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A computational study to determine whether
substituents make E;z=nitrogen (E;z = B, Al, Ga, In,
and Tl) triple bonds synthetically accessible¥

Shi-Lin Zhang,? Ming-Chung Yang? and Ming-Der Su {2 *2®

This study theoretically determines the effect of substituents on the stability of the triple-bonded L-
E;z==N-L (E;3 = B, AL, Ga, In, and Tl) compound using the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and
B3LYP/LANL2DZ+dp levels of theory. Five small substituents (F, OH, H, CHs and SiHs) and four large
substituents (SiMe(SitBus),, SiiPrDis,, Tbt (= CgH,-2,4,6-{CH(SiMes),}s) and Ar* (=CgHz-2,6-(CgH>-
2,4,6-i-Prs),)) are used. Unlike other triply bonded L-E;3=P-L, L-E;3=As-L, L-E;3=Sb-L and L-
E;3=Bi—L molecules that have been studied, the theoretical findings for this study show that both small
(but electropositive) ligands and bulky substituents can effectively stabilize the central E;3=N triple bond.
Nevertheless, these theoretical observations using the natural bond orbital and the natural resonance
theory show that the central E;z=N triple bond in these acetylene analogues must be weak, since these
E13=N compounds with various ligands do not have a real triple bond.

1. Introduction

Molecules that feature multiple bonds have been the subject of
many studies because of their economic and academic impor-
tance."™ Recently, molecules containing a L-E,3=E;5-L (E;3 = B,
Al, Ga, In, and TI; E;5 = P, As, Sb, and Bi) triple bond, which are
isoelectronic to the alkyne analogues R-E;,=E;-R (E;4 = C, Si,
Ge, Sn and Pb), have been the subject of theoretical study.**** This
study focuses on the other acetylene analogues; ie., the triply
bonded L-E;=N-L compounds that contain group 13 (E;;) and
nitrogen atoms. As far as the authors are aware, only very few triply
bonded compounds that contain a nitrogen element (i.e., L-B=N-
L% L-Ga=N-L,** and L-In=N-L"°) have been successfully
synthesized and isolated. No other triple bond molecules con-
taining aluminum (L-Al=N-L) and thallium (L-TI=N-L) have
been both experimentally and theoretically reported.

Although the authors have already published 14 papers con-
cerning group 13 group 15 triple bond molecules,** the present
computational evidence demonstrates that the results about the
stability of the triply bonded RE;;=NR compounds are quite
different from our previous theoretical examinations. For
instance, the theoretical conclusions based on our previous
papers show that only the bulky ligands can stabilize the triply
bonded L-E;=E,s-L (E;5 = P, As, Sb, and Bi) molecules.’***
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Nevertheless, in this work, the authors' computations in this work
reveal that both small (but electropositive) ligands and bulky
substituents can effectively stabilize the triply bonded L-E;;=N-
L compounds. In other words, the present theoretical evidences
emphasize that both small (but electropositive) substituents and
sterically bulky groups can successfully protect the central triple
bond, which, in turn, can increase the bond order of this triple
bond. Because of the difficulties in experimentally synthesizing
these rare triply bonded molecules, this study theoretically
determines the effect of substituents on the formation of L-
E,;=N-L featuring a triple bond. The geometrical structures and
associated properties of stable L-E;3=N-L molecules are theo-
retically predicted. Accordingly, the present work can conduct the
experimental chemists how to design and synthesize the triply
bonded RE;;=NR compounds using the effective way.

2. General considerations

In order to determine the valence electronic structures of L-
E;3=N-L, similarly to our previous studies,**** the L-E;;=N-L
species is divided into two fragments: L-E,3 and L-N. These are
shown in Fig. 1.

