pure
d hybrids, while the s NSOs hybridize the dz2 orbital with s and/
or pz orbitals. Table 3 lists BOCA for Cr2 having BO ¼ 3.858,
which has similar BOCs toMo2. High BOs of Cr2, Mo2, and some
other transition metal dimers attracted considerable interest in
prior research.10,43 A CASPT2 study by Roos et al. investigated
Cr2, Mo2, W2, Ac2, Th2, Pa2, and U2 estimating BOs of 3.5 (Cr2)
and 5.2 (Mo2) using the NSO occupancy bond index (OBI),10

which is oen not as precise as the Manz BO.2

Wang et al. used the NSO OBI to study the Group 6 homo-
diatomics Cr2, Mo2, W2, and Sg2.43 They identied an electronic
state change from W2 to Sg2 that causes a substantial reduction
This journal is © The Royal Society of Chemistry 2019
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Fig. 2 Bond order component analysis (BOCA) for C2 (singlet), Mo2 (singlet), and O2 (triplet) molecules using the natural spin-orbitals. Orbital
occupancies are given in parentheses. Bond order components are listed without parentheses.
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in the bond order compared to earlier Group 6 homo-
diatomics.43 Specically, in Sg2 the 1su (anti-bonding) orbital
becomes doubly occupied by vacating one of the 1dg (bonding)
orbitals.43 Our computations showed singlet W2 is near such
a transition. Specically, our CCSD/SDD calculation for W2

converged to a state with lled 1su (anti-bonding) orbital, which
yielded bond length (B.L.) ¼ 2.235 Å and DDEC6 BO ¼ 3.194.
Our PBE/MUGBS calculation with 4th order Douglas–Kroll–Hess
This journal is © The Royal Society of Chemistry 2019
Hamiltonian and spin–orbit coupling converged to a state with
empty 1su (anti-bonding) orbital (similar to Mo2 and Cr2),
which yielded B.L.¼ 2.017 Å and DDEC6 BO¼ 3.842. Therefore,
the BO of W2 has substantial uncertainty.

The anti-bonding versus bonding characteristic of an orbital
cannot be assigned based on whether the orbital has positive or
negative bond order component BA,B(4i) which is based on
electron exchange. As an example, consider a homodiatomic AB
RSC Adv., 2019, 9, 17072–17092 | 17077
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Table 3 Bond order component analysis for Cr2. Legend: occ. ¼ NSO
occupancy, BOC ¼ bond order component

Cr2

occ. BOC

Core 35.87 0.168
1px,u 1.91 0.608
1py,u 1.91 0.608
1sg 1.91 0.601
2sg 1.89 0.606
1dg,xy 1.89 0.598
1dg,x2�y2 1.89 0.598
Other 0.73 0.071
Total 48 3.858
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that contains only one occupied orbital, with equivalent elec-
tron density distributions on both atoms. Since there are no
other occupied orbitals and the orbital self-exchange over each
atom is 1

2, then sA,B(4i) ¼ 2(12)(
1
2) ¼ 1

2 independent of whether the
orbital is bonding or anti-bonding. Hence, both bonding and
anti-bonding orbitals may have positive values of BA,B(4i).

Fig. 2C and D display alpha and beta results for O2 (calcu-
lated BO ¼ 1.962) in the spin-polarized triplet state (S ¼ 1, SZ ¼
1). Here, the alpha NSOs diagonalize the alpha density matrix,
and the beta NSOs diagonalize the beta density matrix. This
molecule presents a natural experiment showing that occupying
an anti-bonding orbital decreases the BOC of the associated
bonding orbital. This cancellation occurs because electron
exchange between a bonding orbital and the corresponding
anti-bonding orbital is out-of-phase with the bonding orbital's
self-exchange. The spin-up (alpha) electrons occupy both the p-
bonding (1pu,x and 1pu,y) and p-anti-bonding orbitals (1pg,x

and 1pg,y), while the beta electrons occupy the p-bonding but
not the p-anti-bonding orbitals. The four p-orbitals have
negligible BOCs for the alpha electrons (BA,B(4i) ¼ 0.050), while
the two p-bonding orbitals have large BOCs for the beta elec-
trons (BA,B(4i)¼ 0.416). The 1sg and 1su orbitals showed little s-
p mixing leading to almost full bonding-antibonding cancella-
tion (net BOC¼ 0.079 for alpha and 0.114 for beta). Accordingly,
the 2sg orbital shows substantial bonding (0.371 for alpha and
0.338 for beta).
2.3 Three ways semicore electrons affect valence electron
bonding

Semicore electrons ll subshells one level deeper than the cor-
responding valence subshells. They are more diffuse than core
electrons but not as diffuse as valence electrons. Semicore
electrons have three effects on valence electron bonding.

First, core and semicore electrons electrostatically screen
valence electrons from the nuclear charge. It is common
knowledge that s subshell electrons have nonzero density at the
nucleus, while p, d, and f subshell electrons have zero density at
the nucleus. Consequently, the s subshell valence electrons are
less shielded and less diffuse than p, d, or f subshell electrons
having the same principle quantum number.

Second, semicore electrons most efficiently screen valence
electrons from the same subshell type (e.g., s semicore
17078 | RSC Adv., 2019, 9, 17072–17092
screening s valence, p semicore screening p valence). This is due
to the similar angular dependence of orbitals having same
subshell type. This causes the inaugural subshell effect in which
the rst valence subshell of any type (i.e., 1s, 2p, 3d, 4f) is
comparatively less diffuse, because there is no corresponding
semicore subshell of the same type. This has profound and
widespread effects on chemical bonding. 3d valence electrons
are more localized than 4d and 5d valence electrons, as man-
ifested by local magnetic moments for many 3d elements, while
the 4d and 5d elements are less prone to magnetism.44 (Among
d-block pure element solids in their lowest energy phases, bulk
Cr is anti-ferromagnetic, bulk Mn has non-collinear magne-
tism, bulk Fe and Co and Ni are ferromagnetic, and all others
are non-magnetic or paramagnetic.45) Similarly, many 4f
elements develop local magnetic moments.44 In main group
chemistry, the 2p elements are special, because the 2s and 2p
orbitals have similar effective radii, which promotes strong s–p
hybridization.46 In contrast, the 3p orbital effective radius is
much larger than the 3s orbital effective radius, leading to lesser
s–p hybridization for period 3 (and heavier) elements compared
to period 2 elements.46

Third, diffuse semicore electrons make the dressed-
exchange hole less diffuse in the bonding region, leading to
smaller BOs. Because the dressed-exchange hole ðrDX_holeð~r;~r0ÞÞ
integrates to exclude exactly one electron, any positive semicore
density near position~r must result in rDX_holeð~r;~r0Þ decreasing
farther away from~r.2 The BO depends on the dressed-exchange
hole delocalization factor LA,B (see eqn (2) and (3)). Thus,
making the dressed-exchange hole less delocalized decreases
the BO.2 Multiple-order bonds have shortened bond lengths
compared to a single-order bond between the same pair of
elements. Thus, density overlap between semicore and valence
electrons and the corresponding BO weakening effect will be
larger for multiple-order bonds than for a single-order bond
between the same pair of elements. Consequently, chemical
elements with diffuse semicore electrons oen prefer single-
order bonds to multiple-order bonds. For this reason,
multiple-order bonds are less common for heavier elements
than for lighter elements in Groups 13–16.47

