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The speciation of Tiin trinitite, the explosive melt glass derived from the Trinity Test of 16" of July 1945, was
investigated by X-ray absorption spectroscopy (XAS). Ti K-edge XANES showed that Ti was present in the
Ti(v) oxidation state for all samples. Fitting of pre-edge features by Gaussian functions and comparison
with standards of known Ti coordination revealed significant variation in Ti coordination environment
between samples. The variation of Ti coordination may be attributed to several factors including specific
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1 Introduction

Trinitite is an explosive melt glass derived from the Trinity Test
that took place on the 16™ of July, 1945 at the White Sands
Missile Range, New Mexico. The Trinity Test was the first
detonation of a nuclear weapon and utilised a plutonium core
and an implosion mechanism to achieve criticality.

The extreme heat generated by the resultant explosion
(estimated average T = 8430 K, estimated extreme T =3 x 10’ K
(ref. 1 and 2)) melted or vapourised the vicinal Desert Sand and
support structures. Rapid heating and cooling by afterwinds
(estimated fireball duration ~3.1 s") resulted in the formation
of a glassy product. The dominant morphology of trinitite
specimens is 1-3 cm thick, green, glassy fragments with
a smooth upper surface and a rough undulating lower surface.

Although predominantly green, high concentrations of
elements, such as copper and iron, can change the colour of
trinitite, resulting in ‘red’ and ‘black’ trinitite respectively. The
majority of trinitite composition is drawn from minerals in the
surrounding Desert Sand including: quartz (SiO,), microcline
(KAISi303), albite (NaAlSizO3), muscovite (KA, (AlSizOq0)(-
F,OH),), actinolite (Ca,(Mg,Fe)sSig0,,(OH),) and calcite
(CaCO0s3).* The inclusion of minority minerals such as titanif-
erous magnetite, rutile and barite has also been reported.**

The speciation and coordination of titanium in silicate melts
has been found to be affected by the thermal history of the melt
as well as other factors including composition and pressure
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local chemistry and thermal histories of samples,
microstructure of trinitite and the arkosic sand source material.

in keeping with the highly heterogeneous

during melting. Previous studies have used X-ray absorption
spectroscopy (XAS) to determine the speciation of Fe in trini-
tite.® This study presents the novel speciation of Ti in trinitite as
determined by XAS.

2 Materials and methods

2.1 Trinitite samples and preparation

Trinitite specimens were supplied by the Mineral Research
Company (one large 12 g piece and several small ~1 g frag-
ments) and the US Army (small ~0.25 g fragments recovered
from a sand grab sample obtained from the Trinity Test Site on
the White Sands Missile Range).} The trinitite fragments had
a variety of morphologies, but were consistent in appearance to
previously studied examples."** Also consistent with previously
studied samples, numerous vesicles are observed from gas
bubbles present in the melt.

Samples were prepared for bulk XAS by powdering aliquots
from six small fragments. The powders were homogenously
mixed with polyethylene glycol and pressed to form 13 mm
diameter pellets. The Thin Section sample was prepared from
the large trinitite specimen by sectioning and polishing to a ~30
um thickness. The specimen was sectioned vertically to preserve
the smooth top and rough bottom of the sample in cross
section, and was mounted in cold setting resin on a Spectrasil
(Triad Scientific) fused quartz slide.

The average composition of the Desert Sand and trinitite was
found by dissolving 0.5 g aliquots of representative material in

} The Trinity Test Site was declared a national historic landmark in 1975 and it is
illegal to remove material from this location. The sand grab sample used in this
study was kindly provided by the Public Affairs Office of the White Sands
Missile Range.

RSC Adv., 2019, 9, 12921-12927 | 12921


http://crossmark.crossref.org/dialog/?doi=10.1039/c8ra10375e&domain=pdf&date_stamp=2019-04-26
http://orcid.org/0000-0002-0313-8748
http://orcid.org/0000-0002-8363-9103
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ra10375e
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA009023

Open Access Article. Published on 26 April 2019. Downloaded on 1/9/2026 11:38:44 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

hydrofluoric acid and then quantifying the constituents by
inductively coupled plasma mass spectrometry (ICP-MS).

