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Fixing the gap between “nano-scaled” pieces and “product-scale” materials, devices or machines is an

ineluctable challenge that people have to tackle. Herein, we show that combining self-assembly and

electrospinning processes results in the fabrication of anisotropic fluorescent nanofibers (PDI@PVDF) in

which the well-defined rod-like perylene bisimide derivative assemblies are embedded in a highly

oriented way along the axis of the poly(vinylidene fluoride) (PVDF) fiber. Compared to fragile individual

PDI assemblies, the electrospinning anisotropic fluorescent PDI@PVDF nanofibers not only maintain high

sensitivity for aniline vapour but also exhibit an unexpected short response time for both quenching and

recovering. The results demonstrate that electrospinning assistance is a versatile and effective strategy to

maintain the anisotropy of fluorescent nanomaterials, building a bridge between self-assembled nano-

rods and practical materials.
1. Introduction

For decades, scientists have paid more and more attention to
developing technologies and processes to assemble nanometer-
scale pieces into systems, components, or materials.1 As a basic
structure among these micro/nanostructures, 1-dimensional
(1D) nanostructures such as nanorods,2a nanotubes,3 nano-
wires4 and nanostrands2b exhibit unique and attractive “nano-
scale” behaviors5 including quantized current–voltage
behavior,6 dramatically lower melting points and signicantly
higher specic heats, highly anisotropic geometry, large
surface-to-volume ratio, and carrier and photon connement.
However, they tend to lose these potentially benecial traits
when they are manufactured at larger “product-scale” dimen-
sions, failing integration into devices and machines. This is
mainly because the loss is in terms of the structural integrity
and geometric uniformity.5a The bottom-up approach, through
self-assembly and supramolecular chemistry, provides an
exciting alternative route for the fabrication of various articial
materials with special micro/nanostructures in a hierarchical
way.2 Up to now, solution-based self-assembly is indeed the
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main strategy for producing 1D structures.2b The main chal-
lenge4a is that the thermodynamic assembly processes7 usually
take quite a long time (measured in hours even days) to achieve
equilibrium.

On the other hand, a number of techniques, including, self-
assembling,2a,2b,2d nanolithography,8 electrospinning2c,9 and
physical drawing,10 have currently been developed for the
fabrication of 1D structure4 at “product-scale”. Especially, the
electrospinning technique can boost the fabricating of polymer
bers with micro- or nanometer diameters within milliseconds
from a broad range of polymer materials.2c The millisecond
time-scale could prevent excessive growth of self assemblies by
shortening (disrupt) the assembly process meanwhile the
micro/nano-scaled diameter provides axial conning enclosure
(interspace). For this reason, electrospinning shows potential
applications in rapid self assembly of building blocks into high-
ordered nanostructure.11 However, in most electrospun nano-
bers, the dopants dispersed randomly in the polymer nano-
bers without obvious ordered structures, wherein the
functional dopants are not located in an ordered manner that
like in their individual self assemblies.12 This is mainly because
that, due to the loss in terms of the structural integrity and
geometric uniformity, electrospinning process usually lead to
some degree of function degradation that we have demon-
strated above. In this context, how to maintain the anisotropy of
dopants in electrospinning assistant 1D nanomaterials is
another challenge (Scheme 1).

Based on their high thermal stability and photostability,
perylene bisimide derivatives have been proven as excellent
supramolecular building blocks and widely used as liquid
RSC Adv., 2019, 9, 12585–12589 | 12585
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Scheme 1 Schematic representation for the hierarchical assembly in
solid-state and electro-spinning assistant confined self-assembly of
N,N0-bis(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylbisimide (PDI)
for optical sensing applications.
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crystals,11c,14 molecular wires,15 semiconductor,16 and transis-
tors.17 Optical sensing behaviors18 of perylene bisimide nano-
architectures in both solution and solid-state had been
detailed reviewed by Zang and coworkers.2b Herein we report
a strategy that combine self-assembly and electrospinning
processes to construct a type of PDI@PVDF nanobers. Struc-
turally, the bricks (the organic assembly of PDI) are arranged in
an ordered manner. Functionally, the response time of the
nanober towards aniline was boosted from minutes to
seconds.
Fig. 1 SEM images of PDI. (a) The solvent was evaporated in vacuum,
(b) the solvent was naturally evaporated in several hours, (c) and (d) the
solvent was slowly evaporated in several days, (e) PDI rods under
cross-polarized microscope, (f) consecutive rotation of a single PDI
rod showed alternate appearance of birefringence as the rod was
aligned at 45� to the polarizer.
2. Results and discussion
2.1 Self-assembly of PDI

