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Additive manufacturing (AM), which is also commonly known as 3D printing, provides flexibility in the
manufacturing of complex geometric parts at competitive prices and within a low production time.
However, AM has not been used to a large extent in filtration and water treatment processes. AM results
in the creation of millions of nanofibers that are sublayered on top of each other and compressed into
a thin membrane. AM is a novel technique for fabricating filtration membranes with different shapes,
sizes and controlled porosity, which cannot be achieved using conventional process such as
electrospinning and knife casting. In this paper, we review the advantages and limitations of AM
processes for fabricating ceramic membranes. Moreover, a brief background of AM processes is
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1. Introduction

In additive manufacturing (AM), a 3D part with complex
geometry is built through the layer-by-layer deposition of
material." The introduction of new materials has considerably
broadened the applications of AM. Currently, AM is being
applied in various fields, such as prototyping, education,
manufacturing, biomedicine, pharmaceuticals, architecture,
construction, military, and aerospace. In contrast to the
conventional subtractive manufacturing process, AM can be
used to fabricate complex geometries, such as net-shaped parts
with extreme overhangs and porous structures. Currently,
a wide range of materials, such as thermoplastics,” photopoly-
mers® ceramics,” metals,” and clay,’ can be used in AM.
Different AM processes require materials in different phases,
and the change in material phases depends on the process.

1.1 Brief history

In 1981, a Japanese inventor named Hideo Kodama registered
the first ever 3D printing technology through the additive
process. Kodama developed a system in which ultraviolet (UV)
light was used to harden polymers and create solid objects; this
was the first step toward stereolithography (SLA).* Charles Hull,
who is considered the father of SLA, used a process similar to
3D printing to produce smaller versions of products, which can
be tested before spending money, energy, and time on
producing the actual version. Typically, in this process, the
object is printed layer-by-layer by using computer-aided designs
(CADs) to create 3D models, which are then rinsed with
a solvent and hardened with UV light.

Selective laser sintering (SLS) is an advanced form of the 3D
printing process. In general, it involves using AM and a powder
polymer to create objects. Fused deposition modeling (FDM),
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which was developed by Scott Crump, is one of the most
common 3D printing techniques till date. FDM is also known as
“desktop 3D printing” because desktops are most commonly
utilized in this technology. In this process, the printer heats
a cable of thermoplastic into the liquid form and extrudes it
layer-by-layer to create an object. Thus, 3D printing has trans-
formed and advanced over the past three decades. The afore-
mentioned description of the three processes provides a brief
history of 3D printing. These processes allow virtually anything
to be fabricated by designing a simple 3D model.”

Since the last 5 years, the 3D printing technique has attrac-
ted considerable attention probably due to its potential benefits
in the printing of 3D membranes for water filtration. AM tech-
niques provide increased control over the architecture of
filtration membrane systems and can be considered novel
membrane fabrication techniques. They can be used to cast
membranes of various designs, shapes, architectures, and
types, which cannot be achieved through conventional
processes such as electrospinning and phase inversion. A survey
of peer-reviewed research articles related to “3D membranes”
and “water filtration” in the previous 5 years is illustrated in
Fig. 1. Moreover, the number of publications related to 3D-
printed membranes for water filtration from various countries
is indicated in Fig. 2. Saudi Arabia is leading country contrib-
uting to such research as per the advanced Scopus search
database. The number of publications clearly illustrates that the
3D printing technique has received much attention in recent
years for membrane fabrication.

1.2 Background

AM can be used to fabricate any complex design. In the last
decade, many AM systems have been developed, and they
feature high adaptability for more than one material. Materials
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Fig. 1 Comparative study of the number of peer reviewed research
articles since 2014 (data analysis of publications was executed using
the advanced Scopus scholar search system with the term "3D
printing” and “membrane” and “water filtration”, as on November
2018).

such as high-performance ceramics, photopolymers, graphene,
metals, and composite materials have attracted considerable
attention and have been used in major innovations in various
applications. However, limited studies have applied AM for
membrane fabrication. Tan et al. reviewed the use of solid,
liquid, and powder loadings in the AM method for membrane
spacer fabrication.® Tan et al. concluded that spacers fabricated
using the FDM, SLS, and Polyjet processes exhibited superior
performance to commercially available spacers in terms of mass
transfer and critical flux. Fee et al.,’ used AM to fabricate porous
media with finely packed morphology through UV-curing of
acrylonitrile-butadiene-styrene powder layers. Fee et al. indi-
cated that AM methods can be successfully used to produce
precisely controlled porous media and are applicable in flow
distribution. Siddiqui et al.*® fabricated feed spacers for spiral-
wound membrane systems by using the AM process and char-
acterized the spacers. They found that the spacers improved the
cleanability of spiral-wound nanofiltration (NF) and reverse
osmosis (RO) membrane systems by reducing the formation of
biofilms over them.

