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B-Ga,Os nanorod arrays with high light-to-
electron conversion for solar-blind deep ultraviolet
photodetection
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Vertically aligned nanorod arrays (NRAs), with effective optical coupling with the incident light and rapid
electron transport for photogenerated carriers, have attracted much interest for photoelectric devices.
Herein, the monoclinic B-Ga,Os NRAs with an average diameter/length of 500 nm/1.287 um were
prepared by the hydrothermal and post-annealing method. Then a circular Ti/Au electrode was
patterned on B-Ga,Os NRAs to fabricate solar-blind deep ultraviolet photodetectors. At zero bias, the
device shows a photoresponsivity (R,) of 10.80 mA W™t and a photo response time of 0.38 s under
254 nm light irradiation with a light intensity of 1.2 mW cm™2, exhibiting a self-powered characteristic.
This study presents a promising candidate for use in solar-blind deep ultraviolet photodetection with
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1. Introduction

Solar-blind ultraviolet (UV) photodetectors (PDs) are useful as
an answer to the technical challenge of operating at wave-
lengths less than 290 nm, while exposed to a large background
radiation of sunlight. With the continuous improvement of
device integration, environment complexity, and interference
technology, solar-blind ultraviolet region photodetectors can
effectively reduce false alarm rates in early-warning, searching,
and tracking systems, to improve the accuracy and versatility of
detection systems in various situations.”” Up to now, a number
of wide bandgap semiconductors have been investigated to
design solar-blind photodetectors, such as AlGaN,® ZnMgO,” -
Ga,03,® etc. AlGaN-based photodetectors present more excellent
performance than the other wide bandgap semiconductors
devices. However, with increasing Al composition for solar-
blind detection, the performance of AlGaN photodetectors
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rapidly becomes poor due to the obvious degradation of the
crystal quality. ZnMgO alloys with a band gap in solar-blind
region also suffer from the poor crystal quality due to the
phase separation.”™

It is noticed that Ga,0; has a direct wide bandgap of ~4.9 eV,
directly corresponding to the wavelength less than 280 nm,** is
an ideal solar-blind detection material without any doping and
alloying process. Among all five phases of Ga,0; («, B, v, 8 and
¢), the B-Ga,0; with monoclinic crystal structure is the ther-
mally and chemically most stable phase, has been widely
studied in solar-blind photodetectors.**** So far, B-Ga,0;-based
photodetectors mainly fall into three categories: film type,
single crystals and nanorod arrays (NRAs) type. Compared to
thin films, vertical nanowire array structures display more
superior optical absorption ability and higher carrier genera-
tion, resulting from high surface-to-volume ratio and effective
optical coupling, which can further improve the performance of
photodetectors.”*** He et al.*® first reported the ultraviolet
photodetector based on vertical B-Ga,O; nanowire arrays by
thermally oxidizing GaN nanowires grown by molecular beam
epitaxy (MBE) on Si substrate. Nevertheless, this complexity and
high cost in fabrication will limit the practical application of -
Ga,0; NRAs photodetector.

In this work, the vertically aligned B-Ga,O; NRAs are
successfully synthesized by economical hydrothermal and
simple post-annealed method on fluorine doped tin oxide
(FTO) substrate. And then a circular Ti/Au electrode was
patterned on B-Ga,0; NRAs to fabricate solar-blind deep
ultraviolet photodetectors. The fabricated devices exhibited
a great broadband spectral response with the high responsivity

This journal is © The Royal Society of Chemistry 2019
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exceeding 550 A W' at —5 V bias voltage. At zero bias, the
device shows a photoresponsivity (R,) of 10.80 mA W' and
a photo response time of 0.38 s under 254 nm light irradiation
with a light intensity of 1.2 mW cm™?, exhibiting a self-
powered characteristic. Our findings indicated that this
simple synthesize method can be used to fabricate B-Ga,O3;
NRAs based self-powered solar-blind photodetectors with fast
response speed for the potential applications in secure
communication and space detection.