Examining Table 1, homodiatomic BOs systematically
decrease down most of the main chemical groups except the
halogens, noble gases, and alkaline earths. The halogens have
already been discussed above. Dispersion bonding in the noble
gas homodiatomics increases with atomic number. Fig. 3
quanties (semi-)core electron diffuseness for Groups 1–2 and
13–17. This data supports the following observations. For
alkaline earths (Group 2), there is a strong jump in semicore
electron diffuseness from Be2 to Mg2 with corresponding huge
BO decrease from 0.648 to 0.281, with smaller changes from
Mg2 to Ca2 to Sr2. Both the BO and the dissociation energy (see
Table S2 of ESI†) show a minimum at Mg2. Many authors
investigated vibrational and excitation modes of alkaline earth
homodiatomics.48–50 For Groups 13–14, the large decrease in BO
from period 2 to 3 is not accompanied by increased semicore
electron diffuseness, but should be attributed to electronic state
changes. In Group 14, C2 is a spin singlet while Si2, Ge2, and Sn2

are spin triplets. In Group 13, B2 and Al2 are both triplets, but
This journal is © The Royal Society of Chemistry 2019
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Fig. 3 Graphic showing diffuse semicore electrons decrease the bond order. (A) Plot of core electron density versus distance along the C–C axis
in C2. The red, brown, and green lines demarcate the 10�1, 10�2, and 10�3 e bohr�3 electron density thresholds corresponding to the distances
d�1, d�2, and d�3, respectively. (B) Formula used to compute the percentage of the bond length for which the (semi-)core electron density is
above each threshold (aka ‘(semi-)core percentages’). (C) Partial periodic table (periods 2–5 and groups 1–2, 13–17) showing trends in the bond
orders (black) and (semi-)core percentages corresponding to the respective density thresholds (red, brown, and green).
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have different orbital angular momenta; the term symbols are
3Sg

� for B2 and 3Pu for Al2.28 The subsequent gradual BO
decrease from periods 3 to 4 to 5 of these groups can be
attributed to increased semicore electron diffuseness. For
Groups 1 and 15, the BO steadily decreases from period 2 to 3 to
4 to 5. In Group 15, the inaugural subshell effect causes an
enhanced BO decrease between periods 2 and 3. GVB calcula-
tions showed the bonding electrons become less perfectly
paired when going from N2 to P2 to As2.51 Groups 16–17 have
less diffuse semicore electrons than Group 15; this results in
less BO weakening when going down these groups compared to
Group 15. The slight increase in computed BO from O2 to S2 is
not statistically signicant, because it is within the �5%
chemical accuracy of the method.2

BO changes when going down these groups are not
straightforwardly attributable to s–p mixing changes. Fig. 4
shows s–p mixing is strong for both the light and heavy
elements of Groups 1–2 and 13–15 but not 16–18. Because
Groups 1–2 and 13–14 contain an unoccupied 2sg orbital, s–p
mixing will occur in the 1sg orbital to increase the density
concentration in the space between the two atoms. Because the
1sg and 2sg orbitals are orthonormal and comprised of the s
and p atomic orbitals, s–p mixing has negligible impact on the
total electron density distribution when both the 1sg and 2sg

orbitals are fully occupied (i.e., Groups 15–18). Since any linear
combination of fully occupied 1sg and 2sg orbitals is nearly an
This journal is © The Royal Society of Chemistry 2019
eigenstate of the rst-order density matrix for Groups 15–18, the
fully occupied 1sg and 2sg orbitals can be chosen arbitrarily to
either have or not have s–p mixing. When 2sg is mostly unoc-
cupied, s–p mixing in the 1su orbital is largely driven by mini-
mizing the magnitude of the negative exchange interference
term in BOCA between occupied 1su and 1sg orbitals. When
both the 1sg and 2sg orbitals are nearly fully occupied, the total
exchange interference term between these two orbitals and the
1su orbital is insensitive to s–p mixing. Therefore, s–p mixing is
not meaningful for Groups 15–18.
2.4 Learning aids for chemistry education

2.4.1 Analogy between message transmission in
a computer network and bond orders in a material. We now
introduce an analogy to clarify BO related concepts. Consider
a network of computers connected by elementary channels that
transmit messages. As dened here, an elementary channel can
transmit at most one message at a time. The computers in the
network are analogous to atoms in the material, the channels
are analogous to spin-orbitals, and message transmission is
analogous to electron exchange. The ability of an elementary
channel to transmit at most one message at a time is analogous
to a NSO having an occupancy 0# gi # 1 for an N-representable
rst-order density matrix. The BO between atoms A and B, BA,B,
is analogous to the average number of messages being
RSC Adv., 2019, 9, 17072–17092 | 17079
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Fig. 4 1sg and 1su NSOs for high-level quantum chemistry calculations of period 2 and 4 main-group homodiatomics. (The C2 and O2 orbitals
are shown in Fig. 2.) The arrows indicate orbitals showing strong s–pmixing. S–pmixing is visible in a 1sg orbital as pockets intruding into the two
ends of the orbital. S–p mixing is visible in the 1su orbital as pockets intruding into the lobe centers. Numbers in parentheses are the orbital
contour values in atomic units. For each molecule, the contour value was chosen to maximize visual clarity.
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concurrently transmitted between computers A and B in the
network. The bond order component, BA,B(4j), is analogous to
the average number of messages being concurrently trans-
mitted between computers A and B via channel j in the network.
By denition, summation over all channels must recoup the BO
(eqn (4)). Just as we can dene different sets of spin-orbitals (in
addition to the NSOs) to represent the same electron density
distribution, we could also dene different sets of channels (in
addition to the elementary channels) to represent the same
network. For example, non-elementary channels might be
dened in terms of transmission mode (e.g., via satellites,
optical bers, copper wires, etc.), frequency band (e.g., radio
frequency transmissions), companies transmitting the signals,
etc. The total number of messages in the network (electrons per
unit cell of material) sums to N¼ B1,1 + B1,2 + B2,2 +.. Here, BA,A
is the average number of messages being internally processed in
computer A, which is analogous to electrons being exchanged
inside atom A. Matrix B elements can be non-integer because
they represent averages; for example, if the number of messages
being passed between computers A and B is 1, 2, 1, 3, 0, 1, 0, 1 at
eight different instances of time, then the average is BA,B ¼
1.125.

Most importantly, a spin-orbital cannot be classied as
bonding versus anti-bonding based on its BOCs. We propose the
bonding versus anti-bonding characteristic describes the
difference in overall performance between two states, while
BOCs quantify the particular division of message transmission
within one state. Using the computer network analogy,
a channel is classied as ‘anti-bonding’ if adding this channel
17080 | RSC Adv., 2019, 9, 17072–17092
to the network actually decreases overall message transmission
throughout the network. We introduce a collaboration index
(CI) quantifying change in network throughput. We dene
a spin-orbital or network channel as bonding (anti-bonding) if
the CI is positive (negative) and non-bonding if it is zero.
Consider a network comprised of two elementary channels,
called Red and Blue, that simultaneously transmits 0.8
messages over the Red channel and 0.7 over the Blue channel to
give 1.5 simultaneous transmissions. Suppose that adding
channel Green results in a new network state with 0.25
messages simultaneously transmitted over the Green channel,
0.53 over the Red channel, and 0.42 over the Blue channel to
give 1.2 simultaneous transmissions. Because the CI ¼ 1.2–1.5
¼ �0.3 is negative, the Green channel is anti-bonding. This is
true even though the Green channel transmitted 0.25 messages
simultaneously, which is analogous to a positive BOC.

2.4.2 Heuristic model for period 2 homodiatomics.
Heuristic models are idealized prototypes that serve as aids to
learning or discovery. Heuristic models prefer simplicity of
presentation and can oen be reproduced on a white board
without computerized calculations. Previously, many chemistry
textbooks taught heuristic BOs by using molecular orbital (MO)
diagrams combined with a classication of MOs as ‘bonding’ or
‘antibonding’ and equating the BO to half the sum of bonding
orbital populations minus anti-bonding orbital populations.
However, such an oversimplied approach cannot account for
the BOs of Be2, B2, or C2.