We investigated the concentration dependent hierarchical self-
assembly behavior of individual PDI in solution. The UV/vis
absorption and uorescence emission spectra of PDI were
recorded in chloroform at different concentrations. The
absorption spectrum of PDI at lower concentration ranges from
0 to 1.07 � 10�5 M showed sharp absorption bands at 458, 491,
and 526 nm (Fig. S2a, ESI†), indicating that the PDI molecules
remain monomeric phase at the relative lower concentration
ranges. Higher concentration leaded dramatically rise of UV/vis
absorption spectra and nally resulted a saturated spectrum.

The uorescence spectrum has a mirror-image relationship
to the absorption spectrum19 and provides more information of
the aggregate (Fig. S3, ESI†). At the lower concentration ranges
the intensity of the emission increased upon gradual augmen-
tation of the concentration, while the intensity of the emission
decreased due to p–p electronic coupling as free molecules
transforming into self-assemblies at the higher concentration
ranges13 (Fig. S4, ESI†). The normalized emission spectrum
showed a continuous red shi indicating the formation of the
PDI aggregation underwent an assembly process (Fig. S2b,
ESI†). Another evidence of the self-assembly process was the
concentration dependent color change. The emission color
changed gradually from bright green (for the totally free
dispersed molecules) to bright red (for the self-assemblies)
(Fig. S4 inset, ESI†).
12586 | RSC Adv., 2019, 9, 12585–12589
This self-assembly process was further investigated in solid-
state. As demonstrated by scanning electron microscopy (SEM)
image in Fig. 1, when the solvent was evaporated in vacuum to
give a red large agglomerates in which the sub-micrometer
aggregates were randomly embedded (Fig. 1a and S5, ESI†).
We attempted to maintain the thermodynamic process in order
to get well-ordered PDI self-assemblies by slowing the evapo-
ration of the solvent. As shown in Fig. 1b and S6 (ESI†), the cross
section enlarged to 1 � 1 mmwhile the length was more than 40
mm. A further slow growing process over several days, in 1 : 1
chloroform/acetonitrile solvent resulted the formation of
micron-scale rod structure. Most of the rods are more than 100
mm in length, with a 5 � 5 mm cross section (Fig. 1c, d and S7,
ESI†). These results indicated that the rod like structure
undergo a bottom-up growing process from molecular to well-
ordered rod structure. Powder X-ray powder diffraction
(PXRD) measurements of PDI showed a typical p–p stacking
peak (with d-spacing 3.5 Å), which indicated that the building
blocks form a well-ordered crystalline arrangement19 (Fig. S8,
ESI†). According to the reported literature,20 the strong p–p

interaction between the PDI scaffolds played the key role in the
formation of the rod like aggregates. The anisotropy character
of the extended rod-like aggregate was examined by polarized
light microscopy. The alternate appearance of birefringence
when the rod was aligned at 45� to the polarizer implied that the
optical axis is along the orientation of p–p stacking (Fig. 1e and
f). No signicant birefringence was observed when the
agglomerates were examined under crossed polarizer
This journal is © The Royal Society of Chemistry 2019
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conditions (Fig. S10, ESI†), indicating the randomly embedded
submicrometer aggregate reduced the overall anisotropy of the
agglomerates.16
2.2 Construction of anisotropic uorescent nanober

However, our goal was to fabricate the prepared bricks (PDI
assemblies) into second level structure in a high oriented way
which would enable more expedient construction of integrated
1D nanobers material. Since uniaxial optical property has
a potential inuence in the sensitivity of optical sensors, so the
main problem to be faced was to keep the PDI assemblies in an
ordered way while shorten the time of self-assembly process. An
easy one-step method was developed to arrange the prepared
aggregation in a neat second level row. The PDI aggregation was
fabricated in a nanoscale limited space during the electro-
spinning process and then immediately encapsulated in the
electrospun PVDF ber. The whole process was limited in
several milliseconds. As we had already mentioned that the
millisecond time-scale could control the aggregate in a nano-
scale size by shortening (disrupt) the assembly process mean-
while the micro/nano-scaled diameter provides axial conning
enclosure (interspace) for arranging the assemblies in an order
way.