2. Experimental details
2.1 Materials

Ethanolamine (C,H,NO, 99%), gallium isopropoxide
(CoH,1Ga0;, 99%), gallium nitrate aqueous solution
[Ga(NO3);-9H,0, 10%] were purchased from Shanghai Saen

GaOOH nanorod arrays

Mg cb i

Ga,0; seed layer

\4 ’ Hydrothermal
EEE——
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Fig. 1 Schematic illustration of preparation of the B-Ga,Os NRAs.
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Chemical Technology Co., Ltd. Triethanolamine (C¢H;5NO3,
78%) was obtained from Hangzhou Gaojing Fine Chemical
Industry Co., Ltd. A fluorine doped tin oxide (FTO) with
350 nm conductive layer is used as a substrate. FTO conduc-
tive glass (14 Q cm™?, size: 10 x 20 x 2.2 mm®) was bought
from Japan Nippon Sheet Glass Co., Ltd. All chemicals are
analytical grade.

2.2 Synthesis and characterization of the f-Ga,0; NRAs

The GaOOH NRAs were fabricated as described in our previous
reports.> The substrate coated with Ga,0; seed layer was
placed in the growth solution of Ga(NO3);-9H,0 and heated at
150 °C for 12 h in an oven. After the growth, the product was
washed by DI water, dried in air at 80 °C. The as-prepared
GaOOH NRAs calcined at 700 °C for 4 h were converted into
the B-Ga,0O; NRAs.

P-Ga,0, nanorod arrays

it

. Lm "uijw

Fig.2 The top views of SEM images at low (a) and high (b) magnification of B-Ga,O3 NRAs grown on the FTO substrate. (c) The edge view of B-
Ga,0z NRAs. (d) The cross-section of B-Ga,Oz NRAs on the FTO substrate.
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The morphologies of B-Ga,O; NRAs were observed by
a Hitachi S-4800 field-emission scanning electron microscope
(SEM). The crystal structure of samples was analyzed by
a Bruker D8 Advance X-ray diffractometer (XRD) using Cu Ka
radiation (A = 0.154 nm). The ultraviolet-visible (UV-vis)
absorption spectrum was taken using a Hitachi U-3900 UV-vis
spectrophotometer.

2.3 Fabrication and characterization of the photodetector

The photodetector was fabricated by depositing circular Ti/Au
electrodes on the vertically aligned B-Ga,O; NRAs with direct
current magnetron sputtering. The photoelectric characteristics
of the fabricated device were characterized by a Keithley 4200 at
room temperature. And a 7 W lamp of 254 nm was used as the
UV light source.

3. Results and discussion

The vertically aligned B-Ga,O; NRAs have been grown on the
FTO glass substrate and the fabrication process is sche-
matically illustrated in Fig. 1. The B-Ga,O; NRAs is fabri-
cated by three steps procedure: (1) the seed layer was
acquired by spin coating ethylene glycol monomethyl ether
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solution of ethanolamine and gallium isopropoxide onto the
FTO substrate; (2) the substrate coated with Ga,0; seed layer
was placed in the growth solution of Ga(NO;);-9H,0 and
heated at 150 °C for 12 h in an oven; (3) the as-prepared
GaOOH NRAs calcined at 700 °C for 4 h were converted
into the f-Ga,0O; NRAs.