Period 2 homodiatomics (Li2, Be2, B2, C2, N2, O2, F2, and Ne2)
could potentially be an ideal series to teach BOs in chemistry
This journal is © The Royal Society of Chemistry 2019
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textbooks. DeKock and Gray discuss this series with quantita-
tive heuristic BOs for Li2, N2, O2, F2, and Ne2, but semi-
quantitative heuristic BOs of 0–1 for Be2, 1–2 for B2, and 2–3
for C2 using an s–pmixing argument.15 MO diagrams without s–
p mixing are notoriously wrong (i.e., predicting BOs of 0 for Be2,
1 for B2, and 2 for C2).15 Even though the MO diagram for Li2
without s–p mixing gives the correct heuristic BO ¼ 1, this
molecule has strong s-p mixing (see Fig. 4) which also yields
a heuristic BO ¼ 1.

Table 4 lists heuristic molecular orbitals for the period 2
homodiatomics. Each molecular orbital must be multiplied by
a normalization constant that is of order unity. In the spirit of
idealized simplicity, this heuristic model uses whole number
NSO occupancies. For the period 2 homodiatomics, eight
valence NSOs are of interest: 1sg, 1su, 1px,u, 1py,u, 2sg, 1px,g,
1py,g, 2su. Here, the prex 1 or 2 denotes the rst or second
valence NSO of that symmetry type. Our detailed quantum
chemistry calculations presented in this article conrmed these
NSOs ll in the order listed.

Each of the eight valence NSOs are expanded as a linear
combination of atom-in-material (AIM) orbitals. Here, the AIM
orbitals are not those of isolated atoms, but rather those of
atoms in the material which are effected by the molecular
environment. For example, an atomic s orbital in the molecule
might be less diffuse than that for the isolated atom.52 As
dened herein, each AIM orbital is orthogonal to all other AIM
orbitals on the same atom, but not to AIM orbitals on other
atoms. In the orbital composition, superscripts A and B refer to
atomic orbitals from the rst and second atoms, respectively.
For the diatomics, the origin is placed at atom A's nuclear
position, and atom B is located along the positive z-axis.
Methods for computing AIM orbitals from a quantum-
mechanically computed rst-order electron density matrix
have been described in the literature,53–55 but here we do not
require such an explicit computation. Within the natural
atomic orbital (NAO) and natural bond orbital (NBO)
formalism, the AIM orbitals described here would be analogous
to the pre-NAOs since pre-NAOs on the same atom are
Table 4 Heuristic model for period 2 homodiatomics. The molecular
each M.O., the expansion in terms of atomic orbitals and the collaboratio
that M.O. is the highest occupiedmolecular orbital (HOMO). The final colu
C.I.s for all filled MOs

M.O. Expansion in atomic orbitals

Core —
1sg ((O3sA + pz

A) + (O3sB � pz
B))/(2O2)

1su ((O3sA � pz
A) � (O3sB + pz

B))/(2O2)
1px,u, 1py,u (px

A + px
B)/O2, (py

A + py
B)/O2

1px,u, 1py,u (px
A + px

B)/O2, (py
A + py

B)/O2
2sg ((sA � O3pz

A) + (sB + O3pz
B))/(2O2)

1px,g, 1py,g (px
A � px

B)/O2, (py
A � py

B)/O2
1px,g, 1py,g (px

A � px
B)/O2, (py

A � py
B)/O2

2su ((sA + O3pz
A) � (sB � O3pz

B))/(2O2)

a The 1px,u and 1py,u orbitals are half-lled. b The 1px,u and 1py,u orbital
1py,g orbitals are lled.

This journal is © The Royal Society of Chemistry 2019
orthogonal while those on different atoms are not.54,56 The p-
orbitals are the easiest to expand, because they have negligible
s–p mixing.

Computations showed there is substantial s–p mixing in the s-
orbitals. As shown in Fig. 4, this is true even for Li2 in which 1sg is
the only valence orbital nearly fully occupied. S–pmixing lowers the
energy of this 1sg orbital by concentrating electron density between
the two atoms (see Fig. 4). For period 2 atoms, the s and p orbitals
have similar effective radii.46 Each p orbital has a maximum
amplitude that is O3 times that of the s orbital amplitude.38

The kinetic energy of an orbital is sensitive to how many
phase changes the orbital has and how abruptly these phase
changes occur. To make the orbital energetics most favorable,
the number of phase changes and their abruptness should be
minimized.

Fig. 5 plots the s–p atomic hybrid whose unnormalized value
along the z-axis is

sða; zÞ ¼ a e�zjzj|ffl{zffl}
s-function

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p ffiffiffi
3

p
ze�zjzj|fflfflfflfflffl{zfflfflfflfflffl}

p-function

(18)

where the parameter a controls the extent of s–p mixing. The
value s(a, z) ¼ 0 at z|z| ¼ 1 is a natural choice for balancing the
s–p mixing to create a smooth hybrid. Although this is not the
only possible choice, its simple functional form is appealing.
This corresponds to a ¼ ffiffiffi

3
p

=2, as shown in the red curve in
Fig. 5. Hence, the quantity of s–p mixing for the 1sg and 1su

orbitals of the period 2 homodiatomics can be estimated by
noting the similar s and p orbital radii and setting the atomic
hybridized orbital value to zero at either z|z| ¼ �1 or +1. This
clearly yields O3 : 1 for the s : pz ratio in these orbitals. The s : pz
ratios for the 2sg and 2su orbitals then straightforwardly
follows from the requirement that these orbitals be orthogonal
to the 1sg and 1su orbitals. For period 3 and beyond, the
valence p-orbitals have substantially larger effective radius than
the valence s-orbital, and this alters the amount of s–p mixing
compared to the period 2 atoms.46

Table 4 also lists the CI for each heuristic NSO. Restricted to
diatomic molecules, the collaboration index (CI) was estimated
orbitals (M.O.s) are listed according to the order they are filled. For
n index (C.I.) are listed. The fourth column lists the molecule for which
mn lists the heuristic BO for thatmolecule as obtained by summing the

C.I. Molecule
Heuristic
BO

0 — 0
1 Li2 1
�1

4 Be2 3
4

1 B2
a 134

1 C2
b 234

1
4 N2 3
�1 O2

c 2
�1 F2

d 1
�1 Ne2 0

s are lled. c The 1px,g and 1py,g orbitals are half-lled. d The 1px,g and
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Fig. 5 Plot of s-orbital (black), p-orbital (blue), and two s–p hybrids
along the z-axis of a single atom. A s–p hybrid with equal coefficients
of s and p orbitals is shown in green. The s–p hybrid (red) with (O3sA +
pz

A)/2 is approximately optimal, because it has a value of zero at zz ¼
�1.
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from scaled phase overlaps between the AIM orbital component
products:

CIð4iÞz
occupancyð4iÞ

2

0
@ X

zAB34*
i
4i

ðzABÞ2phaseðzABÞðLSCFðzABÞÞ
1
A

(19)

where phase (zAB)¼ 1 if the interaction is bonding (i.e., in-phase
orbital overlap) and �1 if the interaction is anti-bonding (i.e.,
out-of-phase orbital overlap). Here, zAB34*

i 4i refers to the
coefficient of an interatomic AIM orbital product occurring
within 4*

i 4i. The lobe size change factor (LSCF) equals one for
the period 2 homodiatomics; its meaning will be discussed in
Section 2.5 below. The (zAB)

2 occurs in eqn (19), because
mathematically this yields a purely in-phase CI ¼ 1 for a doubly
occupied orbital irrespective of the amount of s–p mixing.
Consider the generalized 1sg¼ ((OfsA + O(1� f)pz

A) + (OfsB� O(1
� f) pz

B))/(O2), where 0 # f < 1 controls the s–p mixing. Evalu-
ating eqn (19) for this orbital (which has all in-phase overlaps)
yields CI ¼ f2 (for (sAsB) term) + f(1 � f) (for sApz