The microscope images of the electrospun PVDF ber
(PDI@PVDF) are presented in Fig. 2. The characteristic SEM
image (Fig. 2a and b) reveals the randomly-arranged bers were
gathered by a at collector. From these images we can see that
Fig. 2 (a) SEM (scale bar¼ 20 mm), (b) enlarged SEM (scale bar¼ 5 mm),
(c) TEM (scale bar ¼ 2 mm), (d) enlarged TEM (scale bar ¼ 500 nm), (e)
confocal microscopy and (f) cross-polarized microscope images of
PDI@PVDF fiber formed from PDI and PVDF.

This journal is © The Royal Society of Chemistry 2019
the diameters of these bers (0.5–1mm) are comparable to or
less than the cross section of the rod-like PDI aggregate as
shown in Fig. 1. The typical TEM images (Fig. 2c and d) show
that the PDI aggregates are conned in the PVDF matrix, of
which the longitudinal axis paralleled to the ber axis. An
aligned bers was obtained by using a rotating cylindrical
mandrel collector as shown in Fig. 2e and f. The different
emission color of the ber indicated that the conned forma-
tion of the PDI aggregate in the PVDF ber shared the same
hierarchical assembly process which had been discussed above.
The hierarchical PDI aggregate with different emission color
were frozen in the PVDF matrix during the ber drawing
process. The anisotropy character of the PDI@PVDF bers
depends on not only the orientation of the bers, but also the
orientation of PDI assemblies in it. The approximate paralleled
bers were used in the uorescent microscopy examination.
When rotating the bers under crossed polarization, the same
result was obtained in Fig. 2f implied that the optical axis is
along the ber axis.21 The anisotropy characters of both pure
PDI assemblies (Fig. 1f) and PDI@PVDF ber (Fig. 2f) further
conrmed the longitudinal axis of the PDI assemblies paral-
leled to the PDI@PVDF ber axis.21
2.3 Optical sensing applications

As previously reported, PDI nanobers with enhanced long-
range exciton migration property rising from intermolecular
p-electronic coupling can act as molecular wires for the uo-
rescence sensing of organic vapor.4–6 The prepared 1D
PDI@PVDF bril lm (Fig. S11e and f, ESI†) in which the PDI
assemblies was arranged along the long axis of the ber, may
also worked in a “molecular wire” mode. For ease of compar-
ison, herein, we also chose the frequently-used aniline as ana-
lyte molecules to investigate the amplied quenching behavior.

The PDI@PVDF lm was xed on a special designed scaffold
then covered with a quartz cell (Fig. S12, ESI†). A 365 nm LED
lamp was used to excite the lm, and the uorescence variation
Fig. 3 Time-resolved fluorescence intensity (black line) of
a PDI@PVDF fibril film upon consecutive exposures to various
concentrations of aniline vapors. (1 s exposures, concentrations indi-
cated by the red columns). Inset: fluorescence change upon exposure
to 10 ppb aniline, and the filled rectangle indicated the exposure times
(the emission intensity at 630 nm was measured for every 300 ms, lex
¼ 365 nm).

RSC Adv., 2019, 9, 12585–12589 | 12587
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in the presence of organic amines (aniline) was continuously
monitored by a spectrometer. As Fig. 3 showed, the uorescence
emission was signicantly quenched by increasing aniline
vapor concentration. Comparing with previous results,
although the PDI was not attentional designed just like Liu5 and
Fang6 reported, the PDI@PVDF bril lm still shown unex-
pected high sensitivity for aniline vapor. Concentration of
aniline low to 0.4–50 ppb could induce observable uorescence
quenching (Fig. 3). Increased concentration up to 1250 ppb did
result in further signicant quenching (Fig. S13, ESI†). As an
important factor for the practical use of a sensing lm (Fig. S11e
and f, ESI†), reversibility of the PDI@PVDF bril lm was
investigated in detail. As shown in Fig. 3, the emission intensity
of the lm was monitored every 0.3 s. Aer being exposed to
various concentrations of aniline vapors (Fig. 3 inset), the
emission immediately quenched in less than 1 second. Addi-
tionally, the uorescence quenching induced by amines was
highly reversible. Upon exposed to 50 ppb aniline, the quenched
uorescence of the lm could fully recover by re-exposing it to
an ambient air-ow for only 20 seconds. However, the recov-
ering time aer exposure do has dependence on the aniline
concentration. As shown in Fig. S13 (ESI†), the recovering time
extended to 40 seconds when the concentration of aniline vapor
reached 1250 ppb. This shorted response time for both
quenching and recovering, in contrast to the other reversible
PDI based sensor systems, in which the recovering time usually
need 5 to 30 minutes due to the stable chemical binding
between amines and the sensing material,15,22 indicated excel-
lent reversibility of our hierarchical nanober.