No. of Publications

ZJIIIIIl

Saudi Arabia Australia Belgium China  Netherlands  United Undefined
States

Countries

Fig. 2 Contribution of various countries to the 3D printed membrane
for water filtration (database collected from advanced Scopus scholar
search with the term "3D printing” and "membrane” and “water filtra-
tion”, as on November 2018).
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Although membranes have been successfully fabricated
using AM, AM is limited by either the materials required or the
porosity and size of the work pieces. Nonmetallic materials such
as ceramics, polymers, thermoplastics, and composites have
been used in AM. 3D Printing enables the precise control over
fabrication of any complex object and provides flexibility over
resolution, porosity, layer thickness, materials and design. 3D
printing a ceramic membrane for water filtration enables to
fabricate long lasting membranes with improved design struc-
ture and better performance than conventional membranes.
The 3D printed ceramic parts are tend to possess high
mechanical properties and non-reactive to external agents. This
makes them more suitable for indulging with bacteria killing
agents to improve the filtration process. By 3D printing ceramic
membranes design the filtration process can be improved by
controlling the pore density layer wise with different grain sizes
of the structure particles. Therefore, various AM processes have
been introduced for building objects with a wide variety of
precisely controlled porosities. These processes are applicable
for different water treatment applications, such as micro-
filtration (MF), ultrafiltration (UF), NF, RO, forward osmosis,
and membrane distillation (MD).

2. Why the AM technique?

In this review, membrane fabrication methodologies for
pressure-driven membrane processes and MD are discussed in
detail. To enhance membrane performance, modifications are
required for commonly used membrane fabrication methodol-
ogies, such as phase inversion, electrospinning, and track
etching.* However, the selection of an optimal methodology for
membrane fabrication depends on the chemical nature of the
polymer and desired shape and structure of the membrane.

2.1 Various state-of-art membrane fabrication techniques

Phase inversion is a well-known method for controlling polymer
transformation from a liquid phase to a solid phase. Typically,
four processes are used to produce phase-inversion-based
membranes: (a) precipitation from the vapor phase, (b)
precipitation through controlled evaporation, (b) thermally
induced phase separation, and (d) immersion precipitation.

(a) Precipitation from the vapor phase: In this technique,
a polymer and solvent are mixed and placed in a vapor atmo-
sphere, where the vapor phase consists of a nonsolvent satu-
rated with the used solvent. The high solvent concentration in
the vapor phase prevents the evaporation of the solvent from the
fabricated layer. The membrane forms due to the diffusion of
the nonsolvent into the cast film.

(b) Precipitation through controlled evaporation: In this
technique, polymeric pellets are dissolved in a mixture of
a nonsolvent and solvent. Evaporation occurs because the
solvent is considerably more volatile than the nonsolvent. As
a result, polymer precipitation occurs because the nonsolvent
content is higher than the solvent content.*

(c) Thermally induced phase separation: Polymeric pellets
are mixed with one or multiple solvents. The mixture is then

RSC Adv., 2019, 9, 16869-16883 | 16871


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra00872a

Open Access Article. Published on 29 May 2019. Downloaded on 1/8/2026 12:05:37 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances Review
Table 1 State-of-art review on various membrane fabrication, types, advantages as well as disadvantages
Techniques available Types Advantages Disadvantages References
Phase inversion technique (1) Precipitation from vapor v Rapid film formation v Limited for specific 17

phase polymers or polymeric

solution
(2) Precipitation by v Inexpensive technique v No-uniformity in pore size
controlled evaporation distribution

Electrospinning technique

Additive manufacturing
technique or 3D printing
technique

(3) Thermally induced phase
separation; and
(4) Immersion precipitation

(1) Coaxial electrospinning

(2) Emulsion
electrospinning
(3) Melt electrospinning

(1) stereolithography (SLA)

(2) Direct Light Processing
(DLP)
(3) Continuous DLP (CDLP)

v Utilized at industrial scale

v Uniform thickness
distribution

v Good flatness

v Long term stability

v Comparatively lower
startup cost

v Larger surface area to pore
volume ratio

v Easily combined with
different materials

v Large scale production

v Ease of nano-fiber
functionalization

v Availability of various
polymers to produce
nanofibrous material

v Speed

v Single step production

v Cost effective

v Less complexity and
design freedom

v Ease of access

v Sustainability

v Risk mitigation

v Desirable thickness

v Uncontrolled pore size,
pore diameter or pore width
v Time consuming
technique

v Process depends on many 18
parameters

v Utilized solvents can be

toxic in nature

v Jet instability

v Non-uniform pore
distribution
v Mechanically less stable

v Time consuming
technique

v Scalability of AM 16
technique is doubtful
v High computational load

v Long printing times

cooled to allow phase separation to occur. Typically, evapora-
tion of the solvent leads to the formation of a film."