B term) + (1 � f)f
(for pz

AsB term) + (1 � f)2 (for pz
Apz

B term) ¼ 1 independent of
the f value. The 1su orbital has some in-phase and some out-of-
phase overlaps. Expanding (1su)

2 ¼ (((O3sA � pz
A) � (O3sB +

pz
B))/(2O2))2 ¼ 3

8(s
AsA) � O3/4 (sApz

A) + 1
8(pz

Apz
A) + 3

8(s
BsB) + O3/

4(sBpz
B) + 1

8(pz
Bpz

B) � 3
4(s

AsB) � O3/4(sApz
B) + O3/4(pz

AsB) +
1
4(pz

Apz
B). (pz

Apz
B) is out-of-phase since the positive lobe of pz

A

overlaps the negative lobe of pz
B. Since (sAsB) is in-phase, then

�(sAsB) must be out-of-phase. (pz
AsB) is in-phase since the

positive lobe of pz
A overlaps the positive lobe of sB. Since (sApz

B)
is out-of-phase (i.e., positive lobe of sA overlaps negative lobe of
pz

B), then�(sApz
B) is in-phase. Hence, CI(1su)¼�((34)

2) + (O3/4)2

+ (O3/4)2 � (14)
2 ¼ �1

4.
We computed the heuristic BO for each period 2 homo-

diatomic as the sum over orbitals of orbital CI value times
17082 | RSC Adv., 2019, 9, 17072–17092
orbital occupancy. We then performed BOCA (eqn (4)–(17))
using these heuristic orbitals and heuristic BOs as input, which
yielded hA,B ¼ 0. This heuristic BOCA approximated the overlap
~Si,j

A of the AIM orbitals i and j as 1 if i ¼ j and AIM orbital i is
centered on atom A and 0 otherwise. Table 5 gives the heuristic
BOCA and Table S5 of ESI† gives the accurate QM-calculated
BOCA for these homodiatomics. Because two NSOs of the
same symmetry group having equal occupancies can be mixed
to form equally valid NSOs of the same symmetry group,
comparisons are most meaningful for orbital symmetry groups.
As shown in Table 6, the heuristic and QM-calculated BO
components for each orbital symmetry group are in fair agree-
ment, while the heuristic and QM-calculated BOs are in excel-
lent agreement. This excellent agreement means the Be2, B2,
and C2 bond orders are nally understood.
2.5 Manz bond orders and BOCA incorporate both kinetic
and potential energy contributions to bond order

In special relativity, the energy-momentum relationship

E ¼ V þ
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~pik2c2 þ ðmiÞ2c4

q
(20)

relates the momentum of particle i (~pi), the speed of light (c), the
rest mass of particle i (mi), the system's potential energy (V), and
the system's total energy (E). (Adapted from ref. 57 with
summation over particles.) For all applications considered
herein, the rest mass is constant. In this article, we are primarily
interested in time-independent energy eigenstates.

For such stationary states, the variation in total energy with
respect to innitesimal changes in any variational parameter (c)
is zero:

0 ¼ dE

dc
¼ dV

dc
þ
X
i

c2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~pik2c2 þ ðmiÞ2c4

q dk~pik2
dc

(21)

For a trial wavefunction, these variational parameters
include any adjustable parameters (e.g., basis set coefficients or
scaling parameters) in the trial wavefunction. When the bond
length is optimized, then the bond length is also considered to
be one of these variational parameters. When the bond length is
held constant (i.e., not optimized), then it is not considered to
be one of these variational parameters. At the stationary state,
potential energy changes with respect to any variational
parameter are related tomomentum changes with respect to the
same variational parameter:

dV

dc
¼
X
i

�c2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~pik2c2 þ ðmiÞ2c4

q dk~pik2
dc

(22)

Next, we consider a dilation that acts on both the nuclear
positions {~RA0 ¼ ~RA/l} and the electronic positions {~ei0 ¼~ei/l} to
uniformly shrink or enlarge the system:

J0
�n

~RA
0
o
;
n
~ei

0
o�

¼ l3N=2Jðf~RAg; f~eigÞ (23)
This journal is © The Royal Society of Chemistry 2019
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Table 5 Heuristic BOCA for the 2nd period homodiatomics. ‘occ’ is the heuristic number of electrons occupying that M.O. ‘BOC’ is the heuristic
bond order component from that M.O

M.O.

Li2 Be2 B2 C2 N2 O2 F2 Ne2

occ BOC occ BOC occ BOC occ BOC occ BOC occ BOC occ BOC occ BOC

Core 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0
1sg 2 1 2 3

8 2 21/40 2 33/56 2 3
4 2 3

4 2 3
4 2 0

1su 0 0 2 3
8 2 21/40 2 33/56 2 0 2 0 2 0 2 0

1px,u 0 0 0 0 1 7/20 2 11/14 2 1 2 1
2 2 0 2 0

1py,u 0 0 0 0 1 7/20 2 11/14 2 1 2 1
2 2 0 2 0

2sg 0 0 0 0 0 0 0 0 2 1
4 2 1

4 2 1
4 2 0

1px,g 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0
1py,g 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0
2su 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
Total 6 1 8 3

4 10 134 12 234 14 3 16 2 18 1 20 0
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where the pre-factor in eqn (23) ensures the wavefunction
remains normalized:D
J0
���J0
E
¼
þ
J0H

�n
~RA

0
o
;
n
~ei

0
o�

J0
�n

~RA
0
o
;
n
~ei

0
o�Y

i

d3~ei
0

¼
þ
l3N=2JHðf~RAg; f~eigÞl3N=2Jðf~RAg; f~eigÞ

Y
i

�
l�3d3~ei

� ¼ hJjJi

(24)

Since the quantum mechanical momentum per particle i is
given by

~pi

�
~r
�
¼

hJj � ffiffiffiffiffiffi�1p
ħdDirac

�
~r�~ei

�
V
!

ijJi
hJjdDirac

�
~r�~ei

�
jJi

(25)
Table 6 Comparison of calculated and heuristic BOCA for the 2nd period
close in occupancies can mix, the results are tabulated by orbital group.
occupancies. Calculated values are listed outside parentheses, while h
fractions are 3

8 ¼ 0.375, 34 ¼ 0.75, 21/40 ¼ 0.525, 7/10 ¼ 0.7, 33/56 ¼ 0.5

Orbital group

Li2 Be2

occ. BOC occ. BOC

Core 3.99 (4) 0.000 (0) 4.00 (4) 0.000 (
1 & 2sg 1.85 (2) 0.865 (1) 2.03 (2) 0.362 (
1 & 2su 0.03 (0) 0.003 (0) 1.77 (2) 0.257 (
pxu & pyu 0.12 (0) 0.056 (0) 0.12 (0) 0.022 (
pxg & pyg 0.00 (0) 0.000 (0) 0.08 (0) 0.004 (
Other 0.01 (0) 0.01 (0) 0.00 (0) 0.00 (0
Total 6 (6) 0.93 (1) 8 (8) 0.65 (34)

Orbital group

N2 O2

occ. BOC occ. BO

Core 4.00 (4) 0.000 (0) 4.00 (4) 0.0
1 & 2sg 3.94 (4) 1.001 (1) 3.93 (4) 0.8
1 & 2su 1.98 (2) 0.029 (0) 2.01 (2) 0.0
pxu & pyu 3.86 (4) 1.852 (2) 3.90 (4) 0.9
pxg & pyg 0.12 (0) 0.012 (0) 2.02 (2) 0.1
Other 0.10 (0) 0.03 (0) 0.12 (0) 0.0
Total 14 (14) 2.92 (3) 16 (16) 1.9

This journal is © The Royal Society of Chemistry 2019
we have for the dilated system

~pi
0
�
~r
.
l
�
¼ l~pi

�
~r
�

(26)

dk~pi 0
�
~r
.
l
�
k
2

dl
¼

dkl~pi
�
~r
�
k
2

dl
¼ 2lk~pi

�
~r
�
k
2

(27)

under the scale transformation. When the potential energy V is
almost entirely due to electrostatic interactions (as is the case
for a system of electrons plus atomic nuclei), then

V0(~r/l) z lV(~r) (28)

because the electrostatic potential is inversely proportional to
the distances between particles. Eqn (28) is only approximate
homodiatomics. Because orbitals of the same symmetry group that are
BOC ¼ sum of orbital bond order components, occ. ¼ sum of orbital
euristic values are listed inside parentheses. Decimal equivalents of
892857., 11/7 ¼ 1.5714285.