As seen in Fig. 1, there are two mechanisms for the forma-
tion of the L-E;3=N-L triple bond species at the singlet ground
state. The choice of mechanism [A] or mechanism [B] respec-
tively depends on the promotion energy of L-N and L-E;;
moieties. For mechanism [A], a singlet L-E,; and a singlet L-N
combine to yield a singlet L-E;3=N-L molecule, which is
named a singlet-singlet bonding ([L-E5]' + [L-N]* — [L-
E13=N-L]"). For mechanism [B], a triplet L-E;; and a triplet L-N
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Fig.1 The valence-bond bonding mechanisms [A] and [B] for the triply bonded L-E;3=N-L molecule: AE; = Eftriplet state for R—N) — E(singlet
state for R—N) and AE, = Eftriplet state for R—E;3) — E(singlet state for R—E;3).

couple to yield a singlet L-E;;=N-L compound, which is called
a triplet-triplet bonding ([L-E;5]* + [L-NJ* — [L-E{;=N-L]").

The chemical bonding nature of mechanism [A] in Fig. 1
contains three types of chemical bonds: a valence lone pair
orbital of E;; — a valence p orbital of N, a valence p orbital of
E,; < avalence lone pair orbital of N, and a valence p orbital of
E,3 < avalence p orbital of N. In other words, the E;3;=N triple
bond features one E;; — N ¢ donation bond and two E,3 < N
donation bonds. Therefore, the central E;3=N triple bond in
mechanism [A] can be regarded as L—ElSEN—L.

For mechanism [B], the chemical bonding character of the
E;3=N triple bond in Fig. 1 involves three types of chemical
bonds: a valence lone pair orbital of E;; — a valence p orbital
of N, a valence p orbital of E,; — a valence p orbital of N, and
avalence p orbital of E;; < avalence lone pair orbital of N. The
E;3=N triple bond features one traditional E;3-N ¢ bond, one
traditional E,3-N 7 bond and one E;; < N 7t donation bond.
Therefore, the principal E;3=N triple bond in mechanism [B]
can be described as L—E13‘__N—L. The two non-degenerate
bonding orbitals (7, and 7)) for H-B=N-H are schematically
represented in Fig. 2.

12196 | RSC Adv., 2019, 9, 12195-12208

It is noteworthy that, as demonstrated in Fig. 1, the vital
bonding in the triply bonded L-E;;=N-L species contributes
greatly to the lone pair of the N-L moiety, whose electron pair is
donated to the empty p-m orbital of the L-E;; component. In
particular, the lone pair orbital of the N-L unit includes the s
valence orbital of nitrogen. The atomic size of E;; is also
apparently different from that of nitrogen, especially for the E;;
elements with a higher atomic number. Therefore, the overlap
in the orbital populations between E;3 and nitrogen is expected
to be small. That is to say, from the overlap population view-
point, this theoretical analysis anticipates that the triple bond
between E;3; and N must be weak. This prediction is verified in
the following discussion.

3. Results and discussion
3.1 Small ligands on substituted L-E,;=N-L

The effect of small ligands L (=F, OH, H, CH; and SiH;) on the
stability of the triply bonded L-B=N-L molecules is deter-
mined. For comparison, three computational methods (M06-
2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ+dp),

This journal is © The Royal Society of Chemistry 2019
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Fig. 2 The natural B=N 7 bonding orbitals (7, and =, for (a) and (b),
respectively) for H-B=N-H, based on Fig. 1.

based on density functional theory (DFT), are used to determine
the relative stability of the doubly bonded L,B=N: and :B=NL,
and the triply bonded L-B=N-L. The calculated potential
energy surfaces are schematically shown in Fig. 3.