(d) Immersion precipitation: Immersion precipitation is one
of the most commonly used phase inversion techniques. This
technique is also known as nonsolvent-induced phase inver-
sion. In this technique, a film of homogenous polymeric solu-
tion is cast on a flat surface (substrate). Then, the cast film is
placed in a coagulation bath containing DI water or methanol.
Typically, precipitation occurs due to the exchange between the
solvent and nonsolvent."*

Electrospinning is a commonly used technique for fabri-
cating fibrous tissue engineering scaffolds, which are also
known as electrospun membranes or electrospun nanofibers. In
the electrospinning technique, an electric field is used to create
a charged jet of polymer solution. By increasing the applied
voltage, the fiber jet is ejected from the apex of the Taylor cone
when the electrostatic force is higher than the surface tension.
Moreover, the solvent evaporates during ejection and elonga-
tion processes. The elongation and evaporation of the solvent
reduces the scale of the fiber diameter from micrometers to
nanometers. Finally, the produced polymeric nanofibrous

16872 | RSC Adv., 2019, 9, 16869-16883
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Fig. 3 The past and present scenario of AM technique compared to
the traditional manufacturing process.
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Fig. 4 AM processes classified as per ASTM standards.

material is attracted by a metallic collector.” In general, the
electrospun nanofibrous membrane possesses the following
advantages:

(a) Large surface-area-to-pore-volume ratio: Electrospun
nanofibrous material has a high surface-area-to-pore-volume
ratio, which makes it a very promising material for the fabri-
cation of sensors and membranes, where a high surface area is
required.

(b) Ease of material combination: Various materials can be

View Article Online
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(c) Large-scale production capability: Till date, many
research centers and companies have used the electrospinning
technique to produce nanofibrous membranes on a large scale.

(d) Commercial applications: The electrospinning technique
is used in the production of several commercially available
products, such as air filtration membranes, face masks, water
filtration membranes, cell culture plates, and wound care
patches.

2.2 Overview of additive manufacturing technique

The 3D printing technique or AM process has emerged as an
efficient technique for manufacturing membranes with desired
characteristics. In 3D printing, a computer commands succes-
sive layers of material to accumulate and form a computed
design. In traditional manufacturing based on molds and fixed
processes, the same object tends to be produced repeatedly.
However, the 3D printing technique can be used to produce
a specifically designed membrane. Since the previous decade,
3D printing has advanced to the point where it can control the
resolution and precision of membrane fabrication. AM can be
used to fabricate microstructure and macrostructure
membranes, offering the effectiveness for integrated design
between the materials utilized and their purposes.®

To determine the appropriateness of AM techniques for
membrane fabrication, various features of the processes must
be considered. The following features are desired for ceramic
membrane fabrication:

(1) A high resolution is required.

(2) High accuracy and precision are required to 3D print the
designed membrane.

(3) A large membrane whose size is similar to that of an
actual membrane should be produced.

(4) The production time of the membrane must be as low as
possible.

(5) For ease of selection of materials, commonly used

easily combined for the production of nanofibers. materials must be given high priority for membrane
fabrication.

Table 2 Porosity of different AM processed samples by different materials

Process Material Porosity Applications References

VP Bioactive glass and poly (e-caprolactone) 63-77 vol% Microfiltration and particle filtration 23
Silica 33.3 vol% Microfiltration 24
Al,05-Zr0, 36 vol% Microfiltration 25

M] Polycaprolactone 92% Microfiltration 26
PZT 1 vol% Particle filtration 27

BJ Si;Ny, 60-70 vol% Particle filtration
Tricalcium phosphate 42-63 vol% Microfiltration 28
Polyethylene 23-40 vol% Microfiltration 29

ME Alumina and other ceramics 1.5 vol% Particle filtration 30
Stratasys ABS (P400) ~50.7 vol% Microfiltration 31
Polycaprolactone 48-77% Microfiltration 32

PBF Al,O4 34 vol% Microfiltration 33
Polycaprolactone 37-55% Particle filtration 32

SL Al,O4 2.9 vol% Particle filtration 34
Si-SiC 69.4 vol% Microfiltration 35

DED Ti, NiTi 12-42 vol% Particle filtration and microfiltration 36

This journal is © The Royal Society of Chemistry 2019
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Table 3 Classification of AM techniques along with advantages, disadvantages and applications of all AM methodologies

AM process Materials used Advantages Disadvantages Applications References
Vat Photopolymers like (1) High-resolution parts (1) Low build volumes for Casting, prototyping, 45
Photopolymerization acrylate based resins, can be fabricated with ceramic structures tissue scaffolds,
(VP) ceramics, thermoplastics, feature sizes minimum of microfluidics, dentistry,
biomaterials, hydrogels 0.2-20 pm etc.
(Chan et al., 2012)
Commercial machines: (2) SLA is relatively a fast (2) Usage of support
carbon 3D - CLIP fabrication process structures for complex
technology, 3D systems — overhangs is necessary
projet series, Formlabs
Form 1&2, etc.
(3) Less energy (3) Final parts are not
consumption functional grade
Binder Jetting (B]) Ceramics - alumina, (1) No support structures (1) Rough surface Tissue engineering, fuel 47
zirconia, etc.; metals - SS, are required for the finishing; for smoother cell fabrication, robotic
cobalt chrome, etc.;*® complex overhangs surface, additional post structures, etc.
polymers, silica, metal- processing is required
metal and metal-ceramic
composites etc.
Commercial machines: (2) Flexible to adapt (2) Poor mechanical
Voxeljet, Exone, 3D different types of materials strengths
systems-C]JP, etc.
(3) Large build volumes are (3) High porosity of the
possible final parts
(4) Color printing is
possible for polymer
materials
Material Jetting (MJ)  Simulated ABS, (1) Possibility of (1) MJ system expensive;  Dentistry, educational 48
polypropylene, fabrication using multi-  that may directly affect the purposes, drug

Material Extrusion
(ME)

Powder Bed Fusion
(PBF)

polycaprolactone, plastic,
flexible materials,
ceramics, etc.