B2 C2

occ. BOC occ. BOC

0) 4.00 (4) 0.000 (0) 4.00 (4) 0.000 (0)
3
8) 2.24 (2) 0.626 (21/40) 2.34 (2) 0.712 (33/56)
3
8) 1.70 (2) 0.397 (21/40) 1.64 (2) 0.409 (33/56)
0) 1.94 (2) 0.773 (7/10) 3.76 (4) 1.572 (11/7)
0) 0.12 (0) 0.011 (0) 0.22 (0) 0.018 (0)
) 0.00 (0) 0.00 (0) 0.04 (0) 0.02 (0)

10 (10) 1.81 (134) 12 (12) 2.73 (234)

F2 Ne2

C occ. BOC occ. BOC

00 (0) 4.00 (4) 0.000 (0) 4.00 (4) 0.000 (0)
77 (1) 3.90 (4) 0.746 (1) 3.97 (4) 0.004 (0)
27 (0) 2.07 (2) 0.025 (0) 3.97 (4) 0.004 (0)
32 (1) 3.96 (4) 0.100 (0) 3.96 (4) 0.002 (0)
04 (0) 3.94 (4) 0.094 (0) 3.96 (4) 0.002 (0)
2 (0) 0.13 (0) 0.01 (0) 0.14 (0) 0.00 (0)
6 (2) 18 (18) 0.98 (1) 20 (20) 0.01 (0)

RSC Adv., 2019, 9, 17072–17092 | 17083
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due to the neglect of spin–orbit coupling and related effects.
Substituting eqn (27) and (28) into (22) and taking the limit l/
1 gives

V z
X
i

�k~pik2c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~pik2c2 þ ðmiÞ2c4

q (29)

which is a generalized Virial relationship (GVR). In the non-
relativistic limit (i.e., limit c / N), eqn (29) simplies to

V z
X
i

�k~pik2
mi

(30)

which gives potential energy (P.E.) z �2 kinetic energy (K.E.).
These Virial relationships show the P.E. of an energy eigen-

state is related to its K.E. Suppose we have a trial wavefunction
for which the K.E. is too small in magnitude compared to what
is required by the GVR. Using l > 1, we can shrink this system
until it satises the GVR, which will increase the magnitude of
the K.E. proportional to l2 and the P.E. magnitude proportional
to l. On the other hand, if the K.E. is too large in magnitude we
can dilate the system with l < 1 to satisfy the GVR. This was
already shown many years ago by Lowdin for the nonrelativistic
case.58 Here we see it also applies to relativistic quantum
chemistry.

This has the following applications to chemical bonding. By
the uncertainty principle, the smaller a particle's standard
deviation in position, the larger its standard deviation in
momentum:59

spositionsmomentum $ ħ/2 (31)

As described in Section 2.4 above, we can view a molecular
orbital (MO) as built from a linear combination of scaled AIM
orbitals. When unscaled AIM orbital lobes from neighboring
atoms overlap in-phase, they create an unscaled MO that has
larger lobes compared to the unscaled AIM orbitals. This
enlarged unscaled MO lobe has larger position standard devi-
ation than the parent unscaled AIM orbital lobes, which by the
uncertainty principle means this unscaled MO has reduced
standard deviation in momentum (and hence lower kinetic
energy) than the unscaled AIM orbital lobes. To satisfy the Virial
relation, the system must shrink (l > 1) until the K.E. and P.E.
achieve Virial balance. This shrinking reduces the optimized
bond length and increases both the P.E. magnitude and K.E.
Hence, in-phase (aka ‘bonding’) interactions of AIM orbitals
from neighboring atoms leads to shortened bond length and
lower overall system energy. Ruedenberg et al. quantied this
Virial balancing process for a few diatomics.52,60,61

Out-of-phase overlaps between AIM orbital lobes from
neighboring atoms produce the opposite effect. When unscaled
AIM orbital lobes from neighboring atoms overlap out-of-phase,
they create an unscaled MO that has smaller lobes compared to
the unscaled AIM orbitals. This smaller unscaled MO lobe has
smaller position standard deviation than the parent unscaled
AIM orbital lobes, which by the uncertainty principle means
this unscaled MO has increased standard deviation in
momentum (and hence higher kinetic energy) than the
17084 | RSC Adv., 2019, 9, 17072–17092
unscaled AIM orbital lobes. To satisfy the Virial relation, the
system must dilate (l < 1) until the K.E. and P.E. achieve Virial
balance. This enlarging increases the optimized bond length
and decreases both the P.E. magnitude and K.E. Hence, out-of-
phase (aka ‘anti-bonding’) interactions of AIM orbitals from
neighboring atoms leads to longer bond length and higher
overall system energy.

Electron exchange is a key part of the P.E. changes during
chemical bonding. Because the Virial relation is properly
between the K.E. and P.E., we can rescale the number of elec-
trons exchanged to describe the P.E. contribution to bond order
between two atoms in a material. This is why the Manz bond
order is based on a dressed-exchange (i.e., rescaled exchange)
rather than on a pure exchange.2 A previously discussed
example illustrates this point.2 Consider the H2

+ system as the
inter-atomic distance is stretched to innity. When the two
atoms are innitely separated, their total energy equals the sum
for an isolated H atom plus an isolated H+ ion; therefore, the
bond dissociation energy is zero. The symmetric state, with 0.5
electrons located around each nucleus, is a quantum superpo-
sition of the two symmetry broken states: [H .. H+] and [H+ ..
H]. All three states have equal energies. The symmetric state has
2(12)(

1
2) ¼ 1

2 of an electron exchanged between the two atoms with
atom self-exchange accounting for the other 1

4 +
1
4 ¼ 1

2 electron.
The symmetry broken states have one self-exchanged electron
on the H atom, zero on the H+ ion, and no electrons exchanged
between the two atoms. Consequently, bond indices based on
pure electron exchange (e.g., Mayer bond index3,62,63) or delo-
calization of the exchange–correlation hole across atom pairs
(e.g., second-order delocalization index64) give different results
for the symmetric and symmetry broken states of H2

+, even
though their energies are equal. The Manz bond order solves
this problem by scaling the exchange contributions (aka
dressed-exchange) according to the density overlaps between
atoms, which always produces a bond order of zero for non-
overlapping atoms.2 This is physically sound, because non-
overlapping atoms do not share any in-phase or out-of-phase
AIM orbital overlaps.

The Virial relation quanties overall system changes in K.E.
and P.E. The Virial relation does not require these changes to
take place within the same MO. Hence, a change in K.E. of one
MO could be Virial balanced by a change in P.E. of another M.O.
This is crucial to understanding the distinction between the
collaboration index (C.I.) based on orbital overlap phase char-
acteristics and the bond order component (BOC) based on
dressed-exchange. Specically, the C.I. quanties the kinetic-
based contribution of each spin-orbital to bond order, while
the BOC quanties the dressed-exchange contribution of each
spin-orbital to bond order. By the Virial relation, the total
kinetic-based and total dressed-exchange based contributions
to bonding are equal, even though these can be distributed
differently among the MOs.