Elemental distribution within trinitite samples were studied
by SEM-EDX using a Hitachi TM3030 electron microscope and
equipped with a Bruker Quantax EDX detector. EDX data were
analysed using Bruker Quantax software. Samples were
prepared for SEM analysis by mounting in cold setting resin and
polishing to an optical finish (1 pm) using SiC paper and
progressively finer diamond pastes. Samples were sputter
coated with carbon to reduce surface charging effects.

Gamma spectroscopy was used to characterise radionuclides
contained within the remaining trinitite fragment samples
using a Canberra BEGe detector. Spectra were gathered for 12
hours and the energy resolution of the detector was 0.15 keV.

2.2 XAS measurements

Samples were measured at the Ti K-edge using a conventional XAS
setup at beamline X23A2, of the now decommissioned National
Synchrotron Light Source, Brookhaven National Laboratory.
Transmission mode measurements of the prepared samples were
made alongside Ti standards (TiO, Ti,Os;, TiO, and CaTiO;).
Incident (I,) and transmitted (I;) X-ray intensities were measured
using ion chambers, energy calibration was performed with
respect to XAS spectra measured with a reference ion chamber (1)
of a Ti foil placed after the transmission ion chamber in the beam
path. Two different regions of the same Thin Section were
measured in fluorescence mode. Fluorescence mode measure-
ments were made using a four element Si drift detector. XAS
spectra were measured from 30 eV below the Ti K-edge to 250 eV
above, using a Si (311) monochromator. Data reduction and
XANES analysis were performed using the program Athena.”®
Fits to Ti pre-edge data of trinitite samples and standards were
performed in the energy range 4965-4975 eV (0.3 eV energy
resolution) to derive average oxidation state and co-ordination
environment information.” The XANES spectra were fitted
following the method proposed by Waychunas, such fitting
permitting direct comparison with other data gathered in
previous studies regarding Ti co-ordination in minerals and glass
melts.>** Data were normalised to a unit edge step using the
Athena software package,” and the rising edge background was fit
using an arctangent function over the energy range 4960-5040 €V,
as described previously.”® Gaussian components were then fit to
the data to describe the components of the pre-edge features. The
height and position of the weighted mean centroids of the func-
tions were taken to be representative of the pre-edge feature.

3 Results and discussion

The composition of trinitite samples and Desert Sand, as found
by ICP-MS, are shown in Table 1. As can be understood from
Table 1, trinitite is primarily an alkali/alkaline earth alumino-
silicate glass with considerable FeO and TiO, additions. The
ratio of non-bridging oxygens to tetrahedrally coordinated
cations, NBO/T,*® is indicative of the connectivity of the glass
network; a high NBO/T value would indicate a highly modified
glass network with lower connectivity. Although there is not
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Table 1 Composition of trinitite and Desert Sand mol% by oxide”

Desert
Oxide Sand Sample 1 Sample 2
Sio, 75.42 74.15 74.09
Al, 05 6.38 7.57 6.23
CaOo 8.59 7.99 9.19
K,O 5.72 3.25 3.47
FeO 0.62 2.41 2.52
Na,O 2.69 2.18 2.07
MgO 0.34 1.81 1.75
TiO, 0.03 0.39 0.4
BaO 0.04 0.03 0.03
Zr0, 0.05 0.04 0.07
P,0s 0.04 0.07 0.06
MnO 0.01 0.05 0.06
SrO 0.02 0.02 0.02
PbO 0.01 0 0
CeO, 0.01 0 0
SO, 0.01 0.01 0.01
V,05 0 0 0
Cr,0;3 0 0.01 0.01
Other 0.02 0.02 0.02
Total 100 100 100
NBO/T N/A 0.22 0.29

“ Fe is known to be in the Fe*" oxidation state (estimated error from
measurement =+ 2%). Results are restricted to major elements
(0.01 mol%), full ICP-MS results are available in the ESI.

gross compositional variation between the two trinitite
samples, a notable difference in NBO/T, calculated using eqn
(1), was observed between the two trinitite samples.