Commercial machines:
Stratasys Polyjet, 3D
systems MJM, Solidscape,
etc.

Thermoplastics like ABS,
PLA, nylon, etc.; clay,
porcelain, concrete, etc.

Commercial machines:
Ultimaker, RepRap,
Stratasys, Markforged, etc.

Plastics & polymers -
nylon, TPU, glass filled
nylon; metals - SS,
titanium, inconel, etc.;*°
ceramics - zirconia,
alumina, silicon nitride,
etc.

Commercial machines:
Arcam A2X, Q20; EOS M
280, 290; Renishaw AM250,
Concept Laser — mLab, etc.

51

16874 | RSC Adv., 2019, 9, 16869-16883

materials together

(2) Homogenous
mechanical and thermal
properties

(3) High dimensional
accuracy

(4) Full color 3D printing is
possible

(1) wide range of materials
which are abundantly
available for very economic
prices

(2) Most affordable system
and fabrication process

(3) Lead time is short

(4) Possible to build large
volumes

(1) Highly durable parts

(2) Wide range of materials
are available

price of the final part

(2) Requires additional
post processing

(3) Poor mechanical
properties
(4) Low durability

(1) Requires additional
support structures for
overhangs

(2) Requires additional
post processing for
cleaning the support
structures

(3) Poor surface finishing
(4) Lower durability

(1) Tall structures are
prone to damage while
fabrication

(2) Addition surface
finishing is required post
3D printing process

This journal is © The Royal Society of Chemistry 2019

manufacturing, low cost
antenna manufacturing,
wax casting, multi-color
printing

Educational, construction, 49

architecture, prototyping,
etc.

Aerospace applications,

machine tools, automotive

applications, medical
implants, etc.

50
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Table 3 (Contd.)
AM process Materials used Advantages Disadvantages Applications References

(3) High mechanical

properties are achievable

(3) For hollow cavities
perforation is required to
drain the non-sintered
material

(4) Composite materials

are adaptable

(5) Direct functional grade
parts can be manufactured

Sheet Lamination
(SL)

Paper, alumina, titanium
composites,”* copper

Commercial machines:
mCor, Fabrisonic, etc.

(1) The parts are able to be (1) Very poor durability due Educational, architecture 22, 52 and
printed in the whole color to the binding material ~ prototyping, etc. 53
spectrum degradation
(2) No state change of the (2) Impossible to print
materials is required in ~ overhang structures
this process
(3) Very economical (3) Poor mechanical
process properties
(1) Additional post Medical implants, 22

Directed Energy
Deposition (DED) SS, titanium, etc.; ceramics properties
- alumina, zirconia, other
oxides, silicon nitride,
HAP, etc.

Commercial machines:
BeAM Magic, RPMI 222,
557, Optomec LENS, etc.

support structures

Metals - cobalt chromium, (1) Very high mechanical

(2) Multi axial platform
allows to build any kind of complex to be build
complex parts without

processing is required to machine tools, casting
achieve high grade surface molds, automotive,
finishing aerospace, electronics, etc.

(2) Tiny features are

(3) Bigger volumes (several (3) Expensive process

cubic feet) can be
fabricated

(4) Composite materials
can be easily adapted in

this process

(6) The mechanical properties should enable membranes to
withstand high pressure processes (1-40 bar).

(7) The technique used must be more economic than the
phase inversion technique for membrane fabrication.

Table 1 indicates the different state-of-art techniques available
for membrane fabrication. Using this table, researchers and
beginners can select a suitable casting method for shaping their
membrane as well as utilize the membrane for various purposes,
which plays a key role in separation and purification performance.
The main focus of this review is to indicate the prominent
advantages of the AM technique. In addition to that, the other
conventional membrane fabrication techniques possess lot of
drawbacks including limited options of materials, time
consuming, non-uniformity and mechanically unstable. Although,
the AM technique possesses a few drawbacks, such as scalability
and high computational load. These drawbacks can be considered
in future studies. The AM technique is more suitable than other
conventional techniques for membrane fabrication (Table 1).

The AM technique is based on one-step production. The
ability to produce the product (ceramic membrane) in a single
step considerably decreases the dependence on different
manufacturing processes (such as welding, machining, and
painting) and provides the designer increased control over the
final product. Fig. 3 illustrates a comparison of the 3D printing
technique with conventional manufacturing processes. The 3D

This journal is © The Royal Society of Chemistry 2019

printing technique helps manufacturers reduce unnecessary
manufacturing steps and use one device to create geometrically
complex products. The single-step AM technique represents the
next level of manufacturing and the next generation of design,
optimization, and validation.*

3. AM techniques and specifications

As per ASTM standards, AM processes are classified into seven
categories as indicated in Fig. 4." The processes are classified
according to the material deposition method, curing technique,
and binding mechanism. Different AM processes exhibit
different process parameters, including fabrication speed,
surface finish, mechanical strength, build volume, and layer
resolution. However, these parameters are partially dependent
on the type of material being used and its state.