Specic examples quantify these concepts. First, we revisit
the Mo2 example shown in Fig. 2. Among the six doubly-
occupied valence orbitals, the 1dg,x2-y2 and 1dg,xy orbitals
show large lobe size increases compared to the parent AIM
orbitals. The inner lobes of the 1pu,x and 1pu,y orbitals also
This journal is © The Royal Society of Chemistry 2019
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show larger sizes due to in-phase AIM orbital overlaps. In
contrast, the 1sg and 2sg orbitals show negligible lobe size
increase compared to the parent AIM orbitals. This demon-
strates the need for a Lobe Size Change Factor (LSCF) to be
included in eqn (19) when computing the C.I. This LSCF should
be�1 when in-phase (out-of-phase) AIM orbital overlaps lead to
substantially increased (decreased) lobe sizes, but �0 when the
AIM orbital overlaps have negligible effect on the lobe size. With
this inclusion, the C.I. would be �0 for the 1sg and 2sg orbitals
and �1 for the other four valence orbitals leading to a heuristic
Mo–Mo BO ¼ �4, which agrees with the DDEC6 BO ¼ 4.120.
Since all six valence orbitals have sA,B(4i) z 1, then kA,B z 2/3.
Thus, this example illustrates different distributions of C.I.s
versus BOCs across valence orbitals.

Fig. 6 shows BOCA for the Mo2(acetate)4 molecule. This
compound attracted interest in prior studies of metal–metal
multiple bond orders.65–68 The geometry and electron density
were optimized in Gaussian16 using the B3LYP exchange–
correlation functional with def2tzvppd basis sets. Our opti-
mized Mo–Mo bond length in Mo2(acetate)4 was 2.058 Å
compared to the experimental value69 of 2.09 Å. BOCA was
performed using the Pipek–Mezey localized orbitals. Fig. 6
shows the four orbitals giving the main contributions to the
Mo–Mo bond order, plus two orbitals giving the main contri-
butions to the Mo–O bond order. The sum of bond orders (SBO)
and NAC are listed for each atom in the material. The Mo–Mo
bond order is 1.46 and the Mo SBO is 4.07. The Mo–O bond
order is 0.59. The Mo NAC is 0.948, and the O NAC is �0.585.
Altogether, these descriptors quantify the effects of acetate
ligation on Mo–Mo bonding. One electron is transferred from
each Mo atom to the ligands, for a total of two electrons
transferred to the ligands. The four Mo–Mo orbitals share some
Fig. 6 Bond order component analysis for Mo2(acetate)4 using the
Pipek–Mezey localized orbitals of the B3LYP/def2tzvppd electron
density matrix. The corresponding bond order component per orbital
is listed. For each orbital, the total number of analogous orbitals is
shown in parentheses. For each displayed Mo–O bonding orbital, the
eight analogous orbitals correspond to one per oxygen atom. There
are four Mo–Mo bonding orbitals. The two 1pu orbitals (top right panel)
are rotated 90� relative to each other. The right column lists computed
partial atomic charges, SBOs, and selected bond orders.

This journal is © The Royal Society of Chemistry 2019
electron density and exchange interactions with the ligands,
meaning they contribute partly to the Mo–Mo bond and partly
to the Mo–ligand bonds. In-phase AIM overlaps for one of the
Mo–Mo orbitals (i.e., the one with BOC ¼ 0.356 in Fig. 6)
appears to yield little lobe size enlargement. Together, these two
factors could account for the Mo–Mo bond order being 1.46
rather than �4. The bonds between Mo and the ligands bring
the Mo SBO up to �4. SBOs for the remaining elements in this
material are 2.34 (O), 4.06 (C carboxylic), 3.91 (C methyl), and
0.99 (H), which are within typical ranges for these elements.
Each C–O bond order in the carboxylate group was 1.46, which
is near the heuristic bond order of 112. The C–H bond order of
0.92 was near the heuristic bond order of 1.

Our nal example compares the ClO� anion to neutral ClO.
As shown in Table 2, ClO� has a relatively high DDEC6 BO of
1.74 compared to its heuristic BO of 1. In contrast, ClO has
a DDEC6 BO of 1.647 which is closer to its heuristic BO of 112.
Density and geometry based descriptors are now considered.
First, the computed bond lengths are 1.667 (ClO�) and 1.563
(ClO) Å. Second, the DDEC6 hr3i moments of atoms were 84.03
(Cl) and 36.02 (O) bohr3 in ClO� compared to 60.71 (Cl) and
22.99 (O) in ClO, which clearly shows more diffuse atoms in the
anion. Third, the electron density at the bond critical point
(computed using Multiwfn) was 20.2% lower for ClO�

compared to ClO. Fourth, the DDEC6 overlap population
(contact exchange) was 5.3% (6.2%) higher for ClO� compared
to ClO. Taken together, these results show that ClO� has
a longer bond length and lower bond critical point density than
neutral ClO, but the increased diffuseness of atoms in ClO�

causes larger atomic overlap, contact exchange, and DDEC6 BO
compared to ClO. DDEC6 partitioning was reliable for both
ClO� and ClO, as evidenced by the modest magnitudes of the
atomic dipole moments (#0.36 atomic units) and atomic
quadrupole traceless tensor eigenvalues (#0.54 atomic units).
The molecular dipole magnitudes (in atomic units) based on
the NACs were 1.19 (ClO�) and 0.47 (ClO) compared to 0.97
(ClO�) and 0.49 (ClO) from the electron density grid.

We now compare orbital-based descriptors for the ClO�

anion to neutral ClO. Fig. 7 illustrates the NSOs and BOCA for
ClO and ClO�. It is readily apparent that each s-orbital and p-
orbital is lopsided, with larger lobe size and more electron
density concentrated on one of the two atoms. The occupied
spin-up and unoccupied spin-down 1pg,x orbitals in ClO
provide a natural experiment. In the occupied spin-up 1pg,x

orbital, the lobe on the Cl atom is large while the lobe on the O
atom is small. This minimizes the kinetic energy, because the
larger Cl atom size provides a large lobe diameter. Orthogo-
nality between the 1pg,x and 1pu,x spin-up orbitals then requires
that the 1pu,x spin-up orbital is pear-shaped with the larger end
on the O atom than on the Cl atom. Because the 1pg,x spin-down
orbital is unoccupied, the kinetic energy is minimized by
making the 1pu,x spin-down orbital pear-shaped with the larger
end on the Cl atom. Hence, kinetic energy factors cause the
pear-shaped 1pu,x to ip over between the spin-up and spin-
down orbitals. In the ClO� anion, both the spin-up and spin-
down 1pg,x orbitals are occupied. Hence, in ClO� the 1pg,x

orbital has a larger lobe on the Cl atom, while the pear-shaped
RSC Adv., 2019, 9, 17072–17092 | 17085
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Fig. 7 Bond order component analysis (BOCA) for the ClO (doublet)
molecule and ClO� (singlet) anion using the natural spin-orbitals.
Orbital occupancies are given in parentheses. Bond order components
are listed without parentheses. The oxygen atom is displayed in red,
while the chlorine atom is displayed in green.