(2(RO + R,0) — 2R,03)
RO, + 2R,0;

NBO/T = (1)

Radionuclides contained within the trinitites were charac-
terised by gamma spectroscopy. The resultant spectrum is
shown in Fig. 1. As can be seen, the trinitite samples clearly
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Fig. 1 Gamma spectrum of representative trinitite fragments. AR =
annihilation radiation caused by interaction of positrons and electrons
(E = 511 keV).
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contain **'Am, **’Cs and "?Eu indicating that the samples are
the result of the detonation of a Pu-based fission device."”
Previous studies have shown that trinitite is chemically
inhomogeneous and actually comprises several glasses of
varying composition and grains of unmelted, shock amorph-
ised minerals.>'*** The results of SEM-EDX analysis of a repre-
sentative sample are shown in Fig. 2 and 3 (Further EDX maps
and spectra are available in the ESIT). As can be seen, elemental
distribution varies across the sample with several distinct
glasses: a high silica glass, an aluminium rich glass, a calcium
rich glass and an alkali/alkaline earth aluminosilicate glass. Ti
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is present throughout the sample and, as evident in Fig. 2, local
chemistry varies significantly. Spot EDX analysis (see Fig. 3)
confirmed the variation in local chemistry as observed in Fig. 2.
Point 1 is evidently a region highly enriched in Ti relative to the
rest of the glass and point 2 is likely a grain of melted quartz.
Points 3, 4, 5 and 6 are more similar in their composition
however, it is apparent that there is local variation in chemistry;
for example, point 6 is clearly enriched in Ca compared to
points 3, 4 and 5. Local chemistry has previously been shown to
affect the co-ordination of Ti in silicate melts and it is therefore
possible to conclude that it is likely that Ti exists in several

Fig. 2 Elemental distribution within a representative sample of trinitite as determined by SEM-EDX.
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Fig. 3 Point EDX spectra of locations denoted in Fig. 2. Inset, magnified Ti section of the spectra.

different co-ordination environments throughout the measured
samples.”

Fig. 4a shows the measured XANES spectra of the trinitite,
Desert Sand samples and standards (TiO, Ti,O; and CaTiO;).
Fig. 4b shows a detailed view of the pre-edge region of the
XANES spectra in Fig. 4a.

Ti K-edge XANES data show that the predominant oxidation
state of Ti in all samples is Ti(wv), average for Ti(v) standards E,
=4984.1 + 0.3 eV, Desert Sand E, = 4984.3 £ 0.3 €V and average
trinitite E, = 4983.0 eV = 0.3 eV (standard deviation = 0.4). This
indicates that the oxidation state of Ti remains unchanged
relative to that in the geological source material and is insen-
sitive to the blast conditions. The trinitite samples, Desert Sand
and the reference standards exhibit a distinct pre-edge feature
at ~18 £ 3 eV before the edge step." The pre-edge feature is
attributed to transitions from Ti 1 s to bound Ti 3d/O 2p final

12924 | RSC Adv., 2019, 9, 12921-12927

states that reflect the hybrid Ti 3d-O 2p hybrid states in tita-
nium compounds. A 1s to 3d transition is forbidden due to
dipole selection rules (Al = +1) however, this rule is relaxed
when Ti is located in a non-centrosymmetric co-ordination
environment and p-d mixing occurs.” Waychunas and Farges
have both demonstrated that the pre-edge position and inten-
sity are a direct function of p-d mixing and consequently
indicative of the Ti co-ordination environment.>'* As can be
seen from Fig. 4b, there is significant variation in the position
and height of the pre-edge features indicating the existence of
differing Ti co-ordination environments. Damping of the post-
edge XANES features in the trinitite samples studied (see
Fig. 4a) is a result of random phase decoherence and multiple
scattering paths and is symptomatic of atomic disorder, typical
of glasses.

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 (a) Ti K-edge XANES spectra of trinitite samples, sand and standards; (b) detail of pre-edge XANES features. TiO(), Ti,Osz (ii), Thin Section 1

(iii), Bulk Sample 1 (iv), Thin Section 2 (v), Bulk Sample 2 (vi), Desert Sand (vii), TiO (viii) and CaTiOs (ix). Note the shift in pre-edge feature position
for trinitite samples relative to the TiO, and CaTiO3z standards. Thin section 1 and Thin Section 2 are different regions of the same Thin Section
sample (Thin Section 1 is ~14.7 mm closer to the top edge of the sample).