Since the sensing behavior of PDI@PVDF ber is mainly
determined by PDI self-assembly, the ber shows the same
selectivity to organic amine. Common solvents like chloroform,
toluene and methanol have little effect on the uorescence
emission of the lm (Fig. S14, ESI†). Furthermore, the sensing
behavior of PDI@PVDF ber to different types of organic
amines was investigated. As shown in Fig S14 (ESI†), the
quenching efficiency induced by aromatic amines is higher
than that induced by aliphatic amines, which might be attrib-
uted to the stronger electron-donating ability of the conjugated
structure of aromatic amines. Additionally 4-methylaniline
exhibited stronger quenching ability, while 4-nitroaniline did
not cause signicant quenching indicating that strong electron-
withdrawing group on aniline might signicantly reduce the
electron cloud density of amino group and weaken the electron-
donating ability of amino group. The signicant quenching
observed with phenol is likely due to its strong reducing
power.22 Without specic modication of the molecular struc-
ture of PDI, it is difficult to distinguish phenolic compounds
from organic amines only by uorescence quenching. The static
measurement and the uorescence lifetime measurement has
been performed in solution state to validate the quenching
mechanism (Fig. S15 and S16, ESI†). According to the previous
literature,15 present results (Fig. S17, ESI†) indicate that the
uorescence emission of PDI@PVDF ber is quenched by both
complex formation with aniline as well as by collision with
aniline.
12588 | RSC Adv., 2019, 9, 12585–12589
The rapid response behaviour of PDI@PVDF bril lm
towards aniline can be attributed to the hierarchical assembly
strategy. PDI rstly self-assembles into to well-ordered rod
structure driven by the strong p–p interaction, resulting the
sensing behaviour to aniline which depends on the photoin-
duced electron transfer from aniline to PDI probe.6 According to
the literature,1b the long-range molecular arrangement leads to
1D enhanced exciton migration (via intermolecular p-electronic
coupling) along the long axis of the assemblies, enabling
amplied uorescence quenching by the surface adsorbed
fewer aniline molecules (quencher molecules). Subsequent
electrospinning the uorescent PDI@PVDF into nanobers not
only maintain the anisotropy of PDI in the thin lm, but also the
porosity between nanobers facilitate the diffusion of gaseous
analyte molecules throughout the lm matrix, thus leading to
instant capture (and accumulation) or release of the vapor
species. To verify our hypothesis, control experiments were
carried out. We prepared dense thin lm via physical doping
PDI into PVDF matrix (denoted as PDI3PVDF). The uores-
cence emission of PDI3PVDF and pure PDImolecular lamellae
was also signicantly quenched by aniline vapor. Compare to
PDI@PVDF bril lm, the even higher quenching efficiency
might be attributed to the much longer long-range molecular
arrangement. Time-resolved uorescence experiment showed
that the recovery time of PDI3PVDF and pure PDI molecular
lamellae towards aniline vapor are 6 min and 19 min (Fig. S18,
ESI†), respectively, both signicant longer than PDI@PVDF
bril lm. These results demonstrate that electrospinning
assistant is a versatile and effective strategy to simultaneously
maintain the anisotropy of 1D nanomaterials and accelerate the
speed of their response to external stimulus. The ultra-
sensitivity, the rapid sensing response, excellent reversibility
along with the simple and economical preparation make the
nanobril PDI@PVDF lm an ideal sensing material for
designing trace amine onsite monitoring device.
3. Conclusions

We prepared a simple electrospun ber for organic amines
sensing, in which PVDF was chosen as mortar, meanwhile
a simple perylene bisimide derivative PDI was used as the
functional bricks. The well-dened PDI assemblies were
embedded in the PVDF ber in a highly oriented way along the
axis of the ber. Proting from the structural integrity and
geometric uniformity of the PDI assemblies in nanoscale and
the 3D continuous, the broid electrospun PDI@PVDF lm
with micrometer scaled mesh-like porous secondary structure
not only maintain high sensitivity for aniline vapour but also
exhibit un-expected short response time for both quenching
and recovering. Compared to fragile intrinsic PDI rod-like
assemblies, the electrospun ber PDI@PVDF lm also shows
greater exibility originating from the so PVDF scaffold. This
report may provide an innovative approach to construction 1D
bers with desired size and morphology via appropriate choice
of various lime mortar (alternative polymer) and brick
(assembly blocks).
This journal is © The Royal Society of Chemistry 2019
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