Table 7 BOCA parameters k and h for selected diatomics and
Mo2(acetate)4

k h k h

H2
+ 0.60 0.00 Ca2 0.86 0.00

H2 0.96 0.00 Cr2 0.67 0.00
Li2 0.96 0.00 Ge2 0.80 0.00
Be2 0.81 0.00 As2 0.79 0.00
B2 0.84 0.00 Mo2 0.71 0.00
C2 0.88 0.00 Sb2 0.73 0.00
N2 0.99 0.00 ClO 0.91 0.00
O2 0.88 0.00 ClO� 1.00 0.15
F2 0.79 0.00 Mo2(acetate)4 0.45 (Mo–Mo) 0.00
Ne2 1.00 0.03 1.00 (Mo–O) 0.00

Fig. 8 Histogram for the bond length error. This plot includes all the
homodiatomics and heterodiatomics for which reference experi-
mental bond lengths are listed.
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1pu,x orbital has the larger end on the O atom. Hence the
occupied spin-down 1pu,x orbital ips over (aka ‘shape-shis’)
between ClO and ClO�. This effect plus the more diffuse
orbitals contributes to the high Manz BO in ClO�. As shown in
Fig. 7, the 2sg orbital has the highest BOC in both ClO and
ClO�. In ClO but not ClO�, the 1pu,x spin-down orbital also has
a large BOC. All other orbitals have small BOCs.

Finally, Table 7 summarizes the computed BOCA parameters
k and h for several materials. As shown in eqn (5), 0 # k # 1
scales the orbital exchange interference term, while 0 # h # 2
scales the exchange non-interference term. From eqn (16) and
(17), h can be non-zero only when k reaches the upper or lower
bound: h ¼ 0 if 0 < k < 1. For highly stretched bonds between
adjacent atoms, one would normally expect k � 1 due to the
small density overlaps between atoms. For highly compressed
bonds between adjacent atoms, one would normally expect h > 1
due to the large density overlaps between atoms. Near the
equilibrium bond length, one would normally expect kz 1 and
h z 0 between adjacent atoms, except when additional factors
come into play.
17086 | RSC Adv., 2019, 9, 17072–17092
Table 7 highlights six such additional factors. First, Ne2 is
bonded primarily by London dispersion interactions producing
a h value slightly greater than zero. Second, orbital shape-
shiing and diffuseness leads to a relatively high DDEC6 BO
in ClO� which produces h slightly greater than zero. Third, the
reduced LSCFs of 1sg and 2sg orbitals in Mo2 and Cr2 leads to k

z 2
3 in these compounds. Fourth, electrostatic repulsion

between the two atoms produces k substantially less than 1 in
H2

+. Fih, diffuse semi-core electrons in multiple order bonds
can lead to decreased k (e.g., k ¼ 0.73 for Sb2 with BO ¼ 2.124).
Sixth, DFT (at zero temperature) yields an idempotent density
matrix that forces electrons to fully occupy the lowest energy
orbitals, but correlated wavefunction methods exhibit partial
occupancy of the excitation orbitals. Since excitation orbitals
are collectively more anti-bonding, this oen requires a smaller
k for DFT orbitals than for correlated wavefunction NSOs to
produce the same BO. For example, the DFT orbitals of Mo2(-
acetate)4 have k ¼ 0.45 for the Mo–Mo bond.
3 Conclusions

Bond order is a fundamental chemical concept that quanties
the number of electrons dressed-exchanged between two atoms
in a material.2 Because diatomics are the smallest chemical
systems possessing a chemical bond, they have foundational
This journal is © The Royal Society of Chemistry 2019
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importance to chemistry education pertaining to bond orders.
In spite of this fundamental importance, there have been no
prior systematic studies of accurate quantum-mechanically
calculated bond orders across a large number of diatomics. In
this article, we computed bond orders for 288 diatomics
including 65 homodiatomic molecules, 217 heterodiatomic
molecules, and 6 diatomic ions. We showed bond order is
strongly correlated to bond energy within the same chemical
group but not necessarily between different chemical groups.
For halogens, we showed the large increase in bond order and
bond energy from F2 to Cl2 is due to exchange polarization in
Cl2. We discussed ways semi-core electrons affect bond orders
across the periodic table: (a) electrostatic screening, (b) inau-
gural subshell effect, and (c) dressed-exchange hole localiza-
tion. We correlated semi-core electron diffuseness to bond
order weakening down various chemical groups.

We introduced a bond order component analysis (BOCA)
that assigns bond order components to spin-orbitals. This
BOCA is derived from rst-principles and works for any spin-
orbitals that are a unitary transformation of the natural spin-
orbitals. This provides a signicant advance by showing how
to assign bond order components to spin-orbitals in such a way
that any choice of spin-orbitals always reproduces the same
bond orders. These bond orders are a functional of the electron
density and spin magnetization distributions providing
consistency across different quantum chemistry methods.2 This
BOCA provides chemical insights by showing how different
orbitals and orbital symmetry groups (e.g., sg, su, pg, pu, dg, du)
contribute to the bond order between two atoms in a material.
As examples, we presented detailed BOCA for all period 2
homodiatomics, plus Mo2, Cr2, ClO, ClO

�, and Mo2(acetate)4.
Using these examples, we demonstrated important bond order
concepts related to the Virial equilibrium between kinetic and
potential energy: (a) bond orders are caused by kinetic energy
scaled electron exchange (aka dressed exchange) between atoms
in a material, (b) the bond order can be much less than the
number of bonding orbitals when in-phase orbital overlaps are
only partially effective (e.g., C2, Mo2, and Mo2(acetate)4), and (b)
orbital shape-shiing can minimize kinetic energy (e.g., p-
orbitals in ClO and ClO�).

We also introduced heuristic models as learning tools. First,
we introduced an analogy between passing messages in
a computer network and exchanging electrons in a material.
The bond order (i.e., number of electrons dressed-exchanged) is
analogous to the number of messages being concurrently
passed between two computers in the network. A spin-orbital in
a material is analogous to a channel in the network. We
proposed the bonding versus anti-bonding characteristic
describes the difference in overall performance between two
states, while bond order components quantify the particular
division of message transmission across channels within one
state. A spin-orbital is anti-bonding if occupying it decreases the
overall bond order, which is analogous to a channel being anti-
bonding if adding it to the computer network decreases overall
message transmission in the network.

Second, we introduced heuristic molecular orbitals and their
associated bond orders and bond order components for all
This journal is © The Royal Society of Chemistry 2019
period 2 homodiatomics. The four s orbitals had substantial s–
p mixing whose magnitude was estimated. Most interestingly,
the heuristic bond orders were 3

4 for Be2, 1
3
4 for B2, and 234 for C2,

which conrms these bond orders are non-integer. Heuristic
BOCA used these heuristic molecular orbitals and heuristic
bond orders as inputs. As summarized in Table 6, there is good
agreement between bond order components for sg, su, pu, and
pg orbital symmetry groups for this heuristic model compared
to the high-level quantum chemistry calculations. Our
computed carbon dimer BOs of 2.73 (eqn (2)), 2.65 (bond length
interpolation from Introduction above), and 234 (heuristic
model) are consistent. This clearly demonstrates that bond
orders are nally understood for all period 2 homodiatomics,
including Be2, B2, and C2 for which there was much previous
disagreement.

4 Methods
4.1 Study design

The molecules selected were: (1) all main group homodiatomics
for periods 1–6, (2) transition metal (d-block) homodiatomics
for periods 4–6 for which we found literature-reported experi-
mental spin states or bond lengths, (3) heterodiatomics that
have spectroscopic constants and dissociation energies avail-
able in CRC Handbook of Chemistry and Physics 97th edition,28

and (4) selected ions (H2
+, HO�, CN�, CN+, BC�, ClO�). Where

available, experimental spin states were used for calculations.
For molecules and ions without available experimental spin
states, we performed calculations using multiple spin states to
identify the lowest-energy spin state.