The SEM result shows that a large-area, highly dense, and
vertically aligned B-Ga,O3; NRAs have been successfully grown
on the FTO glass substrate [Fig. 2(a-d)]. Fig. 2(a) displays
a representative top-view SEM micrograph of as-synthesized -
Ga,0; nanorods. Fig. 2(b) is a magnified image of Fig. 2(a).
Fig. 2(c) is a top view SEM image in the boundaries of NRAs.
Obviously, there has a high density and flat surface of f-Ga,0;
NRAs aligned vertically grown on FTO substrate. It also can be
observed that the tips of the nanorods are the diamond shape,
whose diameter has changed in the range of 100 to 500 nm.
Fig. 2(d) shows the cross-section image of B-Ga,0; NRAs on
FTO substrate, we can estimate that the average length of
nanorods is ~1.287 um. Fig. 3(a) shows the XRD patterns of
the FTO, FTO/GaOOH and B-Ga,O; NRAs, respectively. In
addition to the diffraction peak of the FTO substrate, four
peaks located at 35.3°, 37.4°, 62.3° and 66.7° were observed in
FTO/GaOOH, which can be indexed to (021), (111), (002) and
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(a) The schematic diagram of the B-Ga,Osz NRAs solar-blind photodetector. (b) /-V curves of the device in dark and under 254 nm
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Fig.5 (a) I-t curves of the device measured at O V bias under 254 nm illumination with various light intensities. (b) The relationship between the

light intensity and photocurrent. (c) Rise time and decay time of the device at 0 V bias under 254 nm light irradiation with a light intensity of 1.2
mW cm™2. (d) The relationship between the light intensity and photoresponse time. (e) The photoresponse switching behaviors of the device
were measured at different applied bias voltages. (f) The relationship between the light intensity and applied bias voltage.

(070) crystal planes of orthorhombic GaOOH (JCPDS file no.
06-0180). The NRAs show a preferred growth orientation of
[111] direction. After the annealing of as-prepared GaOOH
NRAs, three additional peaks located at 31.7°, 35.3° and 37.9°
were observed, which can be ascribed to the (002), (111) and
(401) planes of monoclinic B phase of Ga,0; (JCPDS file no. 41-
1103).>® The UV-vis absorbance spectra of the -Ga,0; NRAs is
shown in Fig. 3(b). It shows that the absorption onset of -
Ga,0; is at ~270 nm. The optical bandgaps of B-Ga,0; NRAs
can be determined based on the equation: (ahv)* = A(hv - E,).

This journal is © The Royal Society of Chemistry 2019

The energy bandgap (E,) is measured by linear extrapolation to
the hv-axis. The (ahv)® versus hv curve of the B-Ga,0; NRAs is
shown in the inset of Fig. 3(b), the band-gap of f-Ga,0; NRAs
was estimated to be ~4.63 eV, which is almost identical with
previous reports.>*°

A circular Ti/Au electrode was patterned on B-Ga,O; NRAs
to fabricate a solar-blind deep ultraviolet photodetector. The
schematic diagram of the device is presented in Fig. 4(a).
Fig. 4(b) depicts the current voltage (I-V) curves of the device
in dark and under 254 nm illumination with various light

RSC Adv., 2019, 9, 6064-6069 | 6067
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Tablel Comparison of the device parameters of the present B-Ga,Oz NRAs based photoresponse parameters and other Ga,Oz nanostructures

based devices

Materials and structure UV light Bias voltage R(AW ™ EQE (%) Reference
Ga,0; nanorods 254 0.33 19.31 9427 24
Ga,0; nanowire 255 5 3.43 x 1073 1.37 25
GaOOH nanorod 254 0.5 1.07 522 26
Ga,0; nanorods 254 0 1.08 x 102 5.27 x 103 This work

densities. Obviously, under the 254 nm ultraviolet illumi-
nation, the current in the reverse bias is larger than that in
the forward bias. The inset of Fig. 4(b) is the enlarged curves
around zero bias. It can be seen at 0 V bias that the current of
the device increases in negative direction with the increase
of the Ilight densities, exhibiting a self-powered
characteristic.