3.1 Classifications of AM methods

In addition to ASTM standards for classifying AM processes,
reviewers have also classified AM processes according to the
fabrication type (direct or indirect fabrication);** material state -
liquid, solid or powder.* In this study, this ASTM classification
is considered as the standard for AM methods. The advantages,
disadvantages, and applications of all the AM methods are

RSC Adv., 2019, 9, 16869-16883 | 16875
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described in Table 3. The seven types of AM processes are as
follows:

(1) vat photo-polymerization (VP): VP is a process in which
a photopolymer is selectively cured in a vat by using a light
source (ASTM International, 2013). SLA is the most common VP
process. In SLA, light is projected in vector form or as a masked
projection. The two-photon approach can be used to fabricate
a high-resolution part with a size of 0.2 um. The layout of the VP
process is displayed in Fig. 7(i).

(2) Binder jetting (BJ): BJ is the process of selectively depos-
iting a binder liquid to join the powder material. The binder
liquid is deposited through a print head that travels over the
powder platform along the XY-axis. Furthermore, the powder
platform moves downward along the Z-axis. The layout of the B]
process is depicted in Fig. 7(ii).

(3) Material jetting (M]): In the MJ process, the material is
mixed with the binder material and is selectively deposited
through an orifice over a platform. The deposited material can
be cured using an external lamp source or atmospheric condi-
tions. The binder coating over the structure material binds
together when cured and burns at high temperatures, which
facilitates the fusion of structure particles. The uncured portion
of the material can be washed off. The layout of the M]J process
is displayed in Fig. 7(iii).

(4) Material extrusion (ME): The ME process involves
selectively extruding the structure material in solid form
through a nozzle or print head onto the platform in a layer-
by-layer manner until the 3D object is formed. This process
is also commonly known as FDM or fused filament

View Article Online
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fabrication. A typical layout of the ME process is depicted in
Fig. 7(iv).

(5) Powder bed fusion (PBF): In the PBF process, the raw
material is paved layer-by-layer in the powder form and selec-
tively sintered using thermal energy from a laser source through
a laser plotter. The powder particles tend to either fuse or melt
and combine when subjected to thermal energy. SLS and
selective laser melting are the most common PBF processes.
The layout of the PBF process is illustrated in Fig. 7(v).

(6) Sheet lamination (SL): In the SL process, the structure
material is available in the sheet form, and the sheets are
bonded one above the other, where each sheet forms one layer.
The sheet at each layer is cut into the desired shape by using
a laser plotter or cutting tool. Tape casting is an example of an
SL process. SL 1is also termed as laminated object
manufacturing. Fig. 7(vi) displays the layout of the SL process.

(7) Directed energy deposition (DED): In DED, the structure
material is mixed with a gas and is deposited on the platform
when the material is exposed to thermal energy. When exposed
to thermal energy, the structure material melts and forms
a molten pool before solidifying into the desired pattern.>
Laser-engineered net shaping is the most common DED
process. DED is also used to repair existing parts. The layout of
the DED process is displayed in Fig. 7(vii).

Fig. 5(a—d) depicts the dense and porous samples collected
from four different AM processes. The samples were obtained
from ME, VP, B] and PBF systems respectively. The ME, VP and
PBF systems are custom built; while using clay, alumina and
TPU as initial materials. The BJ process sample is obtained from

- Magnification 80x |

S 1691mm Ra=10 um
=13.88mm
(a) Material Extrusion (ME) sample and line roughness

Magnification 80x

S 2220mm  Ra=8um
=16.45 mm
(b) VP sample and Ime roughness

X=2020mm Ra=34 pm
Y =15.08 mm
(c) Binder jetting (BJ) sample and line roughness

(d) PBF sample and line roughness

Fig. 5 Morphological study of ceramic materials obtained from (a) Material Extrusion (ME); (b) Vat Photo-polymerization (VP); (c) Binder Jetting

(BJ); and (d) Powder Bed Fusion (PBF).
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ComeTrue T10 3D printer by utilizing TP - 71 powder. The X-Y
and 80x magnification results are measured with Keyance VR
3000 series with analyzer equipment. The results showed the
dense structure with a line roughness in between 8-34 pm for
all the samples. The VP process used 3S system and exhibited
high density structure with minimum roughness value while
the PBF and BJ processes resulted in moderate roughness
values with high pore density. Additionally, ME process is one of
the most economical processes that can exhibit decent rough-
ness values with high pore density.

The shape and size of pores vary from process to process
despite using the AM technique. It is dependent upon the
material specifications such as type, particle size, and material
synthesis. The spherical particles allow the flowability of the
material without obstruction and mechanically entangle with
each other during curing process. While the non-spherical
particles can cause reduced rate of flowability and increase
the surface area and pore density and size.