Interestingly, unlike the other L-E;3=E;s-L molecular
systems that have been previously studied,’*** the theoretical
data for this study using three DFT methods suggest that when
ligands are small and electropositive, the triply bonded L-
B=N-L molecule could be experimentally produced and
detected, since these triple bonded species are more thermo-
dynamically stable than their corresponding doubly bonded
L,B=N: and :B=NR, isomers. Actually, these triply bonded L-
B=N-L species, which is isoelectronic to the alkynes L-C=C-L
and which contain small and electropositive substituents were
experimentally isolated and structurally characterized about
three decades ago.®**®

Several important geometrical parameters and the associ-
ated physical properties of L-B=N-L (Table 1), L-AI=N-L
(Table S17), L-Ga=N-L (Table S2t), L-In=N-L (Table S31) and
L-TI=N-L (Table S47) are listed in ESL.{

As shown in Table 1, these computations predict that the
B=N triple bond distance (A) lies in the range, 1.246-1.276
(B3PW91/Def2-TZVP), 1.233-1.254 (M06-2X/Def2-TZVP) and
1.220-1.248 (B3LYP/LANL2DZ+dp). The reported experimental
values for the B=N triple bond length are 1.240 A (ref. 65 and
66) and 1.258 A,*® which agree well with the theoretical data
for this study.

In the case of the AEgy (=E(triplet state) — E(singlet state)) for
the L-B fragment (Table 1), its excited energy from the singlet
ground state to the triplet excited state is theoretically estimated
to be at least 22 kcal mol~'. However, for the L-N moiety, the
modulus advancement energy between the ground state and the
first excited state is calculated to be at least 20 kcal mol . On
the basis of the theoretical analysis in Section 2, this theoretical
data shows that mechanism [A] is feasible for the interpretation

This journal is © The Royal Society of Chemistry 2019
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of the generation of the triply bonded L-B=N-L species that
feature small ligands. Therefore, the bonding disposition of L-
B=N-L with small substituents must be viewed as L—BEN—L,
so one B — N o donation bond and two B « N 7 donation
bonds constitute the B=N triple bond. All the values for the
Wiberg bond index (WBI)’*”> in Table 1 show that B=N bonds
that are supported by small groups have values of less than 2.1,
but the WBI for the C=C bond in ethyne is 2.99. These L-B=N-
L species that feature small substituents have a bond order of
much less than 2.00 for the central B-N bond, as shown in Table
1. One explanation for this is that, as shown in Fig. 1, the lone
pair orbitals of both the L-B and L-N components contain the
valence s characters. This significantly decreases the bonding
strength between boron and nitrogen. It is also possible that the
covalent radii of boron and nitrogen, at 82 pm and 70 pm,”
result in a small overlapping population between B and N,
which could result in small WBI values.

Similar to the 1,2-migration reactions for L-B=N-L, the
potential energy surfaces for the other triply bonded L-AI=N-L,
L-Ga=N-L, L-In=N-L and L-TI=N-L compounds are sche-
matically represented in Fig. 4-7, respectively. Being close to the
L-B=N-L (Fig. 3) compound, the computational results for the
1,2-ligand-shift reactions show that either a proton or the
ligands containing the carbon atom (such as CHj) stabilize the
triply bonded L-E;3=N-L (E;3 = Al, Ga, In and TI) species
relative to their corresponding double-bond isomers. This
theoretical finding is quite different from those for the other L-
E3=E;5-L systems that have been previously studied,**** in
which regardless of whether the small ligands are electronega-
tive or electropositive, the triple-bond L-E,3=E;5-L (except for
E;5 = N) compounds are not thermodynamically stable in the
1,2-migration reactions. To the authors' best knowledge, both
monomeric imides Ar'-M=N-Ar" (M = Ga or In; Ar’ or Ar” =
terphenyl ligands) that were reported by Power and co-workers
have been successfully synthesized and structurally character-
ized.**”® The computed geometrical parameters and some
physical properties of the L-E;3=N-L (E{3 = Al, Ga, In and TI)
molecules featuring small groups are listed in Tables S1, S2, S3,
and S4,t respectively. Several important conclusions can be
drawn from Tables S1-S4.7

(1) It is noteworthy that according to the available experi-
mental detections, the lengths of the Ga=N (1.701 A)*” and
In=N (1.928 A)* triple bonds are consistent with the compu-
tational results (1.662-1.804 A and 1.828-2.073 A) in Tables S2
and S3,f respectively. This theoretical evidence strongly
suggests that the computational methods that are used in this
study provide reliable information for further theoretical
observations.