Fig. 5(a) shows the time-dependent photoresponse (I-t) of
the device measured at 0 V bias under 254 nm illumination with
various light intensities. It exhibits stable and reproducible
characteristics under an on/off interval of 20 s. The dark current
is approximately —0.18 pA. Under 254 nm light illumination,
along with the light densities increased from 0.2 to 1.2 mW
cm 2, the negative photocurrent value of device increase from
0.421 to 1.644 pA. The corresponding light/dark ratios (Ijgne/
Iqark) are gradually increased from 2.34 to 9.14. Notably, the
photocurrent of the device linearly increases with the increase
of the light intensities, as shown in Fig. 5(b), revealing that the
stronger ultraviolet light can excite more photogenerated
carriers. I-t curve of self-powered B-Ga,O; NRAs solar-blind
photodetector at 0 V bias under 1.2 mW em™> 254 nm light
irradiation is enlarged in Fig. 5(c). The rising and decaying
edges were fitted by an exponential relaxation equation of the
following type:

I=Ih+Ae "™ +Be "™ 1)

where I is the steady state photocurrent, ¢ is the time, A and B
are constant, 7, and 7, are two relaxation time constants. t,
and 14 are the time constants for the rising edge and fall
edge, respectively. The rise time (7,) and the decay time (z4) of
are approximately 0.64 s and 0.38 s respectively.® It is noticed
in Fig. 5(d) that 7, and 14 show downward trend with the
increase of light intensity. The photoresponse switching
behaviors of the device at different applied bias voltages were
measured under 254 nm illumination as shown in Fig. 5(e).
Apparently, both the dark current and photocurrent
increases along with the increase of the bias voltages ranging
from 0 V to —1.5 V. Meanwhile, the photocurrent of 17.60 pA
at —1.5 V is about 11 times than that at 0 V under the same
conditions. Notably, the photocurrent increases linearly with
the increase of the electric field, because a more separation
and transportation of electron-hole pairs would excite more
pairs of the photo-generated electron-hole, resulting in
a higher photocurrent. Photoresponsivity (R,) and external
quantum efficiency (EQE) are two important parameters to
evaluate the sensitivity of PDs. R, is defined as the

6068 | RSC Adv., 2019, 9, 6064-6069

photocurrent generated by per unit power of incident light on
the effective area of a PD and EQE is bound up with the
number of electron-hole pairs excited by a PD per adsorbed
photon and per unit time. R, and EQE can be expressed in the
following equations:

R)\ = AI)\/P)\S [2)
EQE = hcR;/(e) (3)

where AL, = I, — Iqa is the difference between photocurrent
and dark current, P, is the incident light intensity, S is the
effective illuminated area, & is the Planck's constant, ¢ is the
velocity of light, e is the electron charge, and A is the incident
light wavelength. It can calculate that the device exhibits
a photoresponsivity (R;) of 10.80 mA W' and an external
quantum efficiency (EQE) of 5.27 x 10 % at 0 V bias under 1.2
mW cm 2 254 nm illumination. Simultaneously, the R, and
EQE are estimated to 85.52 mA W' and 4.18 x 10 2% for
—1.5 V bias, respectively. It can be seen from the Fig. 5(f) that R,
increases near linearly with the bias voltage. Accordingly,
applying bias voltage is a good way to rationally optimize the
photoelectric performance of photodetector. For comparison,
we list the photoresponse parameters of §-Ga,O; NRAs PD and
other types of devices reported in the literature in Table 1. It can
be seen that compared with the other type device our device can
work at zero bias. The f-Ga,O; NRAs PD with a simple structure
renders relatively high performance, wide absorption region
and low fabrication cost, promising building high performance
optoelectronic devices with a self-powered worked character-
istic in the future.

4. Conclusions

In conclusion, a self-powered solar-blind photodetector was
successfully fabricated by simple and low cost f-Ga,O; NRAs
growth process. The fabricated B-Ga,O; NRAs based PD showed
an obvious photoresponse in solar-blind ultraviolet region with
good repeatability and stability. Under 0 V bias and 1.2 mW
ecm™? 254 nm illumination, the photodetector exhibits a Liigne/
Iark Tatio of 9.14, a R, of 10.80 mA W™, 7, of 0.64 s and 74 of
0.38 s. The self-powered photodetector based on B-Ga,0; NRAs
with high light-to-electron conversion and low power
consumption abilities is a promising candidate for solar-blind
photodetection application.

This journal is © The Royal Society of Chemistry 2019
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