Table 2 presents the detailed information of pore size and
porosity of the various samples obtained by different AM
processes and materials. From the given information, the
potential of AM processes can be stated by controlling the
material properties and the process parameters, the desired
pore size and porosity parameters can be obtained and applied

Ceramic Powder |

|

View Article Online
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for suitable applications. The samples obtained with pore size
between 1 um to 1000 pm can be used for particle filtration, 0.1-
10 um for micro filtration, 0.01-0.5 um for ultrafiltration; while
objects with <0.1 pm are applicable for nano filtration and
reverse osmosis. In context, most of the AM processes are
suitable for particle and micro filtration applications. Through
the design of AM, different porous bed structures can be shaped
like sphere, tetrahedral, stella octangula, etc. which can
increase the fluid-solid contact efficiency.

3.2 Direct and indirect manufacturing process

The AM processes can also be categorized as direct or indirect
type fabrication. The specific meaning of for direct and indirect
is stated as following by Zocca et al.:*”

e Direct manufacturing means, the material is deposited
directly as per the desired 3D shape to create the final object
and requires no post processing.

e Indirect manufacturing means that, the material deposited
above the platform forms a green body and requires additional
steps like curing, debinding, sintering process to let the work
object achieve its final strengths and properties. The additional
steps may vary based on the type of process and the material.

| 3D Printing of membrane ‘

!

YES

sintering

Necessary for debinding process or

NO

—

| Thermal debinding |

<=

‘ Thermal sintering |

S

| Need for infiltration |

I-

FINISHED PRODUCT

YES NO

Need for infiltration

| Infiltrate with resin, metal | Post processing

! )

| Post processing | Surface finishing |

FINISHED PRODUCT

Fig. 6 Schematic flowchart of 3D printing process of ceramic membrane fabrication [note: specifically, ceramic material has been considered

for production of membrane].
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Fig. 7 Layouts of 7 different types of AM processes.

For materials like photopolymers and the VP and ME type
AM process, the fabrication type is considered indirect type as
the printed objects tend to have scaffold structures that are

16878 | RSC Adv., 2019, 9, 16869-16883

printed along with the object to support the overhang features
of the object. The scaffold structures must be removed after the
print is completed. The AM processes like PBF and DED can

This journal is © The Royal Society of Chemistry 2019
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fabricate the work objects through direct type fabrication. The
PBF and DED uses the laser or plasma sources, which can heat
the material and fuse the powder particles causing a dense final
object. Where as in SL, BJ and M]J processes the binder material
that is used to hold the structure particles, requires sintering
process to make a dense final object. Debinding and sintering
steps are usually required for ceramics and metal materials. The
polymer and thermoplastic materials are usually infiltrated with
resin,*® copper,* ceramic or metals*® to obtain additional
strength and mechanical properties.

In the next section, different kinds of effect have been
demonstrated for the ease of ceramic membrane fabrication by
utilizing 3D printing. Thus, as per the Fig. 6, sintering
temperature, thermal debinding and infiltration processes were
elaborated thoroughly. Fig. 6 indicates the flowchart of 3D
printing process for ceramic membrane fabrication.

3.2.1 Effect of sintering temperature on ceramic
membrane fabrication. In general, the sintering temperature
directly affects the morphological as well as structural features
of the ceramic membranes. The increase in sintering tempera-
ture of the membranes may increase the pores size but
decreases the porosity of the membrane. Specifically, there are
two basic approaches to enhance sintering kinetics or reduce
the sintering temperature for ceramics-based membranes.
Improving powder processing by using fine starting powders
and removing agglomerates such as by colloidal routes can be
considered as the first approach. As far as second approach is
concerned, sintering aids or additives can be utilized.** Thus,
selection of appropriate sintering temperature is important as
far as ceramic membrane fabrication via 3D technique is
concerned.*

3.2.2 Effect of thermal debinding on ceramic membrane
production. Typically, thermal debinding is a prominent step
in order to remove the soluble as well as insoluble components
of the binder. Since, these components may influence the
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sintering process as well as the quality of the product
(membrane).”

3.2.3 Effect of infiltration on membrane materials. Infil-
tration is necessary to fill the pores to increase the strength of
the final product (membrane). Usually in BJ process, the parts
are very porous and delicate. Thus, it is infiltrated with wax
materials, to cover the pores and finally, the material will be
stronger compared to the previous version. Even, it could be
infiltrated with any kind of metals in order to make it
mechanically stable. However, infiltration process is considered
as the part of post processing.*

3.3 Suitable AM methods for ceramic membrane fabrication

In this section, a three-level hierarchy model is presented, as
illustrated in Fig. 8. The selection criteria in the three-level
hierarchy are as follows:

(a) Goal 1: Goal 1 is the overall goal for ceramic membrane
fabrication.

(b) Goal 2: Goal 2 involves the identification of relevant goals,
such as the operational performance, equipment information,
process output, and production cost.

(c) Goal 3: Goal 3 involves dividing the criteria into sub-
criteria according to priority rankings and the optimal
alternative.

Different AM methods have their advantages and disadvan-
tages, which makes them suitable for specific applications. In
this paper, the AM materials and methods available for ceramic
membrane fabrication are reviewed. The key parameters of the
AM methods are reviewed to select suitable methods for
ceramic membrane fabrication. The key parameters selected in
the review are presented in Table 4. According to the key
parameter values, AM methods are used to fabricate ceramic
membranes for various water treatment processes, such as MF,
UF, NF, and RO.