(2) The results using DFT that are shown in Table S1f (L-
Al=N-L) and Table S4t (L-TI=N-L) predict that the central
AI=N and TI=N bond distances are in the range, 1.608-1.753 A
and 1.849-2.300 A, respectively. The calculated WBI for the
central Al-N, Ga-N, In-N, and TI-N bonds are all estimated to
be less than 1.50. This theoretical evidence strongly suggests
that all of these central triple bonds in L-E;;=N-L molecules
that feature small substituents must be quite weak, possibly
because of the hybridized lone pair orbitals for both L-E;; and

RSC Adv., 2019, 9, 12195-12208 | 12197
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Fig.3 The relative Gibbs free energy for L-B=N-L (L =F, OH, H, CH3, and SiH=) calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and
B3LYP/LANL2DZ+dp levels of theory. For details see the text and Table 1.

L-N fragments and the different atomic radius for E;3 and N
elements, both of which do not produce good overlap pop-
ulations between nitrogen and the group 13 elements.

(3) The DFT data in Tables S1-S4} shows that the singlet-
triplet energy splitting (AEgy) for the L-E,3 fragment is much
higher than that for the L-N moiety. Therefore, the electron for

12198 | RSC Adv., 2019, 9, 12195-12208

the latter jumps from the triplet ground state to the singlet
excited state more easily than the electron from the singlet
ground state for the former. As a result, it is better to use
mechanism [A] to describe the bonding characteristic of the L-
E13=N-L molecule bearing the small substituents. For mech-
anism [A] in Fig. 1, the bonding constitution for the E;;=N

This journal is © The Royal Society of Chemistry 2019
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Table 1 The important geometrical parameters, the Wiberg bond index (WBI), the natural charge densities (Qg and Qy), the HOMO-LUMO
energy gaps, the singlet—triplet energy splitting (AEg and AEy), and the binding energies (BE) for L-B=N-L using the B3PW91/Def2-TZVP, M06-
2X/Def2-TZVP (in round bracket), and B3LYP/LANL2DZ+dp (in square bracket) levels of theory

L F OH H CH; SiH;
B=N (A) 1.275 1.276 1.246 1.249 1.262
(1.245) (1.254) (1.233) (1.239) (1.252)
[1.220] [1.238] [1.231] [1.236] [1.248]
/L-B-N (%) 165.4 169.1 180.0 180.0 180.0
(169.1) (170.7) (180.0) (180.0) (180.0)
[180.0] [174.1] [179.9] [179.9] [178.6]
£B-N-L (°) 137.3 137.0 180.0 180.0 180.0
(151.4) (146.5) (180.0) (180.0) (179.9)
[160.0] [158.2] [179.9] [179.9] [178.9]
/L-B-N-L (°) 180.0 163.5 163.0 180.0 169.1
(179.9) (161.9) (169.3) (178.7) (176.9)
[180.0] [159.7] [178.8] [178.4] [172.1]
Q8" 0.2569 0.0441 0.1196 —0.1350 —0.2670
(0.1543) (—0.0515) (—0.1194) (—0.2172) (—0.1986)
[0.1335] [—0.0465] [—0.0817] [—0.2570] [—0.2213]
o’ 0.1573 0.1411 —0.2376 —0.1295 —0.0263
(0.2340) (0.1185) (—0.2197) (—0.1512) (—0.0584)
[0.2253] [0.1226] [—-0.2575] [—0.1150] [—0.0537]
AEgy for L-B (kcal mol ) 73.97 64.90 25.39 36.79 22.28
(73.60) (62.12) (27.65) (32.69) (21.77)
[81.01] [68.97] [28.74] [38.47] [22.33]
AEgy for L-N? (keal mol %) —46.00 —21.39 —50.89 46.76 44.87
(—48.48) (—21.68) (—55.08) (48.23) (46.86)
[—45.47] [—19.91] [—49.44] [50.99] [48.02]
HOMO-LUMO (keal mol ™) 147.8 128.3 197.6 162.2 165.6
(173.2) (145.9) (206.1) (182.3) (165.4)
[242.5] [203.2] [265.7] [228.3] [224.4]
BE’ (kcal mol ™) 149.7 168.2 200.1 188.8 206.2
(147.5) (166.1) (202.4) (190.3) (208.4)
[157.4] [171.4] [210.5] [199.4] [217.4]
WBY 1.880 1.843 2.114 1.962 1.908
(1.951) (1.911) (2.149) (2.000) (1.963)
[1.988] [1.938] [2.128] [2.000] [1.960]