The quantum calculation methods used in this study were
coupled-cluster singles doubles (CCSD), symmetry adapted
cluster conguration interaction (SAC-CI), and complete active
space self-consistent eld (CAS-SCF). These methods include
electron correlations without empirical parameterization. The
CCSD(full) method included single and double excitations of all
electrons (except relativistic effective core potential in basis set)
from a single reference state.70 The SAC-CI method included
single, double, and unlinked quadruple excitations (i.e., prod-
ucts of double excitations) of valence electrons from a symmetry
adapted minimal multi-reference spin state.71,72 The CAS-SCF
method is a multi-reference conguration interaction method
including all excitations within an active space.73 Due to high
computational cost of CAS-SCF, it was only feasible to include
up to around 16 valence orbitals in the active space. CAS-SCF
was used for B2, C2, BN (both singlet and triplet states), CN+

and BC�, which required multi-reference wavefunctions.16,23,30

B2 used 8 doubly-occupied orbitals in the active space; all others
used 16 doubly-occupied orbitals in the active space. SAC-CI was
used for the weakly binding elements having lled subshells
but not lled shells (i.e., groups 2 and 12 homodiatomics),
because CCSD was not sufficiently accurate (i.e., bond length
errors >10%) and SAC-CI allowed more orbitals to be correlated
than the more expensive CAS-SCF. The weakly binding Mn2

(half-lled d-subshell) used SAC-CI because CCSD did not
converge and CAS-SCF was too expensive. For the weakly bound
XeF spin doublet, a CCSD(full) electron density was generated at
RSC Adv., 2019, 9, 17072–17092 | 17087
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the SAC-CI optimized geometry (which was nearly identical to
the experimental geometry), because CCSD and CAS-SCF (15
electrons in 13 alpha orbitals and 13 beta orbitals) yielded bond
length errors >30% and wfx le generation was not available
using the SAC-CI spin doublet electron density. Everything else
used CCSD(full). Wavefunctions and bond orders for 25
diatomics (which also used these same methods) were from
Manz's prior study.2

Manz's method to compute bond orders was used, because it
accurately computes bond orders as a functional of the electron
and spin density distributions.2 This makes the bond orders
consistent across different quantum chemistry methods (i.e.,
exchange–correlation theories and basis sets).2 It is derived
from rst-principles and applies to a wide range of materials
and bonding types.2

4.2 Quantum calculation methods

We performed the quantum chemistry calculations using the
Gaussian16 program.74 To ensure the calculation results are
meaningful, we optimized the bond length in Gaussian16 and
compared the optimized bond length to the experimental data.
The geometry optimization convergence criteria were root-mean
squared (RMS) force is less than 0.0003 Hartrees per bohr and
RMS displacement is less than 0.0012 Bohr. Since the geometry
optimization of Mn2 did not numerically converge (due to
soware issues), we used the experimental bond length of 3.4 Å
(ref. 75) for this molecule.

We used the def2QZVPPD basis set76 downloaded from the
EMSL basis set exchange.77 This is a quadruple zeta basis set
with two polarization and one diffuse functions. This basis set
uses RECPs for Rb (element 37) and heavier elements. The
number of electrons included in the RECPs is 28 for elements
37–54, 46 for elements 55–57, and 60 for elements 72–86. Since
SAC-CI calculations using def2QZVPPD did not converge for
Ca2, Sr2, and Ba2, the def2TZVPPD basis set76 was used for these
molecules. ForW2, our CCSD calculations did not converge with
either of these two basis sets, so we used the SDD basis set from
the EMSL basis set exchange having a RECP replacing 60 core
electrons.77,78 All properties, including the correlated relaxed
electron density, were computed using the same basis set and
exchange–correlation theory (except for XeF as noted above) as
used to optimize the molecular geometry.

For each molecule computed via the SAC-CI method, a prelim-
inary (‘level one’) calculation computed energies across eight
different symmetry states to identify the low-energy symmetry
state. SAC-CI geometry optimization was subsequently performed
in Gaussian16 using the accurate default cutoffs (‘level three’), with
the target state set to the appropriate low-energy symmetry. Three
macro iterations were performed to ensure self-consistent orbital
selection during geometry optimization.79

4.3 Bond analysis methods

Natural spin-orbitals (NSOs) were computed in Gaussian16 and
saved to wfx les. This generated separate alpha NSOs and beta
NSOs by diagonalizing the correlated relaxed electron density
matrices for spin-up and spin-down electrons, respectively.
17088 | RSC Adv., 2019, 9, 17072–17092
These wfx les contained the fractional orbital occupancies
associated with the correlated wavefunction. The NSOs dis-
played in Fig. 2, 4, and 7 were generated in the Multiwfn80

program by reading the wfx les.
The semi-core density analysis summarized in Fig. 3 pro-

ceeded as follows. First, wfx les were prepared containing all
the core electrons (including semi-core electrons) without
valence electrons. Second, these wfx les were read into the
Multiwfn program and the electron density at evenly spaced
points along the axis joining the two nuclei was printed to a le.
We analyzed data in this le to nd the distances d�1, d�2, d�3,
and the associated percentages listed in Fig. 3C.

Wiberg bond indices (WBI) in the natural atomic orbital
(NAO) basis were computed using the NBO program with bond
resonance enabled. As shown in Table S1 of ESI,† results for NBO
version 3.1 (built into Gaussian soware) were compared to those
from NBO version 6.0 (ref. 53 and 81) (standalone program).
Because the NAO's are orthonormal, the WBI in the NAO basis
equals the Mayer bond index3 (MBI) in the NAO basis.

DDEC6 bond orders were computed using the Chargemol5

program. In the Chargemol program, Manz's bond order
equations can be used with different charge partitioning
schemes (e.g., DDEC6 or DDEC3).5 We used DDEC6 charge
partitioning,7 because this provides reliable results across
a wide range of material types.2,6,7 This method assigns atomic
electron density distributions that simultaneously resemble
their spherical averages and charge-compensated reference
ions, using constraints to ensure the atomic electron density
tails are not too diffuse or too contracted.7 All density derived
electrostatic and chemical (DDEC) methods use the spin parti-
tioning method of Manz and Sholl.5,82 This method assigns
atomic spin magnetization density distributions that simulta-
neously resemble their spherical averages and proportional
spin partitions,82 which is important to satisfy the conuence of
atomic exchange propensities.2 Integration grids for charge
partitioning, spin partitioning, and bond order analysis were
the same as used in prior studies.2,5–7,83 A 5 Å cutoff radius
around each atom was used for integrations.2,5–7,83

BOCA was programmed into the Chargemol program. The
AOMs were integrated using atom-centered grids with integra-
tion points in the spherical coordinates (rA, qA, fA) for each atom
A over the ranges 0 # rA # 5 Å, 0 # qA # p, 0 # fA < 2p. Many
suitable atom-centered integration grids of this type have been
described in prior literature.84–88

For Mo2(acetate)4, the Pipek–Mezey89 localized orbitals were
generated in Gaussian16 and saved to a fchk le. Multiwfn read
this fchk le and saved the Pipek–Mezey orbitals to a wfx le.
(This procedure was required, because Gaussian16 is not
currently set up to save the Pipek–Mezey localized orbitals to
a wfx le.) All other wfx les were saved directly from Gaussian
soware as described above. The Chargemol program read in
these wfx les and performed DDEC6 analysis and BOCA.
4.4 Statistical analysis

This computational approach was validated by comparing
optimized to experimental (where available) bond lengths.
This journal is © The Royal Society of Chemistry 2019
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Fig. 8 compares optimized to experimental bond lengths for
both homodiatomics and heterodiatomics. The mean relative
errors (MRE) andmean absolute relative errors (MARE) between
calculated and experimental bond lengths were: (a) MRE ¼
0.13%, MARE¼ 2.39%, and st. dev.¼ 3.38% for homodiatomics
and (b) MRE ¼ �0.16%, MARE ¼ 0.84%, and st. dev. ¼ 1.14%
for heterodiatomics. For homodiatomics (Table S2 of ESI†) and
heterodiatomics (Table S3 of ESI†), all computed bond lengths
were within �10% of experimental values.
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