Selection criteria for membrane
fabrication

I ¥

| Operational performance | | Equipment information |

\ 4 \ 4

] }

| processoutput | | Productioncost |

\ }

1. Ease of operation 1. Standard operating

2. Time effectiveness procedure

3. Scale-up tendency 2. Availability of
4. Performance equipment

monitoring capacity

L

1. Accuracy and 1. Price of the
precision equipment
2. Reliability 2. Price of supporting
3. Stability (chemically system
and mechanically)

L 1

Additive manufacturing technique
or 3D printing technique

Fig. 8 Three level hierarchy model for selection of best method for ceramic membrane fabrication.
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4. Advantages and implementations
of AM technique for novel ceramic
membrane fabrication

Selecting the most appropriate AM technique for any application
is difficult. Hence, this section presents the main advantages of
AM techniques in comparison with conventional manufacturing
techniques. Table 5 summarizes the major advantages of AM
techniques that can be useful for the fabrication of novel ceramic
membranes for separation and purification technology.

Ceramic membrane fabrication through conventional tech-
niques involves many challenges, including the alignment of
transport channels in both the support and separating layers and
adhesion between different phases and with the support. There-
fore, AM plays a prominent role in the field of ceramic membrane
fabrication. It provides a unique pathway to accurately print
ceramic membranes as multimaterial single monolithic pieces
with a complex configuration. This pathway can prevent AM
drawbacks related to accuracy and resolution. Moreover, micro-
porous materials can be combined with printing materials. As
a result, the final product has achievable micrometer-size proper-
ties, with microporosity of its porous components. AM techniques
can be used to fabricate a tailored scaffold-like membrane made of
porous nanomaterials and polymers. Thus, novel membrane
shapes with reduced concentration polarization and fouling and
improved selectivity can be designed using AM techniques. AM
approaches must be suitably executed so that a product can be
printed accurately. Fig. 9 illustrates how AM techniques can be
used for fabricating improvised ceramic membranes with
enhanced selectivity and productivity.

AM techniques can be easily implemented for ceramic
membrane fabrication. Certain parameters can be easily
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optimized for AM techniques during the ceramic membrane
fabrication process. These parameters are as follows:

(1) Membrane configuration: Membranes are currently
restricted to mainly flat sheets and tubular/hollow fiber
configurations due to the limitations of current manufacturing
processes. However, AM techniques can be effectively utilized to
eliminate this limitation.

(2) Surface shape: Novel membranes with complex pore
structures and surface shapes improve micromixing and shear
flow across the membrane surface. These membranes can be
utilized to reduce energy and downtime associated with clean-
ing pore blockages and membrane fouling.

(3) Porous structure: AM techniques allow superior control
over the membrane structure. AM techniques can easily adjust
the pore size and pore size distribution through CAD for opti-
mizing water flux and separation efficiency.

(4) Membrane thickness: The membrane thickness is
considered as an important parameter in various systems. AM
techniques offer superior control over the membrane thickness,
which can be optimized using a computer program. AM can also
provide researchers with unprecedented control over the
membrane architecture.

(5) Environmental friendliness: AM techniques are associ-
ated with decreased energy consumption and solvent use
during the membrane fabrication process. Thus, AM is an
environmentally friendly method for membrane fabrication.

5. Research challenges and future
perspectives
Despite the numerous advantages of AM techniques, these

techniques have few disadvantages that may influence ceramic
membrane fabrication. Current research challenges must be

Table 4 Selection of AM technique based on key parameters such as materials, layer resolution, relative density as well as applications in water

treatment

Commercial AM

Layer

AM system technology Materials resolution (um) Material phase  Applications in water treatment
3D systems SLA Photopolymers 50 Resin Depends on surface chemistry
and pore size
Carbon 3D  CLIP Photopolymers 50 Resin Same as above
Lithoz LCM Alumina, zirconia, silicon nitride 10-100 Slurry Applicable where ceramic based
membrane can be utilized
3S Alumina, zirconia 50 Slurry Same as above

Nanoscribe TPP Photoresists 0.15 Resin To be explored
GmbH
ExOne Voxeljet Polymers, ceramics, alloys and 1.0 Powder MF, UF, NF, RO, MD, FO

composites
3D systems Multijet Photopolymers, ceramics, 30 Powder MF

(MJM) polyamide, binders, solvents

Stratasys Polyjet Photopolymers, ceramics, 50 Powder mixed MF

polyamide, binders, solvents with binder/resin
Stratasys FDM Thermoplastics, porcelain, clay, 127-330 Filament To be explored

eutectic metals
3D systems SLS Photopolymers, thermoplastics, 60-180 Powder MF

ceramics, metals
3D systems SLM Metals, alloys, ceramics 20-100 Powder Applicable where ceramic based