“ The natural charge density on B. ® The natural charge density on N. ¢ AEg; = E(triplet state for L-B) — E(singlet state for L-B). ¢ AEgy = E(triplet
state for L-N) — E(singlet state for L-N). © BE = E(singlet state for L-B) + E(singlet state for L-B) - E(singlet state for L-B=N-L).” The Wiberg bond

index (WBI) for the B=N bond: see ref. 71 and 72.

triple bond in L-E;3=N-L that feature small ligands must be L-
E;; 5 5N-L.

3.2 Large ligands on substituted L'-E;;=N-L’

The possibility of bulky substituents (L') stabilizing the central
E3=N triple bond is determined. Similarly to previous
studies,’*** as shown in Scheme 1, SiMe(Si¢tBus),, SiiPrDis,, Tbt
and Ar* are used for this study. London dispersion forces,
which are the non-valent interactions between large groups, can
greatly affect the structure and stability of sterically congested
molecules.” Therefore, the dispersion-corrected M06-2X/Def2-
TZVP method”™ is used to gain more information about
producing stable, triple-bonded L'-E;3=N-L’ species. The key
geometrical parameters and the associated physical properties
of L'-B=N-L' are listed in Table 2. This information for other
triply bonded molecules that feature bulky ligands, i.e., L'~
AlI=N-L’ (Table S51), L'-Ga=N-L' (Table S6t), L'-In=N-L’
(Table S77), and L'-TI=N-L’ (Table S8%), is collected in ESIL.}

This journal is © The Royal Society of Chemistry 2019

The same computational method is used to determine the
1,2-ligand-shift reactions for L'-E;3=N-L' molecules that are
substituted with bulky groups; i.e., L'-E;3=N-L' — L,’E;3=N:
and L'-E;=N-L' —:E,;=NL,’, as shown in Scheme 2. The
results in Table 2 show that because of steric crowding, the
potential energies of both double-bond molecules (:B=NL,’
and L,’B=N) are respectively higher than that of the corre-
sponding triple-bond L'-B=N-L’' isomer by at least 80 and
71 kecal mol . These theoretical findings strongly suggest that
sterically hindered ligands shield the central weak B=N triple
bond, since the Wiberg bond index (WBI) for the C=C bond in
acetylene was computed to be 2.99.

The computational data in Tables 2 and S5-S8t shows that
the central triple bond distances are predicted to be in the range
of 1.242-1.273 A (L'-B=N-L/), 1.681-1.719 A (L'-AI=N-L’),
1.698-1.722 A (L'-Ga=N-L/), 1.866-1.902 A (L'-In=N-L/), and
1.877-1.930 A (L'-TI=N-L'). These predicted bond lengths are
consistent with other reported experimental data, such as, 1.240
A (ref. 65 and 66) and 1.258 A (ref. 67 and 68) for the B=N bond,

RSC Adv., 2019, 9, 12195-12208 | 12199
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Fig. 4 The relative Gibbs free energy for L-AI=N-L (L = F, OH, H, CHs, and SiH3) calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP,
and B3LYP/LANL2DZ+dp levels of theory. For details see the text and Table S1.+