The measured XANES spectra were fitted according to the
method used by Waychunas.® Gaussian functions were fitted to
the pre-edge envelope and the height and position of the
weighted mean centroids of these functions were taken to
represent the overall height and energy of the pre-edge feature.
Fitted values are given in Table 2, an example fit is shown in
Fig. 5. Although there have been recent advances in the
modelling of XAS spectra by density functional theory (DFT), the
large number of different elements and the mixture of
numerous amorphous phases that constitute trinitite precluded
the use of DFT to elucidate further details with regards to the
local structure of Ti. Similarly, Principal Component Analysis
(PCA) has become a method frequently used to study XAS
spectra however, satisfactory analysis and assignment of spec-
tral components to specific coordination environments requires
a full suite of standards with which to compare samples of
unknown coordination environment. Using the method of
Farges et al. allowed experimental data to be compared with
previously characterised and published standard spectra.

Fig. 6 shows the correlation of pre-edge height and energy
with co-ordination environment of Ti bearing standards (solid
diamonds) and that of tektites (solid triangles) as reported by

Table2 Normalised pre-edge centroid height and energies of fitted Ti
XANES spectra

Normalised pre-edge

Sample Energy (eV) height
Thin Section 1 4969.6 0.56
Bulk Sample 1 4969.6 0.58
Thin Section 2 4970.2 0.21
Bulk Sample 2 4970.5 0.17
Desert Sand 4971.1 0.18
TiO, 4971.5 0.11
CaTiO; 4971.6 0.11
Precision +0.3 +0.03

This journal is © The Royal Society of Chemistry 2019

Farges et al.’*'* together with data from the current study (open
circles). Distinct zones exist for 4, 5 and 6-fold Ti co-ordination
with adjacent regions assigned from analysis of mechanical

a)

Normalised absorption

5005
Energy (eV)

5025

05

Normalised absorption

4970
Energy (eV)

Fig.5 Fitting of XANES features for a bulk trinitite sample (Bulk Sample
2) measured in fluorescence mode. (a) XANES region (b) pre-edge
features. The data were fit using a combination of Gaussian and
arctangent functions (grey lines); data are shown by open symbols, fit
is shown by a solid black line; methodology follows that of
Waychunas.®
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Fig. 6 Tico-ordination environment as speciated by pre-edge energy
position and normalised height of pre-edge feature in Ti K edge
XANES. Solid squares show data for mineral standards from previous
studies;™ solid triangles show data for tektites from previous studies*
and open circles show data from this study for: Thin Section 1 (1), Bulk
Sample 1 (2), Thin Section 2 (3), Bulk Sample 2 (4), Desert Sand (5), TiO»
(6) and CaTiOs (7). Adapted from Farges (1997).*4

mixture of titanium compounds with Ti in different site
geometries i.e. a mixture of 4 and 6-fold co-ordination.*®

The determined pre-edge height (0.11 a.u.) and energy of
(4971.6 eV) of the pre-edge feature in CaTiO; is identical to that
reported in previous investigations (4971.6 eV, 0.11; point 7,
Fig. 6), it was therefore concluded that the measured data were
consistent with the literature and it was possible to compare our
data with that of previously reported standards measured using
comparable X-ray optics.” As can be seen in Fig. 6, the trinitite
samples present a range of average Ti co-ordination
environments.

Thin Section 1 and Bulk Sample 1 (data points 1 and 2
respectively) lie within the region associated with mixed four
and five-fold co-ordinate Ti. Thin Section 2 (data point 3) lies in
the region associated with mixed four, five and six-fold co-
ordination, Bulk Sample 2 (data point 4) contains a mixture of
four and six-fold Ti. The sand sample (data point 5) is located
within the six-fold co-ordinated region indicating that the
average co-ordination of Ti before the blast was six-fold,
consistent with the reported presence of rutile.>*

The region occupied by Thin Section 1 and Bulk Sample 1 is
also that occupied by the tektites studied by Farges et al.'*
Tektites are natural glasses formed by the impact of extra-
terrestrial bodies and the melting of vicinal materials and it
has previously been observed that trinitite is similar in
morphology to some tektites.** A study of natural glasses and
tektites by Farges et al. (1997) found that the dominant co-
ordination environment of Ti is five-fold in silicate melts,
however, there is a significant amount of four-fold Ti in the