16880 | RSC Adv., 2019, 9, 16869-16883

membrane can be utilized
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Table 5 Advantages of AM technique for fabricating novel material based on various factors
Factors Description References
Speed e Designing of geometrically complex designs 54
o 3D printing by using CAD model within few hours
e Rapid verification
One step manufacturing process o Starts with CAD model 55
e Uploaded to the machine and printed
Cost effectiveness e Machine cost: first installation is expensive 56
e Machine operational cost: consume same amount of electricity as a computer (cheaper)
e Material cost: depends on various applications
e Labor cost: almost zero as compared to other conventional techniques
No wastage of material e Produces less wastage 57
o Designs as per the model
Avoiding risk o Verification by printing production-ready prototype 58
e Avoids loss of money and time before mass production
Freedom of designing e Printed with more precision and accuracy 59

o Less chance of faulty design

e Easy production of complex geometries

considered for optimizing the parameters and factors in the
future. The current research challenges related to using the 3D
printing technique for ceramic membrane fabrication are as
follows:

(a) The resolution of AM techniques must be improved to
fabricate ceramic membranes with increased precision and
accuracy.

(b) The fabrication of ceramic membranes through AM
techniques is currently in the infancy stage. Therefore, updated
research and development are required to increase the scal-
ability of the techniques.

(c) The cost of AM techniques should be made competitive
with that of other conventional processes, such as phase
inversion.

The advantages and applications of AM techniques may
revolutionize the design of innovative ceramic membranes if
the inherent drawbacks of 3D printing for membrane fabrica-
tion can be overcome (Table 1). The most suitable areas in

Possibilities in future

Additive manufacturing
technique (AM)

Membrane internal
design

Improved novel

Selection of multi-materials
membrane shapes

Reduced Wide range of Designing of novel
concentration options transport channels in
polarization * Integration of both the support and
*  Reduced fouling polymer and metal rejection layers
* Improved selectivity powder *  Adhesion between

different layers with the
support

Fig. 9 Future possibilities with AM technique for fabricating novel
ceramic membranes.

This journal is © The Royal Society of Chemistry 2019

which the AM technique can be applied are the separation and
purification fields as well as the medical field.'**** Compared
with conventional ceramic membrane fabrication techniques,
AM techniques have unique features, which are listed as
follows:

(a) Wide range of applications: AM techniques can be used to
generate a structure with almost any complex geometrical
shape. AM techniques can also be applied in different fields,
including manufacturing, art, medicine, and engineering.
However, AM is a relatively new technique for ceramic
membrane fabrication engineering. Through AM, novel and
unique ceramic membranes and membrane modules can be
designed, which may enhance mass transfer.

(b) Designing innovative and accurate membranes: 3D
printing techniques can be used to fabricate geometrically novel
ceramic membranes of different structures, shapes, and types.
Ceramic membranes can be designed and controlled more
accurately with 3D printing techniques than with recent
conventional membrane fabrication methods. Furthermore, 3D
printing techniques can be utilized to fabricate ceramic
membranes with precisely designed pores and surface shapes,
which can improve mass transfer and shear flow across the
membrane surface and simultaneously reduce membrane
fouling. The 3D printing technique can be used to control the
membrane thickness, which is not possible in other conven-
tional methodologies. In general, traditional techniques cannot
be used to control these properties independently with high
resolution or precision.

(c) Time effectiveness: One of the major advantages of 3D
printing technology is the speed at which membranes can be
created. Geometrically complex designs can be created using
CAD models and can be printed in a few minutes to few hours.

6. Conclusions

The current trend of research and development of 3D printed
ceramic membranes has attracted a lot of attention from
researchers due to high versatility. The production of ceramic

RSC Adv., 2019, 9, 16869-16883 | 16881
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membranes by AM technique comes out as one of the emerging
techniques in ceramic membrane technology in the areas of
water purification application. The AM technique has the ability
to generate ceramic membranes of different structures, various
types and geometrically complex designs, that improves the
mass transfer as well as shear flow across the membrane.

This review article analyses the recent AM technology and
how it is useful for ceramic membrane-based water treatment.
Overall it can be concluded that AM technique cannot be
provided at low cost as the basic set-up cost is bit expensive
compared to all the other conventional techniques available. 3D
printing technique is a high-cost protocol to produce ceramic
membranes which has become a prohibitive factor.

6.1 Need of high-resolution AM technique

It is the right time to have an ideal 3D printing technique for
producing membranes with high precision, high resolution,
and high printing speed ability.

6.2 Wide range of materials for membrane fabrication

The printing materials are limited as well as restricted to
specific 3D printing technologies. In other words, development
of the printing materials as well as 3D printing technique need
to be expanded as both are equally important to produce
membrane for separation and purification technology.

6.3 Cost effectiveness

As per the recent report, it is believed that 15 per cent of energy
is utilized worldwide for separation and purification of indus-
trial products such as chemicals, reusable water and gases.
However, membrane processes offer lower operational cost,
lower energy consumption and more sustainable molecular
separations which can be utilized for a wide range of applica-
tions including gas and liquid separations. Therefore, it is
important to decrease the carbon footprint and costs within
industry by using this technique in future.

This comprehensive review article demonstrates a clear
picture of 3D printing technique (or so-called AM techniques)
could be utilized in membrane engineering field. The applica-
tions of AM technique in membrane technologies may expect
more research and development in near future.
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