1.701 A (ref. 69 and 70) for the Ga=N bond and 1.928 A (ref. 69) The M06-2X results in Table 2 show that the AEg; for the
for the In=N bond. Since there is good agreement between the L/-B fragment is calculated to be at least 11 kcal mol™", but
available experimental values and the dispersion-corrected the modulus of AEg; for the L'-N component is computed to
M06-2X data for the central triple bond lengths, the computa- be at least 22 kcal mol . In other words, L'-B jumps easily
tional method that is used in this study must be reliable. from the singlet ground state to the triplet state because the

12200 | RSC Adv., 2019, 9, 12195-12208 This journal is © The Royal Society of Chemistry 2019
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AEy,; value for L'-B is smaller than that for L'-N. Therefore,
the L'-B and L'-N fragments must follow a triplet-triplet
bonding mechanism; i.e., mechanism [B]: [L'-B]® + [L'-N]* —
[L'-B=N-L']". As schematically shown in Fig. 1, the bonding
nature of the bulkily substituted L'-B=N-L' can be viewed as
L'-B==N-L'. That is to say, this B=N triple bond consists of

This journal is © The Royal Society of Chemistry 2019

a usual o bond, a conventional 7w bond and a donor-acceptor
7 bond.

However, each lone-pair orbital of L'-B and L'-N respectively
contains s and p valence orbitals of boron and nitrogen. As
shown in Fig. 1, this phenomenon means that the overlap
population between L'-B and L'-N is small. Therefore, the bond

RSC Adv., 2019, 9, 12195-12208 | 12201
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Fig. 6 The relative Gibbs free energy for L-In=N-L (L = F, OH, H, CH3, and SiH3) calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP,
and B3LYP/LANL2DZ+dp levels of theory. For details see the text and Table S3.¥

order for the B=N triple bond must be small. This study's M06-
2X computations are shown in Table 2 and confirm this
prediction. Similarly, the values for AE}, for L'-N and the other
L'-B fragments in Tables S5-S81 show that the modulus of AEj;,
(>22 kecal mol ) for the former is always larger than those for
the latter, e.g., L'~Al (>18 kcal mol "), L'~Ga (>15 kcal mol %), L'~

12202 | RSC Adv., 2019, 9, 12195-12208

In (>17 keal mol™*) and L/-TI (>19 kcal mol ). These compu-
tational values show that all of the bonding in these triply
bonded L'-E,;3=N-L’ species can be represented as L'-
E;3==N-L.

The theoretically calculated values for the 1,2-shifted energy
barriers and the B=N bond orders (WBI) in Table 2 strongly

This journal is © The Royal Society of Chemistry 2019
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Fig. 7 The relative Gibbs free energy for L-TI=N-L (L = F, OH, H, CHz, and SiH3) calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP,
and B3LYP/LANL2DZ+dp levels of theory. For details see the text and Table S4.F

indicate that large substituents protect the central fragile B=N
triple bond and increase its bond order. The same conclusions
can also be drawn from the computational results for the other
triply bonded L'-E;3=N-L’ molecules, which are listed in
Tables S5-S8.1

This journal is © The Royal Society of Chemistry 2019

Both natural bond orbital (NBO)""7*> and natural resonance
theory (NRT)’*7® are used to determine the electronic densities
of the triply bonded L'-B=N-L' molecules that feature large
substituents. The M06-2X results are listed in Table 3. The
same theoretical analysis for the other triply bonded L’-

RSC Aadv., 2019, 9, 12195-12208 | 12203
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E,3=N-L’ species is listed in ESI:} L'-AI=N-L’ (Table S97), L'-
Ga=N-L' (Table S107), L'-In=N-L’ (Table S11%), and L'-
TI=N-L’ (Table S12t). The NRT values in Table 3 show that the
bond order for the B=N bond is 2.18 (L’ = SiMe(SitBus),), 2.17
(L' = SiiPrDis,), 2.24 (L' = Tbt), and 2.22 (L' = Ar*). This NRT
data is similar to the WBI values (2.19, 2.16, 2.08, and 2.14,
respectively) in Table 3. The NBO and NRT data in Table 3 also
shows that the triply bonded L'-B=N-L’ molecules for this
study all have an analogous electronic structure. As seen in
Table 3, (SiMe(SitBus),)-B=N-(SiMe(SitBus),) is predicted to