12926 | RSC Adv., 2019, 9, 12921-12927
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most polymerised systems such as rhyolitic glasses and tektites.
The co-ordination environment of Ti has been found to be
strongly dependent on the ratio of Ti to non-bonding oxygens
with glasses of lower ratios, such as tektites (NBO/T = 0.08-
0.13), yielding more four and five-fold Ti.** This would suggest
that the trinitite glass of Thin Section 1 and Bulk Sample 1 is
more highly polymerised than the trinitite of Thin Section 2 and
Bulk Sample 2. This possibility is supported by the observed
variation of NBO/T between the trinitite samples studied by ICP-
MS, as shown in Table 1.

Ti coordination in synthetic, natural and impact glasses is
known to be influenced by glass composition, pressure and the
rate at which the glass is cooled.’**** The chemical inhomo-
geneity of trinitite may explain the observed variation in Ti
coordination. Trinitite composition is drawn from a range of
minerals including alkali and alkaline earth bearing feldspars
and, due to insufficient equilibration time, there is significant
variation in the concentrations of these elements within speci-
mens.>*® Dingwell et al. (1994) found that Ti in alkaline earth
bearing silicates had a higher average coordination number
than Ti in alkali silicates.”” SEM-EDX analysis (see Fig. 2) has
shown that local chemistry varies significantly across trinitite
samples and, consequently, it is possible that Thin Section 2
and Bulk Sample 2 may contain a higher relative concentration
of alkaline earth cations and hence have Ti in a higher average
coordination number. High pressure has also been found to
increase the coordination of Ti in melts,* possibly indicating
variation in pressure conditions during trinitite formation.
Additionally, Ti coordination may be affected by the cooling rate
from the melt temperature to ambient temperature.™
Comparisons of quenched and unquenched melts found that
observed pre-edge height was greater in quenched samples,
indicating retention of a greater degree of four-fold Ti. The
higher normalised height and lower energy position of the pre-
edge features of Bulk Sample 1 relative to Bulk Sample 2 may
show that it was cooled more rapidly and retained a greater
proportion of four-fold Ti. Another possibility that may explain
the variation observed between the Bulk Samples is that Bulk
Sample 2 was under greater pressure than Bulk Sample 1 at the
time of formation and as result formed a greater degree of six-
fold coordinated Ti. Cooling rate considerations were found
to not apply to the two Thin Section measurements. Fig. 6 shows
the pre-edge feature associated with the location of Thin Section
1 (within the Thin Section specimen interior) is consistent with
a lower average Ti co-ordination number compared to the pre
edge feature corresponding to location of Thin Section 2 (near
the upper surface of the Thin Section specimen interior). If this
trinitite were formed in a single major deposition event, the
exterior would be expected to have cooled more rapidly due to
afterwinds that followed the blast, resulting in a lower average
co-ordination number for Ti at the surface, compared to the
interior. Depletion of alkalis from the surface, by volatilisation,
would result in a lower NBO/T ratio, and a lower average Ti co-
ordination number relative to the interior. This is contrary to
our observation, but could be rationalised by the local variation
in chemical composition being of crucial importance, or
a hybrid formation mechanism as proposed by Weisz et al.

This journal is © The Royal Society of Chemistry 2019
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(2017).* Further multi-element micro-focus XAS and XRF
studies of this material would assist in understanding the
spatial variation in Ti speciation as a function of the local
chemical composition.

4 Conclusions

The speciation of Ti in trinitite was investigated by X-ray
absorption spectroscopy. Ti was consistently present in the
Ti(wv) oxidation state however, the coordination environment
was found to be inhomogeneous. The variation in Ti coordi-
nation could be as a result of numerous factors with variations
in local chemistry, network polymerisation and thermal history
all possible contributors. The variation observed in this study is
reflective of the diverse source material and extreme formation
conditions of trinitite and serves to highlight the highly
heterogeneous nature of melt material produced by nuclear
weapons tests. Nevertheless, further micro-focus XAS and XRF
studies of trinitites, linking element speciation to spatial
disposition and local chemistry, may shed further light on the
formation mechanism of this fascinating material.
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