View Article Online

Paper
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AH, AH,
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(0.0 kcal / mol )
L'

( L' = SiMe(SiBus),, SiiP1Dis,, Ar*, and Tbt)

Scheme 2

have one ¢ bond and two m (7, and 7)) bonds, which are
occupied by two electrons: that is, 1.99 (o), 1.96 (7, ) and 1.96
(7t)). The M06-2X results also show that the ¢ bond is heavily
polarized towards nitrogen (78%) and that there are two non-
degenerate  bonds that are also heavily polarized towards
nitrogen (7, , 80% and 7, 80%). This is consistent with the
fact that nitrogen (3.066) is more electronegative than boron
(2.051).”° The two non-degenerate 7 bonding orbitals (7, and
) are schematically given in ESL{

Table 2 The bond lengths (A), bond angles (°), singlet—triplet energy splitting (AEj; and AE}), natural charge densities (Qj and Qf,), binding
energies (BE), the Wiberg bond index (WBI), HOMO-LUMO energy gaps, and some reaction enthalpies for L'=-B=N-L’ at the M06-2X/Def2-

TZVP level of theory

L SiMe(SitBuj), SiiPrDis, Tbt Ar*
B=N (A) 1.257 1.242 1.273 1.267
LL/-B-N (°) 175.2 165.2 171.9 171.2
£B-N-L' (°) 163.1 166.6 157.7 166.2
LL/-B-N-L' (°) 180.0 180.0 178.7 179.5

i 0.2413 0.0818 —0.2133 —0.1600

2 —0.3076 —0.4369 —0.1566 —0.1471
AEL, for L/-B (kcal mol ™) 13.59 11.24 21.47 20.75
AEgy for L/-N? (keal mol ™) —22.30 —25.05 —25.52 —28.63
HOMO-LUMO (kcal mol ™) 103.3 114.2 66.97 68.28
BE? (kcal mol™) 380.0 383.8 375.9 426.3
AH{ (keal mol™) 98.78 80.03 91.69 89.84
AH; (kcal mol™) 94.05 71.21 92.96 75.25
WBE 2.188 2.161 2.078 2.135

“ The natural charge density on boron. ” The natural charge density on nitrogen. © AEj, (keal mol ™) = E(triplet state for L'-B) — E(singlet state for
L'-B). ¢ AE}; (kcal mol ') = E(triplet state for L'-N) — E(singlet state for L'-N).  BE (kcal mol ") = E(triplet state for L'-B) + E(triplet state for L'-N) —
E(singlet for L'~-B=N-L')./ See Scheme 2. ¢ The Wiberg bond index (WBI) for the B=N bond: see ref. 71 and 72.

12204 | RSC Adv., 2019, 9, 12195-12208
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Table 3 The natural bond orbital (NBO) and natural resonance theory (NRT) analysis for L'-B=N-R’ molecules that feature bulky ligands (L' =
SiMe(SitBus),, Tbt, SiiPrDis,, and Ar*) at the M0O6-2X/Def2-TZVP level of theory™”

NBO analysis

NRT analysis

L'-B=N-R WBI  Occupancy  Hybridization Polarization = Total/covalent/ionic ~ Resonance weight
L' = SiMe(SitBu;), 2.19  o:1.99 G: 0.4743 B (sp*) + 0.8803 N (sp®*°) 22.50% (B)  2.18/0.88/1.30 B-N: 6.14%
77.50% (N) B=N: 69.80%
T, 1.96 7,1 0.4506 B (sp°*°°) + 0.8927 N (sp°**°)  20.30% (B) B=N: 24.06%
79.70% (N)
m): 1.96 r): 0.4483 B (sp”°°) + 0.8939 N (sp™®°)  20.10% (B)
79.90% (N)
L' = SiiPrDis, 2.16  ©:1.99 0: 0.4747 B (sp™**) + 0.8801 N (sp®%’) 22.54% (B)  2.17/0.91/1.26 B-N: 72.26%
77.46% (N) B=N: 27.74%
T, 1.96 7,1 0.4530 B (sp°*?°) + 0.8915 N (sp*?°)  20.52% (B) B=N: 0.00%
79.48% (N)
m): 1.96 r): 0.4430 B (sp”***) + 0.8965 N (sp”®*°)  19.63% (B)
80.37% (N)
L' = Tht 2.08 ©:1.99 0: 0.4855 B (sp'**) + 0.8742 N (sp®®") 23.57% (B)  2.24/0.49/1.75 B-N: 81.96
76.43% (N) B=N: 18.04
m,.:1.94 7,1 0.4515 B (sp°>°%) + 0.8923 N (sp") 20.38% (B) B=N: 0.00%
79.62% (N)
m): 1.88 ): 0.4433 B (sp°*°) + 0.8964 N (sp”**°)  19.65% (B)
80.35% (N)
L' = Ar* 2.14  ©:1.99 c: 0.4918 B (sp'*°) + 0.8707 N (sp®®*) 24.18% (B)  2.22/0.49/1.09 B-N: 42.68%
75.82% (N) B=N: 56.9%
T 1.95 G: 0.4580 B (sp”*?°) + 0.8889 N (sp°**) 20.98% (B) B=N: 0.42%
79.02% (N)
) 1.85 o: 0.4433 B (sp”%?) + 0.8964 N (sp”**?) 19.65% (B)
80.35% (N)

“ The value of the Wiberg bond index (WBI) for the B=N bond and the occupancy of the corresponding ¢ and 7 bonding NBO (see ref. 71 and 72).

5 NRT; see ref. 76-78.

4. Conclusions

This study uses DFT computational methods to determine the
effect of both small and bulky substituents on the triple-bonded
L-E;3=N-L (E;3 = B, Al, Ga, In, and Tl) compounds, in order to
determine how to successfully design and synthesize a molecule
featuring an E;3=N triple bond. This study represents the first
theoretical investigation of the stability of the triply bonded L-
E13=N-L molecules. Four important conclusions are drawn,
based on the results of this theoretical study:

(1) Previous theoretical conclusions®** showed that only
sterically bulky ligands, and not small groups, thermodynami-
cally stabilize the triple bond of the L-E;3=E;5-L (E;3 = B, Al,
Ga, In and TI; E;5 = P, As, Sb and Bi) molecules. However,>**
this theoretical study finds that both small (but electropositive)
ligands and bulky substituents stabilize the triply bonded L-
E,3=N-L compounds.

(2) The theoretical analysis shows that the bonding nature of
a triply bonded L-E;3=N-L molecule that features small
substituents can be represented as L—E13§N—L.

(3) The bonding character of the central triple bond in an L'-
E;3=N-L’ compound that features bulkier substituents can be
regarded as L'-E;;=—N-L.

(4) Since two central heteroatoms (E,3 and N) are involved in
the triply bonded L-E;3=N-L (and L'-E{;=N-L’) species, they
belong to different rows of the periodic table so they have
different quantum numbers. Therefore, E;3 and N have

This journal is © The Royal Society of Chemistry 2019

different electronegativity values and different atomic sizes.
Due to the poor overlap populations between E;; and N in both
triply bonded L-E;3=N-L and L'-E;;=N-L’ molecules, it is
expected that the bond order of the E;3=N triple bond must be
small, so their E;3=N triple bonds must be weak.

The results of this theoretical study should allow the
production and synthesis of stable triply bonded L-E;;=N-L
and L'-E;;=N-L’ molecules.
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